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Abstract

MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression in post-transcriptional fashion, and emerging
studies support their importance in regulating many biological processes, including myogenic differentiation and muscle
development. miR-29 is a promoting factor during myogenesis but its full spectrum of impact on muscle cells has yet to be
explored. Here we describe an analysis of miR-29 affected transcriptome in C2C12 muscle cells using a high throughput
RNA-sequencing platform. The results reveal that miR-29 not only functions to promote myogenic differentiation but also
suppresses the transdifferentiation of myoblasts into myofibroblasts. miR-29 inhibits the fibrogenic differentiation through
down-regulating both extracellular matrix genes and cell adhesion genes. We further demonstrate that miR-29 is under
negative regulation by TGF-beta (TGF-b)–Smad3 signaling via dual mechanisms of both inhibiting MyoD binding and
enhancing Yin Yang 1 (YY1)-recruited Polycomb association. Together, these results identify miR-29 as a pleiotropic
molecule in both myogenic and fibrogenic differentiation of muscle cells.
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Introduction

microRNAs (miRNAs) are non-coding single-stranded RNAs of

21–25 nucleotides and constitute a novel class of gene regulators

that are found in a variety of eukaryotic organisms. miRNAs

negatively regulate their targets at the post-transcriptional level

through binding to their 39 UTRs [1,2].

Mounting evidences support the importance of miRNAs in skeletal

muscle development and muscle related diseases. The process of

skeletal muscle cell differentiation is orchestrated by transcription

factors MyoD, Myf5, myogenin, MRF4, and Mef2. These factors

activate muscle genes to coordinate myoblasts to terminally withdraw

from cell cycle and subsequently fuse into multinucleated myotubes

[3]. A handful of miRNAs were studied in muscle system and proven

to be critical in regulating myogenic differentiation [4]. Previously,

our group identified miR-29 as a pro-myogenic factor [4,5]. In

undifferentiated myoblasts, miR-29 expression is epigenetically

silenced by a repressive complex containing Yin Yang 1 (YY1) and

Polycomb protein, Enhancer of Zeste Homolog 2 (Ezh2), which is

associated to the miR-29 promoter region causing tri-methylation of

histone 3 lysine 27 (H3K27me3). As differentiation ensues, MyoD

replaces the silencing complex causing the derepression of miR-29

transcriptional expression. In turn, the accumulation of miR-29

during differentiation leads to the depletion of YY1 which is also a

repressor of muscle genes. We further demonstrated that this

regulatory circuit is disrupted in Rhabdomyosarcoma which may

contribute to the development of this tumor. These findings suggest

that miR-29 involved circuitries are critical regulator of gene

expression in skeletal muscle cells. Thus, it is our interest to explore

the full spectrum of the influence by miR-29 in these cells and discover

other targets under the control of miR-29.

In addition to the normal myogenic differentiation, muscle

myogenic cells possess the potential to transdifferentiate into other

mesenchymal lineages. For example, Bone Morphogenic Protein

(BMP) signaling triggers C2C12 transdifferentiation into osteoblasts

whereas PPARgamma (PPARc) promotes its adipogenic transdif-

ferentiation [6,7]. Of particular interest, transdifferentiation of

myogenic cells into myofibroblasts was thought to contribute to the

accumulation of Extracellular Matrix (ECM) molecules and the

onset of fibrosis in injured skeletal muscle [8,9]. TGF-beta (TGF-b),

one of the most potent fibrogenic cytokines, has been individuated

as the major inducer of transdifferentiation of myogenic cells into

myofibroblasts as well as muscle fibrogenesis [8,9,10,11]. After

binding to the receptors, TGF-b phosphorylates and activates

downstream mediators, mainly Smad2 and Smad3, inducing their

translocation to the nucleus, where they regulate the expression of

many target genes, including fibrotic genes, through binding to the

Smad Binding Element (SBE) on their promoter/enhancer. In

addition, TGF-b can induce its downstream inhibitory Smad7,

which in turn inhibits Smad2/3 phosphorylation via the negative

feedback mechanisms. The underlying mechanisms mediating the

pro-fibrogenic effect of TGF-b in C2C12 cells were not fully

understood. Both Rho kinase signaling and Notch2 have been

shown to be downstream mediators [10,11].
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In addition to its pro-fibrogenic roles, TGF-b is well-

characterized as a potent inhibitor of myogenic differentiation.

Smad3 has been shown to physically interact with MRFs to repress

their transcriptional activity. In particular, Smad3, but not Smad2,

blocks MyoD-mediated transcriptional activation by associating

with bHLH region of MyoD. This interaction interferes with

MyoD/E protein dimerization and cooperative binding to E-boxes

[12]. Very recently, interplay between TGF-b and miR-29 was

discovered in the regulation of myogenic differentiation [13].

TGF-b treatment suppressed the expression of miR-29 which in

turn up-regulates Histone Deacetylase 4 (HDAC4) to inhibit the

myogenic commitment. However, it was not clear how TGF-b
exerts the suppression on miR-29. We therefore sought to

determine whether it is at the transcriptional level through Smad3

and what other factors are involved.

Although it is not known whether miR-29 plays a part in

regulating transdifferentiation of myoblasts into myofibroblasts,

emerging studies implicated miR-29 family in cardiac, liver,

pulmonary, skin and muscle fibrosis [14,15,16,17,18,19]. Multiple

ECM genes such as collagens, fibrillins and elastin

[15,16,17,18,19] are identified as direct targets of miR-29 in

fibroblasts, implicating miR-29 as a potent factor in modulating

ECM modeling and tissue fibrosis. It was shown that intramus-

cular injection of miR-29 into dystrophic muscles down-regulated

collagen expression [19]; however, the cellular mechanisms

underlying this anti-fibrotic action of miR-29 was still obscure.

Furthermore, it was not clear whether miR-29 regulates both the

anti-myogenic and the pro-fibrogenic effect of TGF-b signaling.

We thus investigated the possible involvement of miR-29 during

the conversion of myoblasts into myofibroblasts as well as its

interaction with TGF-b/Smad3 signaling.

In this study, in an effort trying to gain insights into the global

effect of miR-29 on myogenic cells, a transcriptome analysis by

high throughput RNA-sequencing (RNA-seq) was conducted and

the results revealed that miR-29 down-regulates ECM and cell

adhesion genes in addition to promoting the myogenic differen-

tiation, suggesting a role of miR-29 in suppressing fibrogenic

differentiation of myoblasts. Subsequent analyses demonstrated

that indeed miR-29 inhibits C2C12 transdifferentiation into

myofibroblasts by suppressing both collagens and Lims1 (LIM

and senescent cell antigen-like-containing domain protein).

Furthermore, we demonstrated that TGF-b controls both the

pro-myogenic and anti-fibrogenic functions of miR-29. The

inhibition of miR-29 by TGF-b was mediated by Smad3 at the

transcriptional level through both inhibiting MyoD binding and

enhancing YY1/Polycomb recruitment on its promoter region.

Results

Analysis of miR-29 affected transcriptome using RNA-seq
In order to gain insights into the miR-29 mediated events in

muscle cells, we decided to conduct a genome-wide transcriptome

analysis. A C2C12 cell line stably expressing miR-29 was

established by infecting cells with a miR-29 expressing lentivirus.

Analogous to transiently transfected cells [5], these cells differen-

tiated faster than vector transfected negative control (NC) cells

(data not shown). Subsequently, PolyA-tailed mRNAs from control

and miR-29 cells were subjected to transcriptome analysis using a

RNA-seq platform. Compared to traditional microarray-based

analysis of transcriptomes, mRNA-seq provides higher level of

accuracy and broader dynamic ranges and has been proven to be

suitable for assessing the relatively moderate influences that

miRNAs have on their target mRNAs [20]. A total of 26.3

million and 11.4 million raw reads were sequenced from miR-29

and NC samples, respectively, which were then mapped to mouse

NCBIM37.61 mm9 reference genome via Tophat v1.2 [21]. The

majority of reads can be mapped to exonic regions (.10 FPKM)

and much fewer (,0.05 FPKM) in introns and non-coding regions

(Fig. S1), indicating great specificity for expressed mRNA and

rejection of genomic DNA and unspliced pre-mRNA. Cuffdiff

program from Cufflinks package (v1.0.0) [22] was subsequently

employed to identify the differentially expressed genes under a

false discovery rate (FDR) of 5%. As a result, a total of 472 and

739 genes were found to be up- and down-regulated in miR-29

expressing cell line vs NC cell line (Fig. 1A and Table S1 and

Table S2). Subsequent Gene Ontology (GO) analysis with up-

regulated list of genes revealed that the top ranked lists of enriched

GO categories include ‘‘contractile fiber’’, ‘‘contractile fiber part’’,

‘‘sarcomere’’, ‘‘myofibril’’, ‘‘I band’’, ‘‘Z disc’’ (Table S3), which is

in agreement with the previously identified roles of miR-29 in

accelerating muscle regeneration. Strikingly, GO analysis with

down-regulated list of genes revealed an over-representation of

ECM genes presented in GO categories such as ‘‘Extracellular

matrix’’, ‘‘Extracellular matrix part’’, ‘‘Proteinaceous extracellular

matrix’’, ‘‘Collagen’’ et al. (Fig. 1B–C, Fig. S1C and Table S4).

This is in agreement with the emerging reports demonstrating the

pivotal role of miR-29 in ECM remodeling as well as fibrosis of

multiple tissues [15,16,17,18] (Fig. S1D–E). In addition, we

noticed that cell-adhesion genes under GO categories ‘‘Cell

adhesion’’, ‘‘Biological adhesion’’ and ‘‘Focal adhesion’’ represent

another category of genes under significant influence by miR-29

expression (Fig. 1B).

miR-29 suppresses C2C12 myoblast conversion into
myofibroblast through targeting Collagens and Lims1

The decrease of ECM expression in miR-29 expressing cells led

us to hypothesize that miR-29 functions to inhibit the transdiffer-

entiation of C2C12 myoblasts into fibrogenic cells. We reasoned

that myoblasts have the potential to transdifferentiate into

myofibroblasts. However, under normal myogenic differentiation

condition, YY1 regulated miR-29 drives myoblasts fusion into

myotubes [5], suppressing the fibrogenic pathway. To test this

notion, the expression levels of fibrotic markers during C2C12

differentiation were evaluated. qRT-PCR analysis data presented

in Figure 2A showed an up-regulation of Col 1A1, 1A2, Col 3A1

and a-SMA (alpha Smooth Actin) during early myoblast

differentiation (DM 1d), which is in line with the previous findings

from a transcriptional profiling of gene expression changes during

C2C12 differentiation [23]. The early rise of these genes probably

reflected the need of ECM molecules for cell adhesion, motility,

spreading, and anchorage-dependent growth at the early stage of

differentiation. However, the expression levels were significantly

down-regulated in late times of differentiation (day 2 and 4)

concomitant with the up-regulation of myofibrillar genes, Myosin

Heavy Chain (MyHC), alpha Skeletal Actin (a-Actin), Troponin

and Myogenin, suggesting that fibrogenic trans-differentiation of

C2C12 cells was inhibited during terminal myogenic differentia-

tion. In order to assess whether miR-29 is a critical factor in

determining the fate of myoblast differentiation, miR-29 was over-

expressed in C2C12. As anticipated, the myogenic differentiation

was accelerated as assessed by increased expression levels of

Myogenin, MyHC, Troponin and a-Actin (Fig. 2B). However, the

expressions of Col 1A1, Col 1A2, and Col 3A1 were suppressed

(Fig. 2C), suggesting that miR-29 inhibits fibrogenic differentiation

likely through targeting collagens. Interestingly, a-SMA and VIM

were also found to be down-regulated although they are not

predicted to be direct targets of miR-29 by multiple computational

algorithms (data not shown), indicating that miR-29 may control

miR-29 in Myoblast Conversion to Myofibroblast
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a-SMA and VIM expression indirectly. Moreover, knock-down of

miR-29 led to opposite augmenting effect on Col 1A1, Col 1A2

and Col 3A1 expression (Fig. 2D), supporting that collagens are

direct targets of miR-29. This notion was further examined by

using reporters with a fragment of the collagen (Col 1A1, Col 1A2,

Col 3A) 39 UTR containing the miR-29 binding site fused

downstream of the firefly luciferase (Luc) gene. Co-transfections of

the reporter plasmid (WT) with miR-29 caused significant

repressions of luciferase activities (Fig. 2E). This regulation

appeared specific to miR-29 binding since changes in luciferase

activity were not impacted when transfections were repeated with

an irrelevant miRNA, miR-212, or with the miR-29 site deleted

from the collagen 39UTR (Mutant). In addition to miR-29c, the

other two members of miR-29 family, miR-29a and miR-29b

could also target Collagen 39UTR (Fig. S2). Collectively, our

findings suggest that high level of miR-29 is important for driving

myogenic differentiation and loss of miR-29 promotes transdiffer-

entiation of myoblasts into myofibroblasts by targeting Collagens.

Figure 1. Stable over-expression of miR-29 in C2C12 cells down-regulates ECM and cell adhesion genes. (A) Differentially expressed
genes between C2C12 cells stably expressing vector negative control (NC) and miR-29 were determined by RNA-seq. X- and Y-axis represent the log2
based FPKM values for expressed genes in NC and miR-29 samples, respectively. The black dots represent genes with no significant expression
changes between NC and miR-29 samples. The red dots represent genes with significant expression changes. The blue dots represent genes that
have expression signal in only one sample but absent in the other. (B) Over-represented GO terms by GO analysis of down-regulated list of genes. CC:
cellular component; BP: biological process. SP_PIR: a database of protein super-family names; KEGG: Kyoto Encyclopedia of Genes and Genomes. (C)
Coverage plot showing a ,20 kb region encompassing the Collagen 1A1 (Col) gene on chromosome (Chr) 11; the gene structure is shown in blue
below the graph.
doi:10.1371/journal.pone.0033766.g001
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In addition to ECM molecules, many cell adhesion genes are

down-regulated in miR-29 expressing cells (Table S4). Among

them, Lims1 (also called PINCH) is a five LIM domain protein

involved in the regulation of integrin-mediated cell adhesion [24].

Interestingly, Lims1 was predicted to contain miR-29 binding sites

in their 39UTR regions (Fig. 2F), indicating that it may be a direct

target of miR-29. Indeed, Lims1 protein was evidently down-

regulated by over-expression of miR-29 in C2C12 cells (Fig. 2G).

The mRNA expression of Lims1 was also down-regulated in miR-

29 expressing cells at all time points of differentiation comparing to

NC cells (Fig. 2H). Knock-down of miR-29, on the other hand, led

to opposite augmenting effect on Lims1 expression (Fig. 2I).

Additionally, activities of the reporter with Lims1 binding site were

significantly inhibited by miR-29 expression while mutation of this

site abolished the inhibition (Fig. 2J). Together, these data

demonstrate that Lims1 is a direct target of miR-29.

TGF-b suppresses miR-29 expression during myoblast
conversion to myofibroblast

Having gained insights into the role of miR-29 during the

conversion of myoblasts to myofibroblasts, we now turned our

attention to its upstream regulator by asking: what leads to the

down-regulation of miR-29 in this process? TGF-b has been

individuated as the major inducer of myogenic cell into fibrogenic

cells but the underlying mechanism is still largely obscure. We thus

speculated that the pro-fibrogenic action of TGF-b mediated

through miR-29 represents a novel signaling event contributing to

fibrogenic conversion of myoblasts.

Subsequently, the effects of TGF-b in myogenic and fibrogenic

differentiation of C2C12 cells were evaluated. In agreement with

previous finding [10], TGF-b treatment of C2C12 cells led to

significant delay of myogenic program whereas the expressions of

a number of fibrotic genes were increased (Fig. S3A–E). Further IF

staining revealed that TGF-b treatment induced a loss of MyoD

whereas the a-SMA is increased. In addition, both cell

proliferation rate and cell mobility were increased (Fig. S3F–G).

These results indicated a conversion of C2C12 to myofibroblasts.

As shown in Figure 3A, very low level of a-SMA was detected in

untreated cells where MyoD is highly expressed. However, under

TGF-b treatment, a-SMA staining was induced and cells exhibited

typical a-SMA filament bundles characteristic of myofibroblasts

(Fig. 3A and Fig. S3H). We noticed that the cells with strong a-

SMA signal completely lost MyoD (a-SMA+/MyoD2) and also

assumed a myofibroblast morphology with large and more spread-

out looks (Fig. 3A, cells inside the dashed oval), but those with

weak a-SMA signal still maintain MyoD staining (a-SMA+/

MyoD+, Fig. 3A, arrow), probably representing an intermediate

stage during the conversion. Together, these data suggest that

myogenic and fibrogenic differentiations represent two opposite

fates of myoblasts; TGF-b promotes the fibrogenic differentiation

of C2C12 while suppressing the myogenic program. This is inverse

to the effect of miR-29 (Fig. 2), suggesting that TGF-b may

function upstream of miR-29 as a suppressor.

Next, the potential inhibitory role of TGF-b on miR-29 was

examined. Results demonstrated that TGF-b treatment (+)

markedly reduced miR-29 expression (Fig. 3B). Furthermore, it

exerted a dose-dependent inhibition on miR-29 promoter

activities (Fig. 3C), suggesting that the inhibition could be at the

transcriptional level through direct action on miR-29 promoter.

Next, we sought to determine whether TGF-b repression is

biologically functional in terms of regulating the pro-myogenic and

anti-fibrogenic action of miR-29. As expected, miR-29 stable cells

(Fig. 3D, Lane 5–8) displayed accelerated myogenic differentiation

vs NC cells (Lane 1–4). TGF-b treatment led to an obvious delay

in the myogenic program in both NC (Lane 9–12) and miR-29

(Lane 13–16) cells, suggesting that TGF-b acts upstream of miR-

29 in antagonizing its pro-myogenic action. Although the addition

of miR-29 oligos rescued the anti-myogenic effect of TGF-b, it is

still largely existent. This implicates that other downstream

pathways could also mediate the effect of TGF-b. The above

Western blotting data were also supported by IF staining of

MyHC (Fig. 3E) and RNA analysis of myogenic markers (Fig. S3I).

In a similar fashion, we examined the effect of TGF-b on the anti-

fibrogenic action of miR-29. Expectedly, TGF-b treatment

abrogated the suppression of miR-29 on Collagens and a-SMA

as well as Lims1 (Fig. 3F–H). Together, these data support that

TGF-b acts upstream of miR-29 to antagonize its pro-myogenic

and anti-fibrogenic effect in C2C12. On the other hand, miR-29

partially attenuates both the pro-fibrogenic and anti-myogenic

actions of TGF-b.

TGF-b repression on miR-29 promoter is transcriptionally
mediated by Smad3

Given that Smad proteins transmit most of the transcriptional

effect exerted by TGF-b, subsequently we examined their

involvement in the down-regulation of miR-29. For this purpose,

myoblasts transfected with specific siRNAs, capable of attenuating

the expressions of Smad2, Smad3, or Smad7 (Fig. 4A), were tested

for the responsiveness to TGF-b in regard to inhibiting miR-29. As

shown in Figure 4B–C, knockdown of Smad3 but not Smad2

Figure 2. miR-29 is anti-fibrogenic in C2C12 cells. (A) C2C12 cells were differentiated (DM) for 0, 1, 2 or 4 days, at which times total RNAs were
isolated for qRT-PCR measurement of the expressions of Col 1A1, Col 1A2, Col 3A1, a-SMA or VIM as well as MyHC, a-Actin, Troponin and MyoG.
Expression folds are shown with respect to 0 hr cells where normalized copy numbers were set to 1. Data are plotted as mean 6 S.D. (B and C) C2C12
cells were transfected with negative control (NC) or miR-29 oligos and differentiated for 48 hrs, at which time total RNAs were isolated for qRT-PCR
measurement of the expressions of Myogenin, Troponin, a-Actin or MyHC as well as Col 1A1, Col 1A2, Col 3A1, a-SMA or VIM. Expression folds are
shown with respect to NC cells where normalized copy numbers were set to 1. Data are plotted as mean 6 S.D. (D) C2C12 cells were transfected with
negative control (Anti-NC) or Anti-miR-29 oligos and differentiated for 48 hrs, at which time total RNAs were isolated for qRT-PCR measurement of
the expressions of Col 1A1, Col 1A2, and Col 3A1. Expression folds are shown with respect to Anti-NC cells where normalized copy numbers were set
to 1. Data are plotted as mean 6 S.D. (E) Wild type (WT) or Mutant Col 1A1, Col 1A2, or Col 3A1-39UTR luciferase reporter constructs were transfected
into C2C12 cells with indicated miRNA or negative control (NC) oligos. Luciferase activities were determined at 48 h post-transfection and normalized
to b-Galactosidase protein. Relative luciferase unit (RLU) is shown with respect to NC cells where normalized luciferase values were set to 1. The data
represent the average of three independent experiments 6 S.D. (F) A schematic illustration of base pairing between mmu-miR-29c with 3078–3099
region on 39UTR of mouse Lims1. (G) Lims1 protein expression was measured in NC or miR-29 stable C2C12 cells by Western blotting using GAPDH as
a loading control. (H) NC or miR-29 stable cells were differentiated and Lims1 expression levels were measured at the indicated time points. (I) C2C12
cells were transfected with negative control (Anti-NC) or Anti-miR-29 oligos and differentiated for 48 hrs, at which time total RNAs were isolated for
qRT-PCR measurement of the expressions of Lims1. Expression folds are shown with respect to Anti-NC cells where normalized copy numbers were
set to 1. Data are plotted as mean 6 S.D. (J) Wild type (WT) or Mutant Lims1-39UTR luciferase reporter constructs were transfected into C2C12 cells
with miR-29 or negative control (NC) oligos. Luciferase activities were determined at 48 h post-transfection and normalized to b-Galactosidase
protein.
doi:10.1371/journal.pone.0033766.g002
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abolished the inhibition of TGF-b on both miR-29 expression and

miR-29 promoter activity. In contrast, knockdown of Smad7, an

inhibitor of Smad3 activation, enhanced the inhibition of TGF-b
on miR-29 expression and promoter activity. To substantiate this

finding, primary myoblasts were isolated from tibialis anterior

muscles of wild type (Smad3+/+), Smad3 heterozygous (Smad3+/2)

or knockout (Smad32/2) mice and examined for miR-29

expression. In agreement, miR-29 expression levels were signifi-

cantly elevated in Smad32/2 myoblasts (Figure 4D, 7.360.1 fold,

p,0.0001) compared to Smad3+/+ cells. Only mild increase (1.9

fold, p,0.01) was detected in Smad3+/2 cells, suggesting a Smad3

dose-dependent regulation on miR-29 expression. On the

contrary, primary myoblasts isolated from Smad72/2 mice

displayed a significant reduction on miR-29 level (Figure 4E,

0.1160.2 fold, p,0.001). Additionally, when injected with

Cardiotoxin, a snake venom that induces extensive muscle necrotic

injury and subsequent regeneration, a steady increase of miR-29

levels were observed during the course of degeneration and

regeneration (day 1, 2, 4, 6, 9) in Smad7+/+ muscles while Smad72/2

mice displayed much lower levels of miR-29 expression at all time

points examined (Fig. 4F). These results reaffirm that Smad3 and

Smad7 are critical mediators of TGF-b inhibition on miR-29.

Interestingly, Smad3 protein was inhibited by miR-29 over-

expression but increased upon miR-29 knock-down in C2C12 cells

(Fig. S4), suggesting miR-29 regulates Smad3 expression although it

is not predicted to be a direct target of miR-29. This is in line with a

recent report showing miR-29 suppresses basal Smad3 expression

possibly through inhibiting TGF-b3 [13].

Interestingly, most studies on Smads have documented their

role as transcriptional activators, although TGF-b signaling often

results in down-regulation of gene expression. We were thus

intrigued to explore the underlying mechanisms through which

Smad3 represses miR-29 transcriptional activity. To test whether

Smad3 can directly bind to miR-29 promoter, we searched for its

binding site on miR-29b/c promoter [5]. Indeed, three SBEs were

discovered in the proximal promoter region (24849, 22741, and

2692 bp upstream of the transcriptional start site). Next, using

ChIP-PCR assays, we detected an induction of Smad3 binding by

TGF-b treatment at all three predicted SBEs (Fig. 4G), indicating

a TGF-b-induced Smad3 nuclear translocation and subsequent

association to miR-29 promoter.

Smad3 regulates miR-29 promoter through inhibiting
MyoD binding and enhancing YY1/Polycomb
recruitment

Previously, Liu et al. demonstrated that Smad3 inhibits MyoD

transcriptional activity through disruption of its binding to E-box

sites of muscle genes [12]. We thus asked whether Smad3

repression on miR-29 promoter could be executed in a similar

fashion as MyoD has been implicated as an activator of miR-29 at

the onset of myogenic differentiation [5]. Four putative MyoD

binding E-boxes were identified (Fig. 5A, M1, M2, M3 and M4).

As shown in Figure 5B, an association of MyoD with these sites

was detected in differentiated myotubes without TGF-b treatment.

However, the binding was largely suppressed by TGF-b. In

addition to MyoD regulation, we have previously demonstrated

that miR-29 promoter is epigenetically silenced in undifferentiated

myoblasts by an YY1/Polycomb repressive complex through

recruitment to an YY1 binding CCAT box, and removal of this

complex is necessary for the myogenic program to occur [25]. This

promoted us to ask whether TGF-b silencing miR-29 can be

mediated by YY1/Polycomb complex. A search for putative YY1

binding sites uncovered a total of six sites (Fig. 5A, Y1–Y6).

According to our previous findings [5], Y6 was competent for YY1

binding in undifferentiated myoblasts whereas Y3, Y4, Y5 were

not. Y1 and Y2 represent two new sites previously untested.

Subsequent ChIP-PCR assays revealed no enrichment of YY1 on

any site in differentiated cells without TGF-b treatment (Fig. 5C),

which is in agreement with the activation status of miR-29.

However, an increase of enrichment was found at Y1, Y2, Y3 and

Y6 after TGF-b treatment, indicating that TGF-b indeed

enhanced YY1 binding on multiple locations. Yet, no binding

on Y4 and Y5 was detected in both untreated and treated cells

(data not shown). Additional ChIP-PCR assays showed marked

increase of Ezh2 binding at all four YY1 sites (Fig. 5D);

consequently, increased levels of H3K27me3 were detected

(Fig. 5E), suggesting that TGF-b treatment stabilizes YY1 binding

and recruitment of Ezh2 and subsequent histone modification on

multiple regions, which leads to silencing of miR-29 promoter. To

substantiate the above findings from ChIP assays, reporter assays

using miR-29-promoter-Luc plasmid were performed. As shown

in Figure 5F, ectopic expression of YY1 repressed miR-29 reporter

activities and the repression is enhanced with co-transfection of

Smad3 at a dose-dependent manner, suggesting a repressive

synergy between YY1 and Smad3. Ectopic expression of MyoD,

on the other hand, strongly trans-activated the reporter, and this

activation was repressed by Smad3 co-expression at a dose-

dependent manner (Fig. 5G), suggesting Smad3 inhibits MyoD

activation. Moreover, addition of YY1 further abrogated MyoD

activation (Fig. 5H), indicating that the two mechanisms probably

co-act. Collectively, the above results suggest the inhibitory action

of TGF-b/Smad3 on miR-29 transcription is exerted through dual

mechanisms by blocking MyoD binding and enhancing YY1/

Ezh2 association. In keeping with the earlier findings, we found

that knockdown of either Smad3 or YY1 down-regulated Lims1

expression whereas knockdown of MyoD up-regulated its

expression, suggesting Lims1 is under regulation of TGF-b/

Smad3/YY1/MyoD axis (Fig. 5I).

Discussion

In the current study, we present evidences for the pleiotropic

roles of miR-29 in skeletal muscle cells. To our knowledge, this is

the first report to describe the global effects of miR-29 on cellular

transcriptome. In line with a previous study analyzing transcrip-

tome and targetome of miR-155 expressing cells, our results

Figure 3. TGF-b inhibits miR-29 during myogenic and fibrogenic differentiation of C2C12 cells. (A) IF staining of MyoD (red) and a-SMA
(green) in C2C12 cells treated with or without TGF-b. Photos were taken by confocal scanning microscope. Dashed oval is used to circle a-SMA+/
MyoD2 cells; arrow, a-SMA+/MyoD+ cell. Scale bar = 50 mm. (B) miR-29 expressions in C2C12 incubated without (2) or with (+) TGF-b for 0, 3 or 6
days in DM. (C) miR-29 promoter luciferease reporter activities in C2C12 incubated with indicated doses of TGF-b for 48 hrs in DM. (D) C2C12 cells
stably expressing miR-29 or vector control (NC) were treated with TGF-b in DM for 0, 2, 4, or 6 days at which times MyHC, Troponin, a-Actin were
probed by Western blotting. (E) Cells were photographed under phase contrast or immunostained for MyHC and visualized by confocal scanning
microscope at DM day 4. Positively stained cells were quantified. Data are plotted as mean 6 S.D. Scale bars = 50 mm. (F) NC or miR-29 stable cells
were treated without or with TGF-b for 48 hrs at which time Col 1, a-SMA and Lims1 were probed by Western blotting with a-Tubulin as a loading
control. (G) Col 1, a-SMA, VIM and Lims1 were stained by IF and visualized by confocal scanning microscope. Scale bars = 50 mm. (H) mRNA
expressions of Col 1A1, Col 3A1, a-SMA and Lims1. Data are plotted as mean 6 S.D. *p,0.05.
doi:10.1371/journal.pone.0033766.g003
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demonstrate that RNA-seq represents a powerful new tool to

determine the overall cascade of events under influence by

miRNA. Its broader dynamic range allows the analysis of both

high- and low-abundance transcripts and facilitates the analysis of

genes spanning a wide spectrum of expression levels. Our results

reveal that in addition to promoting myogenic differentiation,

miR-29 inhibits the expression of a large number of ECM genes

including Collagens, MATN1, ECM1 (Tables S2 and S4). This is

in line with others’ results and led us to believe that miR-29

inhibits the transdifferentiation of myoblasts into myofibroblasts.

In addition to ECM genes, we found that cell adhesion genes

represent an important category of genes under control by miR-

Figure 4. Smad3 mediates the repression of TGF-b on miR-29 at the transcriptional level by binding to miR-29 promoter region. (A)
C2C12 myoblasts were transfected with siRNA oligos against Smad2, Smad3 or Smad7, using scrambled siRNAs (SCR) as a control. 48 hr post-
transfection, the expressions were examined by Western blotting using a-Tubulin as a loading control. (B) C2C12 myoblasts, transfected with the
indicated siRNA oligos, were incubated with TGF-b in DM for 48 hrs at which time the expressions of miR-29 were measured. (C) miR-29-promoter-luc
reporter activities in C2C12 myoblasts transfected with the above siRNA oligos and then treated with TGF-b in DM for 48 hrs. (D) miR-29 expressions
in primary myoblasts isolated from Smad3+/+, Smad3+/2 or Smad32/2 mice. (E) miR-29 expressions in primary myoblasts from Smad7+/+ or Smad72/2

mice. (F) Smad7+/+ or Smad72/2 mice were injected with Cardiotoxin (CTX) into TA muscles to induce muscle regeneration. Muscles were harvested at
designated days after the injection and assayed for miR-29 expression levels by qRT-PCR. (G) C2C12 myoblasts were untreated or treated with TGF-b
for 12 hrs at which time chromatins were collected for ChIP assays using antibodies against Smad3 or IgG as controls. PCR assays were then used to
measure the enrichment fold of Smad3 on three putative binding sites, S1, S2 and S3.
doi:10.1371/journal.pone.0033766.g004
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Figure 5. Smad3 suppresses miR-29 promoter through inhibiting MyoD binding and enhancing YY1 recruitment. (A) Schematic
illustration of proximal promoter region of mmu-miR-29b/c primary transcript. The arrow denotes the Transcriptional Start Site (TSS). Predicted
Smad3 (S), MyoD (M) and YY1 (Y) binding sites were displayed. The location of each site was indicated below. (B) C2C12 myoblasts were untreated or
treated with TGF-b for 12 hrs at which time chromatins were collected for ChIP assays using antibodies against MyoD or IgG as controls. PCR assays
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29. The subsequent experimental data confirmed that Lims1 is a

direct target of miR-29. Considering that myofibroblast differen-

tiation is dependent on cell adhesion [26,27], down-regulation of

Lims1 probably mediates the suppressive role of miR-29 during

myoblast conversion to myofibroblast. These data thus add a novel

target to the growing list of miR-29 targets, and implicate miR-29

as a potent regulator in many cellular processes involving cell

adhesion factors such as cell migration, cell invasion and cell

survival. Collectively, our transcriptome analysis demonstrated

that the two main functions of miR-29 in muscle development are

to increase myogenic differentiation and to suppress fibrogenic

differentiation.

As the major inducer of fibrotic cascade, TGF-b signaling has

been shown to induce the conversion of C2C12 into myofibro-

blasts while inhibiting the myogenic differentiation. The down-

stream molecular mechanisms are not fully understood. Our

studies identify a novel pathway through which miR-29 regulates

TGF-b signaling induced transdifferentiation. In line with a recent

study demonstrating that TGF-b controls miR-29 to inhibit

myogenic differentiation [13], we also found that TGF-b can

attenuate the pro-myogenic actions of miR-29. Our results,

however, for the first time demonstrated that miR-29 also

regulates TGF-b induced transdifferentiation, thus establishing

the dual roles of TGF-b-miR-29 axis in both myogenic and

fibrogenic differentiation of muscle cells. Our findings provide

novel insights in understanding the pathologic fibrosis of skeletal

muscle. Muscle fibrosis is a major pathological hallmark of chronic

myopathies most often muscular dystrophies, which are inherited

disorders characterized by muscle degeneration and associated

progressive wasting and weakness. In the most severe cases, such

as Duchenne muscular dystrophy (DMD), the absence of

dystrophin protein leads to sarcolemmar permeability, influx of

calcium, and activation of proteases to cause myofiber necrosis

and degeneration. This is followed to some extent by regeneration

but the complete regeneration is prevented by excessive synthesis

and deposition of ECM proteins, which eventually leads to fibrosis

[28,29,30]. Thus, fibrosis is a prominent pathological hallmark of

skeletal muscle in patients with DMD and contributes to

progressive muscle dysfunction and the lethal phenotype of

DMD [31,32]. Unfortunately, the molecular mechanisms under-

lying muscle fibrogenesis is not fully understood. TGF-b signaling

is elevated in dystrophic muscles and is speculated to be the major

inducer of muscle fibrogenesis but the underlying mechanisms are

still unclear. Interestingly, miR-29 was found to be down-regulated

in dystrophic muscles in concomitant with the increased TGF-b
signaling (our unpublished data). Our findings thus fuels the

interesting hypothesis that loss of miR-29 through TGF-b
signaling promotes transdifferentiation of myoblasts into myofi-

broblasts, which represents a novel contributing route to muscle

fibrogenesis in dystrophic muscles. Very recently, Ardite E. et al

discovered that miR-21 is also involved in fibrosis of DMD [33],

highlighting the critical roles that miRNAs in general play in

muscle fibrogenesis.

It is believed that Smad proteins mediate gene activation or

repression as a result of promoter-specific interactions with

transcriptional activators or co-repressors which compensate for

its weak intrinsic binding affinity for their target elements (SBE). In

contrast to the well-documented cooperation of Smads with

sequence-specific factors to activate transcription, the mechanisms

underlying Smad-mediated transcriptional repression are only

beginning to emerge [12,34,35]. Here we uncover a novel

mechanism by which Smad3 exerts its function through synergetic

interfering with MyoD association and harnessing YY1/Ezh2

repressive complex. Previously, Liu et al demonstrated that Smad3

acts downstream of TGF-b to repress MyoD-dependent activation

through physically interacting with MyoD thus interfering with its

formation of an active MyoD/E protein complex and its

subsequent binding to multimerized E-box sequence [12,35]. In

agreement with the above findings, our results also revealed

disengagement of MyoD from multiple E-boxes with TGF-b
activation of Smad3 binding. Furthermore, in our case, inhibition

of MyoD binding on miR-29 promoter seems to be dependent on

Smad3 association with proximal SBE as all the identified E-boxes

are in the vicinity of SBEs (Fig. 5A). In addition to the above

mechanism, we present evidence for a new layer of repression

through recruitment of YY1/Ezh2 repressive complex on multiple

sites of miR-29 promoter. Given that three of the four YY1

binding sites, Y2, Y3, and Y6 (Fig. 5A), are not adjacent to SBEs, it

is very likely that the recruitment is independent on Smad3

binding. Nevertheless, one of the identified YY1 sites, Y1, was very

close to a SBE, S1, suggesting that additional mechanism

dependent on Smad3 binding may exist. Further studies are

needed to test the above hypotheses. Therefore, the above two

modes of actions exert reinforcing levels of control on miR-29

transcription, ensuring its down-regulation during the fibrogenic

differentiation of myoblasts. The application of this new

mechanism may extend beyond miR-29 promoter and represent

a general mode of TGF-b/Smad3 repression in skeletal muscle

differentiation considering many myofibrillar genes were also

regulated by MyoD and YY1/Ezh2 complex [5,25]. Together

with others’ findings, our data suggest that diverse mechanisms

lead to transcriptional repression in response to TGF-b.

Taken together, our results identified miR-29 as a pleiotropic

molecule in muscle cells. As modeled in Figure 6, during normal

muscle regeneration, miR-29 level is elevated through replacing a

repressive YY1/Ezh2/HDAC1 complex by a MyoD/SRF

activating complex on its promoter, leading to successful myogenic

differentiation [5]; However, during the transdifferentiation,

activated TGF-b signaling induces Smad3 translocation into

nucleus where it binds to miR-29 promoter, resulting in MyoD

dissociation as well as YY1/Ezh2 stabilization. This causes a loss

of miR-29 expression and increased expression of Collagens and

Lims1, leading to the transdifferentiation of myoblasts into

myofibroblasts.

Materials and Methods

Cell
Mouse C2C12 myoblasts were obtained from ATCC and

cultured in DMEM supplemented with 10% FBS, 2 mM L-

were then used to measure the enrichment fold of MyoD on four putative binding sites, M1/M2, M3 and M4. (C, D and E) ChIP-PCR assays were
performed as above to examine the binding of YY1, Ezh2 and H3K27me3 to putative YY1 binding sites, Y1, Y2, Y3 or Y6. Enrichment folds are shown
with respect to IgG control where normalized PCR values were set to 1. Data are plotted as mean 6 S.D. (F) Upper: 10T1/2 cells were transfected with
0.25 mg of miR-29-promoter-luc reporter plasmid along with 0.5 mg YY1 plasmid and Smad3 plasmid (0, 0.20, 0.50, 1.00, or 2.00 mg). 24 hr post-
transfection, cells were treated with TGF-b for 48 hrs at which time luciferase activities were determined. (G) The transfections were performed as
above with 0.5 mg of MyoD plasmid and Smad3 expression plasmid (0, 0.20, 0.50, 1.00, or 2.00 mg). (H) The transfections were performed as above
with indicated plasmids (0.5 mg of MyoD, YY1 or Smad3 plasmids were used). (I) C2C12 cells were transfected with siRNA oligos knocking down
Smad3, MyoD or YY1. The expression of Lims1 was examined by Western blotting using Tubulin as a loading control. *p,0.05. ** p,0.01.
doi:10.1371/journal.pone.0033766.g005
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glutamine, 100 U/ml penicillin, and 100 mg of Streptomycin at 37

C in 5% CO2. For myofibroblast transdifferentiation and

myogenic differentiation experiments, cells were seeded in

60 mm or 100 mm plates and when 90% confluent they were

shifted to DMEM without FBS containing 2% horse serum. Cells

were treated with 5 ng/ml TGF-b1 (R&D systems). 10T1/2 cells

and HEK 293T cells were cultured in DMEM supplemented with

10% FBS.

Transfections and infections
Transient transfections with miRNA precursor oligos and

siRNA oligos or DNA plasmids were performed in 60 mm or

100 mm dishes with Lipofectamine 2000 reagent as suggested by

the manufacturer (Invitrogen). For luciferase experiments, C2C12

and primary myoblasts were transfected in 12-well plates. Cell

extracts were prepared and luciferase activity was monitored as

previously described [36] or using dual-luciferase kit (Promega).

To produce virus particles expressing vector or miR-29, pMIF-

cGFP-Zeo Vector or pMIF-cGFP-Zeo-miR-29 plasmids along

with the packaging plasmid mix (pPACK) (System Biosciences)

were transfected into HEK293T cells maintained in 10% FBS.

48 h after transfection, supernatant was harvested from these cells

and viral titers were estimated by FACS analysis. Approximately

16109 virus particles were used to transduce C2C12 cells, which

were subsequently placed in 400 mg/ml Zeocin for stable selection.

Stable clones were pooled together after ,2 week selection.

Oligonucleotides
Precursor miRNA oligos were obtained from Ambion. Mercury

LNA microRNA or control oligos were obtained from Exiqon.

The 19-nucleotide siRNA duplexes against mouse Smad 2 coding

region (siRNA, 59-GAAUUGAGCCACAGAGUAA-39), Smad 3

coding region (siRNA, 59-CAGUUCUACCUCCAGUGUU-39)

or Smad 7 coding region (siRNA, 59-GCACUCGGUGCUCAA-

GAAA-39) or scrambled oligos were obtained from Ribobio. In

each case 50 mM oligos were used for transient transfections into

cells.

DNA constructs
Col 1A1-3UTR, Col 1A2-3 UTR, Col 3A1-3 UTR luciferase

reporter plasmids were kind gifts from Dr. Ahlquist. Paul [37]. For

the construction of mutant plasmid, the 29 base pair seed region of

the predicted miR-29 binding site was deleted from the above

parental constructs using QuickChange XL-mutagenesis (Strata-

gene). To construct Lims1-39UTR reporter plasmid, a 45 bp

fragment encompassing miR-29 binding site was cloned into

pMIR-report vector (ABI) between Spa1 and Sac1 sites. Mutant

reporter plasmids were generated by mutating the seed region

from TGGTGCT to TACCTCT. Replication-deficient lentivirus-

based expression plasmids pMIF-cGFP-Zeo Vector and pMIF-

cGFP-Zeo-miR-29b, along with the packaging plasmid mix

(pPACK), were obtained from System Biosciences (SBI). An

YY1 expression plasmid was a gift from Y. Shi (Harvard

Figure 6. A model of TGF-b-Smad3-miR-29 circuit in myogenic and fibrogenic differentiation of C2C12 myoblasts. The model depicts
the roles of the TGF-b-Smad3-miR-29 regulatory circuit in myogenic and fibrogenic differentiation of C2C12 cells. In the normal myogenesis, the
recruitment of MyoD/SRF and the displacement of YY1/PRC from miR-29 promoter lead to the elevation of miR-29 expression and its feedback
inhibition on YY1 and successful myogenic differentiation. Upon TGF-b stimulation, activated Smad3 translocates into nucleus where it binds to SBE,
resulting in MyoD dissociation as well as YY1/Ezh2 recruitment to multiple CCAT boxes of miR-29b/c promoter. This leads to trimethylation of histone
lysine 27 and subsequent silencing of miR-29 expression. Loss of miR-29 upregulates the expression of ECM genes such as Collagens as well as cell
adhesion genes such as Lims1, thus promoting the conversion of myoblasts into myofibroblasts. Straight line, promoter/enhancer region of mmu-
miR-29b/c with arrow denotes TSS; CCAT, YY1 binding elements; E-box, MyoD binding sites; SBE, Smad3 binding element; Me, methylation of histone
lysine 27; Ac, acetylation of histones.
doi:10.1371/journal.pone.0033766.g006

miR-29 in Myoblast Conversion to Myofibroblast

PLoS ONE | www.plosone.org 11 March 2012 | Volume 7 | Issue 3 | e33766



University) and used as described [25]. A Smad 3 expression

plasmid was a gift from Prof. Lan Huiyao. MyHC and Troponin

luciferase reporter (MyHC-Luc and Troponin-Luc) were used as

described [25]. miR-29-promoter luciferase reporter was created

and used as described (Wang et al., 2008). Renilla luciferase

reporter was obtained from Promega and used according to

manufactory.

RT-PCR and Real-time RT-PCR
Total RNAs from cells were extracted using TRIzol reagent

(Invitrogen). Expression of mature miRNAs was determined using

the miRNA-specific Taqman microRNA assay kit (Applied

Biosystem) on an ABI PRISM 7900HT Sequence Detection

System (Applied Biosystem). U6 was used for normalization.

Expression of mRNA analysis was performed with SYBR Green

Master Mix (Bio-Rad Laboratories) as described using GAPDH

for normalization [25].

Immunoblotting, Immunostaining and
Immunohistochemistry

For Western blotting analyses, total cell extracts were prepared

and used as previously described [36]. The following dilutions

were used for each antibody: Myogenin (Santa Cruz Biotechnol-

ogy; 1:2000), YY1 (Santa Cruz Biotechnology; 1:2000), Troponin

(Sigma; 1:2000), MyHC (Sigma; 2,000), Smad 2 (cell signaling;

1:2000), Smad 3 (Abcam; 1:2000), Smad 7 (Santa Cruz; 1:2000),

Collagen 1 (Novus Biologicals, 1:2000), alpha Smooth Actin (a-

SMA, Millipore; 1:2000), a-Tubulin (Sigma; 1:5000), and

GAPDH (Santa Cruz Biotechnology; 1:5000). Immunofluores-

cence of cultured cells was performed using the following

antibodies: MyHC (Sigma; 1:350), Collagen 1 (Novus Biologicals,

1:350), a-SMA (Millipore, 1:400), Vimentin (Santa Cruz; 1:350),

MyoD (DAKO, 1:400). All fluorescent images were captured with

a confocal laser scanning microscope (FV1000, Olympus, Japan).

Fluorescence was detected with an Olympus microscope (FV1000,

Olympus, Tokyo, Japan). All samples were imaged with the 206
or 406 objective lens. Pictures were captured in Kahlman frame

giving an average of two scans using the Olympus microscope

FV1000 and the accompanying software FV10-ASW (version

01.07.02.02, Olympus).

ChIP assays
ChIP assays were performed as recommended by the

manufacturer (Upstate) using 5 mg of antibodies against YY1

(Santa Cruz Biotechnology), Ezh2 (Cell signaling), trimethyl-

histone H3-K27 (Millipore), Smad 3 (Abcam), or isotype IgG

(Santa Cruz Biotechnology) used as a negative control. Genomic

DNA pellets were resuspended in 20 ml of water. qRT-PCR was

performed with 1 ml of immunoprecipitated material with SYBR

Green Master Mix (Bio-Rad Laboratories). Relative recruitment is

calculated as the amount of amplified DNA normalized to input

and relative to values obtained after normal IgG immunoprecip-

itation, which were set as 1. Primers used are indicated in the

supporting information files.

Animal studies
Smad 3+/+ (C57BL/6) and Smad 32/2 (Smad3ex8/ex8 mouse),

Smad 7+/+ (CD-1 or ICR) and Smad 72/2 (Smad7_exI mutant

mouse) mice were kind gifts from Prof. Lan Huiyao [38,39]. Mice

were housed in the animal facilities of The Chinese University of

Hong Kong (CUHK) under conventional conditions with constant

temperature and humidity and fed a standard diet. Animal

experimentation was approved by the CUHK Animal Ethics

Committee. Primary myoblasts were isolated from approximately

one week old mice muscles by the described procedures (Rando

and Blau, 1994). Briefly, total hind limb muscles (3 to 6 mice per

group) were digested with type IV collagenase (Invitrogen, 5 mg/

ml) and dispase II (Invitrogen, 1.4 mg/ml) for 0.5 hr, and cell

suspensions were further homogenized by pipetting before being

filtered through 70 mM and 40 mM filters. The obtained cells were

pre-plated on uncoated cell culture plates in F10 media

(Invitrogen) to selectively enrich for myoblasts. After two rounds

of pre-plating, the cell suspension was plated on Gelatin-coated

plates (Iwaki) in F10 medium (Invitrogen) supplemented with 20%

FBS and Basic Fibroblast Growth Factor (Invitrogen, 25 ng/ml).

Primary myoblasts were used at passage 3–5 after isolation. For

Cardiotoxin injection. Approximately five week old Smad7+/+ or

Smad72/2 mice were injected with 60 ml of cardiotoxin (CTX) at

10 mg/ml into the tibialis anterior muscles. Muscles were

harvested at designated times, and total RNAs were extracted

for real-time RT-PCR analysis.

Sequencing and base calling
Preparation of transcription libraries for sequencing on the Illumina

GA2x platform was carried out using the mRNA-Seq Sample

Preparation Kit (Cat # RS-930-1001) according to the manufactur-

er’s standard protocol. Briefly, purified RNA was fragmented via

incubation for 5 min at 94uC with the Illumina-supplied fragmenta-

tion buffer. The first strand of cDNA was next synthesized by reverse

transcription using random oligo primers. Second-strand synthesis

was conducted by incubation with RNase H and DNA polymerase I.

The resulting double-stranded DNA fragments were subsequently

end-repaired, and A-nucleotide overhangs were added by incubation

with Taq Klenow lacking exonuclease activity. After the attachment

of anchor sequences, fragments were PCR-amplified using Illumina-

supplied primers and loaded onto the GA2x flow cell. DNA clusters

were generated with an Illumina cluster station with Paired-End

Cluster Generation Kit v2 (Illumina), followed by 5162 cycles of

sequencing on the GA2x (Illumina) with Sequencing Kit v3 (Illumina).

Genome Analyzer Sequencing Control Software (SCS) v2.5, which

could perform real-time image analysis and base calling, was used to

carry out the image processing and base calling during the chemistry

and imaging cycles of a sequencing run. The default parameters

within the data analysis software (SCS v2.5) from Illumina were used

to filter poor-quality reads. In the default setting, a read would be

removed if a chastity of less than 0.6 is observed on two or more bases

among the first 25 bases.

Read mapping to genome with splice-aware aligner
Sequenced fragments were mapped to UCSC mouse reference

genome mm9 using TopHat version 1.1.4. Cufflinks version 1.0.0

was then used to estimate transcript abundances of RNA-Seq

experiments. Abundances were reported in FPKM (fragments per

kilobase of transcript per million fragments mapped) which is

conceptually analogous to the reads per kilobase per million reads

mapped (RPKM) used for single end RNA-seq.

Statistical analysis
Statistical significance was assessed by the Student’s t-test.

(*p,0.5; **p,0.01; ***p,0.001)

Supporting Information

Figure S1 RNA-seq reveals that miR-29 overexpression
leads to transcriptome change in C2C12 cells. Total RNAs

were isolated from NC or miR-29 expressing C2C12 cells and

subjected to high throughput mRNA sequencing (mRNA-seq).
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TopHat 1.1.4 was used to align the sequenced reads back to the

mouse reference genome (UCSC mm9). The normalized fragment

density was calculated by counting the fragments per kilobase of

genomic regions of interests (coding sequences (CDS), introns, 59

UTR, 39 UTR, and non-coding (nc) exons) per million mapped reads.

In both NC (A) and miR-29 (B) samples, the majority of the RNA-seq

reads fall into the transcript regions (CDs, 59UTR, and 39UTR),

demonstrating good specificity for mRNAs. (C) The expression of

ECM genes, Col 1a1, Col 1a2, Col 3a1, Vimentin, as well as Lims1 in

NC and miR-29 expressing cells as revealed by RNA-seq. (D) miR-29

over-expression in 10T1/2 cells (Fibroblasts) leads to the down-

regulation of ECM synthesis. (E) miR-29 over-expression in 293 cells

leads to the down-regulation of Col 3a1 expression.

(TIF)

Figure S2 miR-29 down-regulates Collagens in C2C12
myoblasts. Col 1A1, Col 1A2 or Col 3A1 39UTR reporter

plasmid was transfected into C2C12 cells with indicated miRNA

oligos. Luciferase activities were determined at 48 h post-

transfection and normalized to b-Galactosidase protein. Relative

activity is shown with respect to control cells where normalized

luciferase values were set to 1. The data represents the average of

three independent experiments 6 S.D.

(TIF)

Figure S3 TGF-b inhibits miR-29 during myogenic and
fibrogenic differentiation of C2C12 cells. (A) C2C12 cells

were treated with 5 ng/ml of TGF-b in differentiation medium

(DM) for 0, 3 and 6 days. RNAs were isolated for qRT-PCR

measurement of the expressions of Myogenin, MyHC, a-Actin,

and Troponin normalized to GAPDH. Expression folds are shown

with respect to 0 hr cells where normalized copy numbers were set

to 1. Data are plotted as mean 6 S.D. (B) Cell morphology was

visualized under phase contrast. Bars = 50 mm. (C) C2C12 cells

were transfected with 0.2 mg of Troponin-Luc reporter plasmids

along with Renilla reporter plasmid and treated with TGF-b for

48 hrs at which time luciferase activities were determined and

normalized to Renilla luciferase activity. Relative light unit (RLU)

is shown with respect to untreated cells where normalized

luciferase values were set to 1. The data represent the average of

three independent experiments 6 S.D. (D) C2C12 cells were

treated with TGF-b for 3 days. Proteins were isolated for Western

measurement of the expression of Cadherin-11, FSP1 (Fibroblast-

specific protein-1), Transgelin using Tubulin as a loading control.

(E) C2C12 cells were treated with TGF-b in DM for 0, 3, 6 days.

Total RNAs were isolated for qRT-PCR measurement of the

expression of Col 1A1, Col 1A2, Col 3A1, a-SMA or VIM

normalized to GAPDH. Expression folds are shown with respect

to 0 hr cells where normalized copy numbers were set to 1. Data

are plotted as mean 6 S.D. (F). C2C12 cells were treated with

TGF-b for 0, 1, 2 or 3 days and the viable cell number was

counted. Proliferation folds are shown with respect to day 0 cells

where normalized proliferation fold were set to 1. Data are plotted

as mean 6 S.D. (G) Left: C2C12 cells treated with TGF-b were

seeded on 6-well plate with 100% confluent monolayer and a

‘‘wound’’ was induced. Phase-contrast pictures of the wound were

taken at 0, 3, 6 and 9 hr. Right: The percentage of wound closure

was quantified at each indicated time point. (H) C2C12 cells were

treated with or without TGF-b in DM for four days. Cells were

fixed and stained for a-SMA (green). DAPI (blue) staining was also

performed to visualize the nuclei. Photos were taken by confocal

scanning microscope. (I) NC or miR-29 stable cells were untreated

(2) or treated (+) with TGF-b in DM for the indicated time

intervals at which time RNAs were isolated for qRT-PCR analysis

of Myogenin, Troponin, a-Actin and MyHC. Expression folds are

shown with respect to NC cells without TGF-b treatment where

normalized copy numbers were set to 1. Data are plotted as

mean 6 S.D.

(TIF)

Figure S4 miR-29 inhibits Smad3 expression. Basal and

phosphorylated (p) Smad3 levels were examined in C2C12 cells

over-expressing miR-29 or with miR-29 knock-down by Anti-miR

oligos. Tubulin was used as a loading control. The quantification

of Smad3 or p-Smad3/Tubulin was performed using ImageJ

1.43u (National Institutes of Health, USA). The expression folds

are shown with respect to control where normalized expression

fold were set to 1.

(TIF)

Table S1 List of up-regulated genes in miR-29 express-
ing C2C12 cells.
(PDF)

Table S2 List of down-regulated genes in miR-29
expressing C2C12 cells.
(PDF)

Table S3 Functional annotation clustering of up-regu-
lated genes in miR-29 expressing C2C12 cells.
(XLS)

Table S4 Functional annotation clustering of down-
regulated genes in miR-29 expressing C2C12 cells.
(XLS)
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