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Abstract: The detailed mechanisms of replication initiation, termination and segregation events
were not yet known in Acanthamoeba polyphaga mimivirus (APMV). Here, we show detailed
bioinformatics-based analyses of chromosomal replication in APMV from initiation to termination
mediated by proteins bound to specific DNA sequences. Using GC/AT skew and coding sequence
skew analysis, we estimated that the replication origin is located at 382 kb in the APMV genome. We
performed homology-modeling analysis of the gamma domain of APMV-FtsK (DNA translocase
coordinating chromosome segregation) related to FtsK-orienting polar sequences (KOPS) binding,
suggesting that there was an insertion in the gamma domain which maintains the structure of
the DNA binding motif. Furthermore, UvrD/Rep-like helicase in APMV was homologous to
Bacillus subtilis AddA, while the chi-like quartet sequence 5′-CCGC-3′ was frequently found in
the estimated ori region, suggesting that chromosomal replication of APMV is initiated via chi-like
sequence recognition by UvrD/Rep-like helicase. Therefore, the replication initiation, termination
and segregation of APMV are presumably mediated by DNA repair machineries derived from
gram-positive bacteria. Moreover, the other frequently observed quartet sequence 5′-CGGC-3′ in
the ori region was homologous to the mitochondrial signal sequence of replication initiation, while
the comparison of quartet sequence composition in APMV/Rickettsia-genome showed significantly
similar values, suggesting that APMV also conserves the mitochondrial replication system acquired
from an ancestral genome of mitochondria during eukaryogenesis.

Keywords: DNA replication; ori; mitochondria; Rickettsia; gram-positive bacteria; APMV; Mimivirus;
giant virus; eukaryogenesis

1. Introduction

Understanding the mechanism of genomic replication for all organisms, including the “giant
viruses”, is an important scientific endeavor. Mimivirus, the first giant virus to be discovered, has a
750-nm-long virion and a 1.2 Mb linear dsDNA genome [1,2]. The method of replication termination
for Acanthamoeba polyphaga mimivirus (APMV) has been previously hypothesized [3]. The first
model suggested that the replication of the lagging strand of APMV’s linear genome is mediated by
homologous recombination of approximately 617 bp located on both ends of the viral chromosome,
similar to T4 phage replication, and is processed with Mimivirus R555 recombinase (Mre11/Rad50
fusion protein) [3,4]. Recently, the second model of replication termination and segregation of APMV
was proposed [5]. In this model, the FtsK-like protein (also called packaging ATPase), binds FtsK
orienting polar sequences (KOPS) and is localized to both ends of the nucleosome, resulting in
chromosome segregation by the recombination of dif sequences [5]. The KOPS is the recognition sites
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of FtsK protein, and this protein controls the chromosome segregation in bacteria [6]. The second
model reinforces the first model regarding homologous recombination between chromosomal ends.
However, it should be noted that the bacteria do not perfectly conserve KOPS among species [6–8],
suggesting that APMV could have KOPS of its own, which might be similar to bacterial KOPS.

The initiation of DNA replication of bacteria is mainly driven by DnaA-DnaA box interaction,
which subsequently unwinds dsDNA via DnaB [9]. Rep protein, related DNA helicase such as DnaB,
initiates plasmid replication [10]. The Rep protein relates not only to plasmids but also to chromosome
replication in Escherichia coli [11]. The homologues of these helicases in gram-positive bacteria are
PcrA and AddAB; both are involved in DNA repair, and the former is involved in rolling-circle
replication [12–14]. Especially, AddAB mediates the homologous recombination with recognizing
the five-nucleotide sequence called chi [12], so the recombination is sequence specific. The sequence
chi is known as a site-specific recombination site that is catalyzed by the RecBCD pathway in E. coli,
and RecB is a homologous helicase to AddA [15,16]. Chi sequence varies among bacterial species:
E. coli: 5′-GCTGGTGG-3′; Bacillus subtilis: 5′-AGCGG-3′; Lactococcus lactis: 5′-GCGCGTG-3′ [12,15–17].
Based on the model of replication termination in APMV [5], the DNA replication initiation mechanism
might also be homologous to that of bacteria. If so, the pair of bacteria-like DNA sequences and their
recognition proteins which are related to the DNA replication initiation and segregation could be found
in APMV. Plotting the nucleotide composition bias called genomic GC skew is a tool for visualizing the
bias of the nucleotide composition on the genome, which is able to determine the origin of replication
since the values of GC skew switch across the replication origin and its terminus [18], and which
has been determined in bacteria with some improvements of the technique [19–21]. This nucleotide
composition bias shaping the genomic polarity is thought to have results of the mutation and selection
pressure against the different replication mechanism of leading/lagging strand [22,23]. Although
the origin of replication remains putative in Mimivirus, the GC skew analysis against the Mimivirus
genome with high resolution may facilitate the detection of the signal sequence of DNA replication
initiation. Therefore, using bioinformatics, we analyzed the APMV genome to determine the DNA
replication initiation/termination segregation mechanism in detail, starting with the GC skew analysis.

2. Materials and Methods

2.1. GC/AT, Coding Sequence (CDS) Skew Analysis

GC and AT skew of the APMV genome (AY653733.1) was analyzed using a method described
previously [20,21]. Each index was calculated using the following formulas: GC skew = [G-C]/[G+C];
AT skew = [A-T]/[A+T] (window size: 10,001 bp; step size: 1000 bp), and the GC/AT skew and
cumulative graph of these were plotted. To calculate coding sequence (CDS) skew, we indexed the
CDS direction on the APMV genome (direction of the gene (D): positive: +1; negative: -1) and the CDS
length (L). Subsequently, the CDS skew index was calculated against every CDS using the following
formula: CDS skew = [D] × [L] (Figure 2b). The CDS skew and cumulative CDS skew were plotted
with the CDS start positions.

2.2. Correlation Analysis of the CDS Length of Left/Right Side from the Estimated Ori Region

The CDS length of the left or right sides from the estimated origin (380,698 bp), and the CDS
length of the positive or negative direction against the APMV genome (AY653733.1), were plotted
using a box plot. The statistical differences between each of two groups were calculated by two-sample
Kolmogorov–Smirnov (KS) test using “lawstat package” of R software (https://www.r-project.org)
with default options.

2.3. Paralogous Gene Localization Analysis

We confirmed the three kinds of paralogous gene locations found on the two GC skew shift
points (296,000 bp and 882,000 bp): ankyrin repeat, serine/threonine protein kinase, and collagen triple helix
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repeat containing protein. First, we made a gene list of the CDS information annotated as “ankyrin
containing protein”, “serine/threonine protein kinase”, or “collagen triple helix repeat containing
protein” in the APMV genome (AY653733.1), containing the data of locus tags, start/end physical
positions, gene length and gene direction and GC content (Supplementary Data). Every pair of
each of the three genes was listed and the distance between these pairs from the start position was
calculated. This pair of directions on the physical position of the APMV genome was plotted using
the Circos v0.69-6 software [24]. The pair of gene direction was also labeled (matched direction:
forward-forward/reverse-reverse; mismatched direction: forward-reverse/reverse-forward). When
drawing the graph with Circos, color coding was used to display the three kinds of genes, and states
of matched/mismatched gene directions were displayed with shades of colors (ankyrin containing
protein: blue; serine/threonine protein kinase: green; collagen triple helix repeat containing protein:
red; matched: light; mismatched: shade). The columns of id, gene1_start_pos, gene2_start_pos,
line_colour, and line_thickness in the Supplementary Data without header (Supplementary Data; the
pane “Paralogous gene direction”) can be used for loading the data to Circos. The distance between
every two CDSs in each of the three genes was plotted by the CDS direction-matching patterns on the
APMV genome (“match” or “mismatch”). The statistical differences between the two groups were
calculated by two-sample KS test using the “lawstat package” in the R software with default options.

2.4. Sequence Alignment Analysis Neighbor-Net Network Analysis

The accessions of analyzed FtsK with positions of motor (ATPase) domain and gamma domain
were as follows: APMV: AAV50705.1, 5-215 aa, 216-284 aa; E. coli: NP_415410.1, 868-1242 aa, 1268-1324
aa; L. lactis: NP_267812.1, 312-668 aa, 695-749 aa; Pseudomonas aeruginosa: Q9I0M3, 343-716 aa,
749-803 aa; B. subtilis: WP_003231869.1, 346-703 aa, 582-723 aa. The accession numbers of analyzed
UvrD/Rep-like helicase were as follows: APMV: AKI80299.1; E. coli: YP_026251.1 (Rep), AAA67609.1
(UvrD), NP_417297.1 (RecB); L. lactis: WP_003132060.1 (PcrA), WP_010905024.1 (AddA); B. subtilis:
WP_003233919.1 (PcrA), WP_003233100.1 (AddA). The dataset without the APMV sequence was
used for alignment. Poor-quality sequences were masked using Prequal software [25], and sequence
alignment analyses was performed using the MAFFT v7.222 software with “—auto” option [26].
Subsequently, the APMV sequence was added and realigned with MAFFT. To determine the alignment
of the chi-binding site of AddA with APMV, two sequences of AddA from L. lactis and B. subtilis
(WP_010905024.1 and WP_003233100.1) were recursively added with the APMV sequence. For the
Neighbor-Net network analysis, alignment data containing APMV sequence were trimmed using
trimAl 1.2rev59 software with “-strictplus” option [27], and the numbers of aligned residues used
were: FtsK ATPase domain: 322 aa; FtsK gamma domain: 49 aa; UvrD/Rep-like helicase: 483
aa. The Neighbor-Net network tree was drawn by SplitTree4 (version 4.14.8) with 1000 bootstrap
replicates [28,29].

2.5. KOPS Distribution in the Genome

The bacterial KOPS distributions on APMV and the bacterial genomes were plotted using the
following genome data: APMV: AY653733.1; L. lactis Il1403: NC_002662.1; E. coli MG1655: NC_000913.3;
B. subtilis 168: NC_000964.3. The information on the ori and ter positions of these bacteria was provided
by Genome projector website (http://www.g-language.org/g3/) [30]. KOPS of each bacteria were listed
as follows: L. lactis: 5′-GAGAAG-3′; B. subtilis: 5′-GAGAAGGG-3′; E. coli: 5′-GGGNAGGG-3′ [6–8].

2.6. Quartet Sequence Composition Analysis

Every quartet sequence compositions on APMV and the bacterial genomes were confirmed
with the compseq program of the EMBOSS 6.6.0.0 software [31] with the “-word 4 ” option, using the
following genome data: APMV: AY653733.1; L. lactis Il1403: NC_002662.1; E. coli MG1655: NC_000913.3;
B. subtilis 168: NC_000964.3; Rickettsia prowazekii: NC_000963.1; Homo sapiens mitochondria (MT):
CM001971.1. To compare the compositions between the estimated ori region and the whole genome of
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APMV, sequence composition was also confirmed on the 375–385 kb region, and the ratio of ori region
per whole genome (quartet nucleotide composition ratio) was calculated as follows: quartet nucleotide
composition ratio = [ori observed/expected frequency]/[all genome observed/expected frequency].
The Grubbs test was performed on this data to detect the highly observed sequence on the ori region
with the “outliers” package of the R software (options: type = 11; opposite = TRUE; two.sided = TRUE).
The mutual observed frequency of quartet sequence among APMV, APMV ori region, and bacteria
were plotted, while statistical differences were confirmed by two-sample KS test using the “lawstat
package” of the R software with default options.

2.7. Homology Modeling Analysis

Homology modeling analyses of the gamma domain of packaging ATPase (FtsK-like protein,
216-284 aa region of AAV50705.1) were performed using the I-TASSER server [32]. Template structures
of P. aeruginosa (2J5O and 2VE9) were used for modeling [33,34].

3. Results

3.1. GC/AT Skew and CDS Skew Analyses

The GC skew plot showed the two highest and lowest peaks at the symmetrical position point of
the genome (296 kb and 882 kb), and the plot was able to separate the three regions by these positions
(Figure 1a). Both end regions (<296 kb, >882 kb) were increasing; however, the former value was
negative and the latter value was positive, indicating that the 5‘ end contained a C nucleotide rather
than G nucleotide, and the 3′ end contained a G nucleotide rather than a C nucleotide. The middle
region of the graph (from 296 kb to 882 kb) was almost flat (Figure 1b), and the cumulative GC skew
plot of this region was increasing (Figure 1b), indicating that the number of G and C nucleotides in
this region was slightly skewed to the G nucleotide. The AT skew graph showed the shift point of
the value, which corresponded to the peak of the valley of the cumulative AT skew graph at 382,000
± 5000 bp region, suggesting that the origin of DNA replication is located in this region (Figure 1).
However, the cumulative AC skew did not show any peaks (Figure S1).

CDS skew analysis showed that the shift point and cumulative CDS skew analysis exhibited a
V-shaped graph, similar to the AT skew/cumulative AT skew (Figure 2a). Furthermore, the valley of
this cumulative CDS skew graph was located at 382,698 bp, and the gene direction faced outward from
this peak. Therefore, we concluded that the estimated ori region is located at the 382 kb position of
APMV genome. The location of the estimated ori region is biased toward the 5′ end from the center
of the genome; however, there were no significant differences in CDS length between the right and
left sides of the estimated ori region and between the positive and negative strands (Figure S2). We
found the same paralogous genes on the GC skew shift points (296,000 bp, 882,000 bp): ankyrin repeat,
serine/threonine protein kinase, and collagen triple helix repeat containing protein. Paralogues of
these genes were located on the line of symmetry position in the genome, especially collagen triple helix
repeat containing protein gene, which exhibited the exact positions of the GC skew shift points with
opposite gene direction, suggesting that the nucleotide compositions of these paralogues formed the
shift points (Figure 3a). Additionally, we analyzed the gene-to-gene distances between each pair of
paralogues for each of the three genes, indicating that the distance between the gene direction matched
pair was shorter than that between the mismatched pair (fold change: 2.6, p < 0.05, Figure 3b). Thus,
APMV forms the double-folding structure and is the cause of paralogue generation by homologous
recombination (Figure S3).
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Red arrows on the GC skew plot indicate the highest/lowest peaks, which are located at the 
symmetrical position of the genome (GC skew: 0.488234 at 296,000 bp; -0.472989 at 882,000 bp). (b) 
Cumulative GC and AT skew plots corresponding to the graphs on the panel (a). The green arrow on 
the graph on the cumulative AT skew plot shows the lowest valley point on this graph, which was 
estimated in the genomic region as an origin of replication (382,000 ± 5000 bp). 

 

Figure 1. Analyses of the GC/AT skew in the Acanthamoeba polyphaga mimivirus (APMV) genome. (a)
GC and AT skew plot of APMV genome (AY653733.1, step size: 1000 bp; window size: 10,001 bp). Red
arrows on the GC skew plot indicate the highest/lowest peaks, which are located at the symmetrical
position of the genome (GC skew: 0.488234 at 296,000 bp; -0.472989 at 882,000 bp). (b) Cumulative GC
and AT skew plots corresponding to the graphs on the panel (a). The green arrow on the graph on the
cumulative AT skew plot shows the lowest valley point on this graph, which was estimated in the
genomic region as an origin of replication (382,000 ± 5000 bp).

Viruses 2019, 11, x FOR PEER REVIEW 5 of 18 

 

< 0.05, Figure 3b). Thus, APMV forms the double-folding structure and is the cause of paralogue 
generation by homologous recombination (Figure S3). 

 
Figure 1. Analyses of the GC/AT skew in the Acanthamoeba polyphaga mimivirus (APMV) genome. (a) 
GC and AT skew plot of APMV genome (AY653733.1, step size: 1000 bp; window size: 10,001 bp). 
Red arrows on the GC skew plot indicate the highest/lowest peaks, which are located at the 
symmetrical position of the genome (GC skew: 0.488234 at 296,000 bp; -0.472989 at 882,000 bp). (b) 
Cumulative GC and AT skew plots corresponding to the graphs on the panel (a). The green arrow on 
the graph on the cumulative AT skew plot shows the lowest valley point on this graph, which was 
estimated in the genomic region as an origin of replication (382,000 ± 5000 bp). 

 
Figure 2. Analyses of the coding sequence (CDS) skew of the APMV genome. (a) CDS skew plot
(left) and cumulative CDS skew plot (right) of the APMV genome (AY653733.1). The green arrow on
the graph on the cumulative CDS skew plot shows the lowest valley point, which was estimated to
be genomic region of the origin of 382,698 bp. (b) Calculation of the CDS skew index. D: Direction
values of the CDS against the APMV genome (AY653733.1); L: CDS length (bp). Pink and green arrows
indicate the positive and negative CDS direction on the APMV genome, respectively.
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3.2. Initiation of DNA Replication 

3.2.1. Sequence Analysis of UvrD/Rep-Like Helicase 

Since the replication initiation mechanism had not yet been analyzed in APMV, we sought to 
determine the protein that participated in the initiation of DNA replication. In doing so, we 
discovered a similar sequence to Rep helicase that was related to the both chromosome and plasmid 
replication [10,35]. This protein has already been annotated as “UvrD/REP helicase family protein”, 
suggesting that this protein is possibly an initiator of DNA replication in APMV (accession ID of 
NCBI protein database: AKI80299.1). We aligned the UvrD/REP helicase family protein of APMV 

Figure 3. Paralogous gene localization found at the GC skew shift point. (a) The three genes found
on the GC skew shift point were plotted (ankyrin repeat, serine/threonine kinase, and collagen triple
helix repeat containing protein). Four dif sites (dif 1-4) were described previously (see text). Each of
the three genes were separately categorized as matching or mismatching the coding sequence (CDS)
direction on the Acanthamoeba polyphaga mimivirus (APMV) genome (AY653733.1) with shades of colors
(light: matched direction; dark: mismatched direction). (b) Distances between each pair of CDSs in
each of the three genes were plotted by the CDS direction matching patterns on the APMV genome
(“match” or “mismatch”). Labels above the box plots indicate the fold change between the two values
with the resulting p-value from KS-tests.

3.2. Initiation of DNA Replication

3.2.1. Sequence Analysis of UvrD/Rep-Like Helicase

Since the replication initiation mechanism had not yet been analyzed in APMV, we sought
to determine the protein that participated in the initiation of DNA replication. In doing so, we
discovered a similar sequence to Rep helicase that was related to the both chromosome and plasmid
replication [10,35]. This protein has already been annotated as “UvrD/REP helicase family protein”,
suggesting that this protein is possibly an initiator of DNA replication in APMV (accession ID of
NCBI protein database: AKI80299.1). We aligned the UvrD/REP helicase family protein of APMV
(AKI80299.1) with the bacterial homologues: Rep, UvrD, and RecB of E. coli; PcrA and AddA
of B. subtilis; and L. lactis [10,12,13]. The alignment and phylogenetic analysis showed that the
UvrD/Rep-like helicase of APMV is a close relative to the AddA rather than Rep (Figure 4a,c). Seven
regions that were known to be conserved among AddA and other helicases [36] were also highly
conserved in the UvrD/Rep-like helicase (Figure 4a). AddA forms a heterodimer with AddB, which
recognizes the chi sequence of B. subtilis [37]. Therefore, we compared the homologous region of
the chi binding site of AddA with UvrD/Rep-like helicase of APMV. The results showed that there
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were three regions containing chi binding sites in UvrD/Rep-like helicase of APMV, and two out of
seven sites were conserved: Q1115 and I1157 of Bacillus-AddA corresponded to the Q922 and I924 of
UvrD/Rep-like helicase of APMV; and Y1204 of Bacillus-AddA presumably corresponded to the Y973
of UvrD/Rep-like helicase of APMV, which was shifted one amino acid residue to the C-terminus from
the homologous site against Y1204 in B. subtilis (Figure 4b). Although we have aligned the other region
containing four DNA-binding residues between the 1012–1019 aa region of Bacillus-AddA with the
610–617 aa region of UvrD/Rep-like helicase, both of which are constructed with polar amino acids,
we could not find any conserved sequences of DNA binding sites (K1013, S1015, V1016, and S1017 in
Bacillus AddA, Figure 4b). These four residues in Bacillus-AddA bind the phosphate at the 3′ end of the
chi sequence [37], so that the content of polar amino acids in this region, rather than the exact amino
acid sequence, is important for Bacillus-AddA to bind to the chi sequence. Therefore, we estimated that
the 610–617 aa region of UvrD/Rep-like helicase of APMV could also bind the 3′ end of the chi-like
sequence in the APMV genome. Altogether, the UvrD/Rep-like helicase of APMV was similar to the
AddA of gram-positive bacteria, and thus this protein would presumably recognize the chi sequence.Viruses 2019, 11, x FOR PEER REVIEW 8 of 18 
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residues masked by the prequel program [25]. Accession number and species name are labeled on the
left side of the alignments. Grey colored numbers, which are located on both sides of the alignments,
indicate the physical positions of each sequence. (b) Sequence alignment of chi sequence binding sites.
Accession number and species name are labeled on the left side of the alignment. Grey colored numbers,
which are located on both sides of the alignments, indicate the physical positions of each sequence.
Labels above/under the alignment indicate the amino acids related to the chi sequence binding sites
determined using B. subtilis-AddA [37]. (c) Neighbor-Net network tree of the UvrD/Rep-like helicase.
Accession number and species name corresponding to the sequence alignment are labeled at the end of
the branch. Numbers on nearby branches indicate bootstrap test values with 1000 replicates. Scale bar:
number of substitutions per site.

3.2.2. Signal Sequence of the Initiation of DNA Replication

Subsequently, we sought to find the sequence that was related to the origin of recognition on the
probable ori region. To accomplish this, we first calculated the quartet nucleotide composition ratio of
the ori-containing region per total genome (Figure 5). For details of the calculation of the ratio, see
Materials and Methods. The four types of sequences that had a ratio greater than 2 contained 75–100%
of GC nucleotides, and two of four sequences, CGGC and CCGC, exhibited significantly different
ratios from the other sequences (p < 0.05, Figure 5a). Furthermore, two sequences (CCGC and GCGG)
were complementary to each other (Figure 5a). This pair of sequences was identical to four out of
five nucleotides on the chi sequence, which was recognized by B. subtilis-AddA (5′-AGCGG-3′) [12].
Additionally, the sequence CGGC is known to be a part of a complementary sequence that is known
as a replication signal sequence of mitochondrial genome in humans, 3′-GGCCG-5′ [38]. Therefore,
we analyzed the distribution of these quartet sequence in the APMV genome. The sequence densities
of CCGC and GCGG in the APMV genome showed that both sequences had two peaks, and one of
each peak was located on the ori-containing region, while the others were on the axial symmetric
position (about 800,000 bp, Figure 5b). Similar to this, those of CGGC and GCCG exhibited two peaks
and the peak on the 5′ side in GCCG located on the ori-containing region, although that of the CGGC
slightly skewed from the ori-containing region to the 5′ end of the genome (Figure 5c). Each type of
quartet sequence composition frequencies was calculated in APMV, four kinds of bacteria (B. subtilis, L.
lactis and E. coli, and R. prowazekii), and human mitochondrial genome (H. sapiens MT). R. prowazekii
is considered as an ancestor of mitochondria [39], while the mitogenome sequence similarity against
the Mimivirus genome has been reported recently [40]. These frequencies were then plotted in every
pair of bacteria, mitochondria, APMV, and the ori-containing region of APMV (375–385k) (Figure 6).
Every pair without APMV-APMV-ori and APMV-R.prowazekii exhibited a significant difference of
sequence composition (p<0.05, Figure 6). R. prowazekii possesses the most similar sequence composition
compared with APMV (p = 0.2528). The composition similarity of the R. prowazekii-APMV pair was
higher than those of the R. prowazekii-H. sapiens MT and APMV-H. sapiens MT pairs (R. prowazekii-H.
sapiens MT: p = 0.04685; APMV-H. sapiens MT: p = 0.00146), suggesting that the APMV conserves the
sequence derived from an ancestor of mitochondria rather than from highly evolved mitochondria
in humans. Interestingly, the composition of human mitochondria and L. lactis also showed a high
similarity (p = 0.3552) rather than the R. prowazekii-H. sapiens MT pair, suggesting that the mitochondrial
genome still conserves a remnant of bacterial characteristics.
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mitochondria (H. sapiens MT), and four bacterial genomes (Escherichia Coli, Bacillus subtilis, Lactococcus
lactis, Rickettsia prowazekii). Pairs of every frequency between two species were plotted with an
approximate line. “APMV ori” indicates the frequencies of sequence compositions in the estimated
location of the ori region (375–385 kb region of AY653733.1). p-values in each top left corner of the
graphs are the significant differences calculated between two groups as determined by KS test.

3.3. Termination of DNA Replication and Chromosome Segregation

3.3.1. Sequence Analysis of FtsK-Like Protein in APMV

FtsK mainly conserves the motor domain (alpha/beta domain) and gamma domain, the latter
of which is our main target, and recognizes KOPS [5,26]. The DNA binding sites of FtsK has been
determined in P. aeruginosa [34,41]. We aligned the gamma domain of APMV with P. aeruginosa and
other bacteria (L. lactis, B. subtilis, and E. coli), revealing that the DNA binding sites determined in P.
aeruginosa were conserved to almost the same degree among APMV and bacteria. The phylogenetic
analysis of FtsK-gamma domain among these species indicated that the sequence of L. lactis was
most closely related to the APMV-FtsK gamma domain (Figure 7b). However, in APMV, there was
a 10 aa insertion in the region where the DNA binding sites were localized (Figure 7a), suggesting
that DNA-binding activities of APMV-FtsK had possibly collapsed. Therefore, we confirmed the
three-dimensional structure via homology modeling of the gamma domain in APMV-FtsK, using two
models from P. aeruginosa as templates [34,41]. As a result, the DNA binding sites of APMV-FtsK were
thought to be topologically reconstructed and conserved by this insertion (Figure 8). Estimated DNA
binding sites against the DNA backbone were K242, K243, K253, and K256, which corresponded with
R770, K771, R778, and R781 in P. aeruginosa, respectively, and the binding site for KOPS specifically was
N246 at APMV-FtsK, which corresponded to N777 in P. aeruginosa. K242, K243, and N246 were placed
on the insertion (Figure 7a, Figure 8a) [33]. These four basic amino acids localize in two helix motifs,
which bind to the KOPS region and support the recognition of KOPS by asparagine between the two
helix motifs (Figure 8a,b) [33]. Next, we confirmed the conservation of the ATP binding sites on the
FtsK in APMV. The FtsK conserves the Walker A motif (the ATPase active site), and in P. aeruginosa,
substitution of amino acid residue in this motif leads to the deactivation of ATPase (K472N) [41].
The sequence alignment showed that the motor domain of APMV conserved lysine on the Walker
A motif (K32) as well as other three bacteria (Figure 9a). The other ATP binding sites found in P.
aeruginosa [41] were partially conserved in the APMV-FtsK (Figure 9a). However, some amino acids
were not conserved, even in bacteria (R418 and H675 of P. aeruginosa-FtsK, Figure 9a), suggesting
that these amino acid residues in binding sites could be replaced with other amino acid residues.
Phylogenetic analyses of these motor domains indicated that the sequence of APMV was distinct from
bacteria (Figure 9b). Therefore, APMV-FtsK might have speciated from its bacterial group prior to the
emergence of bacterial FtsK.
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Figure 7. Sequence analyses of APMV-FtsK gamma domain. (a) Sequence alignment of FtsK-like
protein gamma domain. Accession number and species name are labeled on the left side of each
alignment. Grey numbers located on both sides of the alignments indicate the exact positions of each
sequence. Amino acids labeled under the alignment indicate the amino acid residues responsible for
DNA binding sites of Pseudomonas aeruginosa [25]. (b) Neighbor-Net network tree of FtsK gamma
domains. Accession number and species name corresponding to the sequence alignment are labeled at
the end of the branch. Numbers on nearby branches indicate bootstrap test values with 1000 replicates.
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Figure 8. Homology modeling analysis of APMV-FtsK gamma domain. (a) Estimated structures of
FtsK gamma domain using two different templates of P. aeruginosa-FtsK (PDBID; middle: 2J5O; right:
2VE9). The left model is the gamma domain of P. aeruginosa-FtsK (PDBID: 2VE9). Side chains on the
left model are directly bound to FtsK orienting polar sequences (KOPS), while the other two models
are estimated amino acids, which are functionally homologous to 2VE9. Blue arrows indicate two helix
motifs harboring KOPS binding residues. (b) Model of the gamma domain of APMV-FtsK against
KOPS. Four basic amino acids and Asn (N) correspond to the side chain in every model on panel (a).
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Figure 9. Sequence analyses of APMV-FtsK ATPase domain. (a) Motor domain of FtsK-like protein
sequence alignment. Accession number and species name are labeled on the left side of alignments.
Grey numbers located on both sides of the alignments indicate the exact positions of each sequence.
Labels under the alignment indicate the amino acids related to ATPase activities determined in P.
aeruginosa [41]. (b) Neighbor-Net network tree of the gamma domains. Accession number and species
name correspond to the sequence alignment labeled at the end of the branch. Numbers on nearby
branches indicate bootstrap test values with 1000 replicates. Scale bar: number of substitutions per site.

3.3.2. Distribution Pattern of KOPS on APMV Genome

The most frequently observed type of KOPS sequence was from L. lactis, whereas those of B. subtilis
and E. coli were hardly encountered (L. lactis, 5′-GAGAAG-3′: 225; B. subtilis, 5′-GAGAAGGG-3′: 5;
E. coli, 5′-GGGNAGGG-3′: 9; Figure 10a). This KOPS distribution pattern was different between the
positive and negative strand, and the density graphs showed that these two patterns crossed at the
estimated ori position (Figure 10b). These KOPS distribution patterns were analyzed in each bacterial
genome, and the results suggested that the density of KOPS on the positive/negative strand switched
on the exact points of the ori/ter region (Figure 10c). This is similar to the distribution pattern of L.
lactis-derived KOPS in the APMV genome and to KOPS in the bacterial genomes, indicating that L.
lactis KOPS could be one of the commonly used termination sequences in DNA replication in APMV.
It should be noted that we did not have evidence that the other two KOPS, 5′-GAGAAGGG-3′ and
5′-GGGNAGGG-3′, found in APMV, were inactive (Figure 10a).
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Figure 10. Bacterial KOPS distribution on APMV. (a) Frequency distribution of bacterial
KOPS distribution in the APMV genome (AY653733.1, L. lactis; 5′-GAAGAAG-3′, B. subtilis:
5′-GAGAAGGG-3′, E. coli: 5′-GGGNAGGG-3′). Complementary sequences were also counted. (b)
Density graph of the L. lactis type KOPS in the APMV genome (AY653733.1). KOPS on the positive
and negative strand of the APMV genome were plotted separately. Red arrow: estimated ori region;
dark gray arrows: dif sequence positions (c) Bacterial KOPS distributions in bacterial genomes (L. lactis
Il1403: NC_002662.1, E. coli MG1655: NC_000913.3, B. subtilis 168: NC_000964.3). Red and black arrows
indicate the ori and ter positions, respectively.

4. Discussion

The GC/AT skew bias is the result of replication bias in bacteria [19], and the
replication-transcription conflict causes a high mutation rate in genes, causing genetic transcription and
DNA replication to be co-directional [42]. We determined the estimated ori region using high-resolution
cumulative skew graphs of AT nucleotides and CDSs (382 kb, Figures 1 and 2), which suggests that the
transcription and DNA replication of the APMV genome are co-directional. This characteristic is not
unique to cellular organisms but is the same in APMV. Both bacteria and viruses replicate faster than
eukaryotes. APMV has a 1.2 Mb genome, a size which is similar to that of bacteria. Therefore, its large
genomic structure would likely be constructed while facing the selection pressure of DNA replication.

The negative and positive values on both ends of the GC skew plot suggest that the G/C nucleotide
composition switches between the 5′ region (<296 kb) and the 3′ region (>882 kb). Both end regions have
dif sequences, which have been previously estimated [5], suggesting that this nucleotide composition
bias is perhaps a key factor for replication termination with directional homologous recombination
(Figure S3). Indeed, both regions harbor paralogous genes of ankyrin repeats in opposite directions,
indicating that recombination between the 5′ and 3′ ends frequently occurs (Figure 3a). Moreover,
the ankyrin repeats are symmetrically placed between dif 2 and dif 3; thus, these two dif sequences
might often be used for termination and segregation (Figure 3a). A model for the termination of
DNA replication in APMV has been previously described, hypothesizing that the genomic DNA bent
symmetrically during DNA replication of the 3′ end [3]. The symmetrical distribution of the sequences
and genes in APMV suggest that homologous recombination and/or sequence insertions would occur
prior to chromosome segregation. Furthermore, the large, symmetrical inversion between APMV and
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Megavirus chillensis (lineage C of Mimiviridae) [43] indicates that the topology of the genomic DNA
during replication led to the diversification of the viral family Mimiviridae.

In bacteria, the dnaA box sequence on the ori region is recognized by DnaA when DNA
replication is initiated [9], and the Rep protein is used when plasmid replication is initiated [44].
Rep is also involved in chromosomal replication, and a lack of Rep function can cause delay in
chromosomal replication [11]. In E. coli, RecB, which is a homologous helicase to Rep, acts in the
reconstruction of a stalled replication fork in the RecBCD pathway, while recognizing chi sequences
(5′-GCTGGTGG-3′) [15,16]. The gram-positive bacteria B. subtilis encodes the homolog of the RecB,
AddA, and recognizes the chi sequence 5′-AGCGG-3′ [12]. Based on our results, UvrD/Rep-like
helicase of APMV is more similar to AddA than it is to Rep, and a portion of the gram-positive chi-like
sequence (5′-CCGC-3′) is frequently found in the estimated ori region of the APMV genome (Figures 4
and 5) This suggests that the initiation of DNA replication is presumably mediated by the interaction
between the UvrD/Rep-like helicase and chi-like sequences in APMV. In B. subtilis, AddA, Q1155,
and I1157, homologous residues of Q922 and I924 in UvrD/Rep-like helicase of APMV are known
to recognize the fourth and fifth G nucleotides of the chi sequence (5′-AGCGG-3′) [37]. Therefore,
these conservations are appropriate for binding APMV helicase to the GCGG sequence, of which the
complementary sequence is frequently found in the estimated ori region of the APMV genome (Figures
4b and 5). However, S1015, V1016, S1017, and Y1204 in B. subtilis AddA bind phosphate at the 3′ end
of the chi sequence [37], suggesting that these residues are not involved in the recognition of a specific
chi sequence. Phosphate binding sites were not conserved in UvrD/Rep-like helicase of APMV at the
sequence level, however these regions contain polar amino acids similar to B. subtilis AddA (Figure 4b),
which indicates that the UvrD/Rep-like helicase of APMV could also bind phosphate at the 3′ end
of the chi sequence. Furthermore, the other quartet sequence, 5′-CGGC-3′, which was detected on
the estimated ori region of APMV (Figure 5a,c), is reported to be a part of the DNA replication signal
sequence of mitochondria (3′-GGCCG-5′) [38], indicating that the DNA replication of APMV is also
initiated by host replication machineries involved in the replication of mitochondrial DNA.

KOPS and FtsK determine the region of DNA replication termination, and FtsK mediates DNA
segregation process in bacteria [7,8]. KOPS are different among bacteria [6–8], in that the KOPS
recognition mechanism is thought to be defined by the structure of FtsK and the sequence of KOPS
itself. Our results showed that, in the APMV genome, the distribution pattern of L. lactis-KOPS was
similar to those of bacteria (Figure 10b,c). The sequence analysis of the FtsK gamma domain, which
interacts with KOPS, also showed a high similarity between L. Lactis and APMV (Figure 7), suggesting
that the pair of KOPS and the FtsK-gamma domain structure in APMV might be homologous to that
of L. lactis. Furthermore, we found that there was an insertion in the gamma domain of APMV-FtsK.
Interestingly, the three-dimensional structure estimated by homology modeling revealed that this
insertion was reconstructed and conserved in the DNA-binding domain (Figure 8). We also showed
that the Walker A motif was conserved in the FtsK-motor domain of APMV (Figure 9a). These results
suggest that APMV-FtsK might be functionally homologous to that of bacteria. The phylogeny of
APMV-FtsK (gamma domain) was also found to be similar to that of L. lactis (Figure 7b). Therefore, the
mechanisms of interaction between these proteins and specific sequences are presumably homologous
between APMV and bacteria such as L. lactis, although further molecular biological studies and
structural analyses are required to certify this model.

The phylogenetic relations between Rickettsia and mitochondria and between mitochondria
and Mimivirus were described previously [39,40]. Interestingly, the genome size and GC content
of Rickettsia are 1.1 Mb and 29%, respectively [39], which is highly similar to APMV (1.2Mb, 28%).
Furthermore, the backbone of the Mimivirus genome is reported to be derived from the ancestor
of mitochondria [40]. Considering the quartet sequence similarities (Figure 6) and the phylogenetic
relation between Rickettsia and mitochondria, the ancestor of Mimivirus infected the ancestor of
eukaryotic cells (last archaeal common ancestor, LACA) before the endosymbiosis of mitochondrial
ancestor to the first eukaryotic common ancestor (FECA), while the ancestor of mitochondria and
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Rickettsia also infected to the ancestor of eukaryotic cells. This ancestral virus presumably harbored
shorter genomic DNA than the present-day Mimivirus, and it acquired the long genome from ancestor
of mitochondria by genomic fusion. The sequence 5′-CGGC-3′ found in the APMV ori region might
also have been acquired from the ancestor of mitochondria, and is still conserved as a DNA replication
signal sequence (3′-GGCCG-5′) in the mitochondrial genome [38]. It has been reported that the
comparison between mitochondrial genes and the Rickettsia genome shows much higher similarities
than that between mitochondrial genes and megaviral genome (poxvirus), while the synteny of these
three species are significantly conserved [45]. Thus, according to our results, the genomic remnants of
the ancestor of mitochondria may be still conserved in the Mimivirus genome to a greater extent than in
the poxvirus genome. Moreover, the co-infection (or preying on) of the LACA cells might have occurred
not only in ancestor of mitochondria and Mimivirus but also in other bacteria, and therefore APMV
conserves the bacteria-like machineries such as UvrD/Rep-like helicase and APMV-FtsK derived from
the co-infected ancestor of gram-positive bacteria by horizontal gene transfer.

5. Conclusions

Here, we presented a proposed model of the initiation and termination of DNA replication and
chromosome segregation for APMV. The estimated ori region exists at the 382 kb position in the
genome, which contains the chi-like sequence recognized by B. subtilis AddA, which is homologous
to the UvrD/Rep-like helicase of APMV. The other sequence has a homology of a DNA replication
signal sequence of mitochondria, indicating that the DNA replication of APMV may initiate with
the replication machineries of mitochondria. The KOPS distribution pattern and the structure of
APMV-FtsK indicate that the KOPS recognition system by APMV-FtsK is similar to that of L. lactis.
Consequently, replication initiation, termination and segregation systems of APMV are presumably
mediated by DNA repair machineries, similar to that of gram-positive bacteria, such as L. lactis.
Furthermore, the comparison of quartet sequence compositions shows the similarity between APMV
and Rickettsia, which may have the closest common ancestor of mitochondria, indicating that Mimivirus
has acquired a large bacteria-like genome and its DNA replication machineries from ancestor of
mitochondria during the co-infection to the LACA cells. The evolutionary history of APMV remains
unclear; however, the further analyses of such a chimeric genome of APMV may illustrate the early
stage of evolution of eukaryotic cells and Mimivirus.
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