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Abstract

Lrig proteins are conserved transmembrane proteins that modulate a variety of signaling pathways from worm to humans.
In mammals, there are three family members – Lrig1, Lrig2, and Lrig3 – that are defined by closely related extracellular
domains with a similar arrangement of leucine rich repeats and immunoglobulin domains. However, the intracellular
domains show little homology. Lrig1 inhibits EGF signaling through internalization and degradation of ErbB receptors.
Although Lrig3 can also bind ErbB receptors in vitro, it is unclear whether Lrig2 and Lrig3 exhibit similar functions to Lrig1.
To gain insights into Lrig gene functions in vivo, we compared the expression and function of the Lrigs in the inner ear,
which offers a sensitive system for detecting effects on morphogenesis and function. We find that all three family members
are expressed in the inner ear throughout development, with Lrig1 and Lrig3 restricted to subsets of cells and Lrig2
expressed more broadly. Lrig1 and Lrig3 overlap prominently in the developing vestibular apparatus and simultaneous
removal of both genes disrupts inner ear morphogenesis. This suggests that these two family members act redundantly in
the otic epithelium. In contrast, although Lrig1 and Lrig2 are frequently co-expressed, Lrig12/2;Lrig22/2 double mutant ears
show no enhanced structural abnormalities. At later stages, Lrig1 expression is sustained in non-sensory tissues, whereas
Lrig2 levels are enhanced in neurons and sensory epithelia. Consistent with these distinct expression patterns, Lrig1 and
Lrig2 mutant mice exhibit different forms of impaired auditory responsiveness. Notably, Lrig12/2;Lrig22/2 double mutant
mice display vestibular deficits and suffer from a more severe auditory defect that is accompanied by a cochlear innervation
phenotype not present in single mutants. Thus, Lrig genes appear to act both redundantly and independently, with Lrig2
emerging as the most functionally distinct family member.
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Introduction

Protein-protein interactions are critical for diverse and complex

biological functions throughout the animal kingdom, including

nervous system development, cell adhesion and signaling, tissue

morphogenesis, the immune response and human disease [1–4].

This functional diversity is accomplished by superfamilies of

proteins harboring combinations of common protein recognition

motifs. For instance, the human genome encodes hundreds of

proteins with extracellular leucine rich repeats (LRR), a 20–30

amino acid motif that forms a characteristic horseshoe structure

for protein-protein interactions [5,6]. Similarly, the large immu-

noglobulin (Ig) superfamily of cell adhesion molecules is defined by

the presence of Ig domains, which can mediate highly specific

homophilic and heterophilic binding [7,8]. Despite their abun-

dance, LRR and Ig motifs are rarely found in the same protein,

with only several dozen mammalian genes encoding LRR-Ig

proteins that fall into twelve gene families [3,9,10]. Most of these

proteins are vertebrate-specific and show discrete expression in the

developing nervous system, suggesting that expansion of the LRR-

Ig family may have contributed to the increased complexity of the

vertebrate nervous system. Consistent with this idea, several LRR-

Ig proteins have been shown to control highly specific cell-cell

interactions underlying synapse formation and other aspects of

nervous system development [2]. The invertebrate-specific Kek-

kon proteins, on the other hand, modulate signaling by binding to

and downregulating EGF receptors [11,12].

Within the LRR-Ig family, only the Lrig subfamily contains both

invertebrate and vertebrate members [3], indicating that analysis

of this family may provide general insights into the evolution of

LRR-Ig proteins. The leucine-rich repeat and immunoglobulin-

like domain proteins (Lrigs) are single pass transmembrane

proteins with extracellular domains containing fifteen LRRs, three

Ig-like domains and intracellular domains of varying length [13].

The fly and worm genomes each contain a single Lrig gene. This

family is expanded in the vertebrate genome, which encodes for

three family members [14]: Lrig1 (formerly Lig1), Lrig2, and Lrig3.

The extracellular domains are highly conserved within the family,

but the cytoplasmic domains diverge significantly, with no motifs

common to flies, worms, or vertebrates. This suggests that Lrig

family members may interact with similar binding partners yet

ultimately exert distinct downstream effects.

Most of what is known about Lrig function has come from

analysis of Lrig1, which is downregulated in several human

cancers [15]. Consistent with its proposed role as a tumor

suppressor gene, Lrig1 can control the activity of several receptor

tyrosine kinases (rTKs) with important effects on cell proliferation

and survival. For instance, Lrig1 negatively regulates members of
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the ErbB family of receptors by promoting receptor degradation

[16–18]. In support of this, Lrig1 regulates EGFR levels in

primary human keratinocytes [19], and loss of Lrig1 results in

increased EGF signaling and excess intestinal stem cell prolifer-

ation, tumor formation and psoriasis-like hyperplasia in mice [20–

22]. However, Lrig1 can also inhibit Met and Ret rTK activation

[23,24], suggesting that Lrig1 activity extends beyond regulation of

EGF signaling. How any Lrig protein functions at the molecular

level remains a mystery.

Whether Lrig3 shares some properties with Lrig1 remains an

open question. As predicted by homology in their extracellular

domains, both Lrig1 and Lrig3 can bind to ErbB receptors [25].

However, although downregulation of Lrig3 in human glioma cells

caused enhanced EGFR levels [26], more recent studies indicate

that Lrig3 actually opposes Lrig1’s effects on EGF signaling [18].

In addition, similar to Lrig1’s ability to interact with a variety of

receptors, Lrig3 also binds to FGF receptors and regulates FGF

and Wnt signaling in Xenopus [27]. Whereas several phenotypes

reported in Lrig1 mutant mice have been associated with changes

in EGF signaling, loss of Lrig3 leads to a disruption in the three-

dimensional structure of the inner ear that is not easily explained

by altered ErbB signaling [25,28]. Thus, it is not yet clear how the

functions identified for Lrig1 and Lrig3 in vitro translate to their

actions in vivo.

Comparison of Lrig1 and Lrig2, on the other hand, has suggested

key differences. First, reduction of Lrig2 either lowers or has no

effect on EGFR levels in vitro [18,29]. Consistent with this

observation, Lrig2 does not behave like a typical tumor suppressor

in humans. For instance, Lrig2 expression can be increased in some

human tumors, and a combination of high levels of Lrig2 and low

levels of Lrig1 correlates with a poor prognosis for a type of early-

stage squamous cell carcinoma [30]. Similarly, overexpression of

Lrig2 correlates with invasiveness of pituitary adenoma [31]. In

addition, studies of Lrig protein expression in human tumors have

revealed fundamental differences in the subcellular distribution of

these family members [32,33]. Although Lrig2 phenotypes have

not yet been described in mice, loss of LRIG2 causes Urofacial

Syndrome in humans, which is characterized by abnormal bladder

function and altered facial expression, possibly due to abnormal

innervation [34].

In order to clarify whether Lrig genes mediate common

biological functions in vivo, we have taken a genetic approach in

mice. We have focused our analysis on the development and

function of the inner ear, an exquisitely complex structure whose

perfect form and function is crucial for the senses of hearing and

balance [35,36]. The spiral-shaped cochlea mediates the sense of

hearing. Head position and motion is sensed by movement of fluid

within the vestibular system, which consists of three semicircular

canals oriented in the three dimensions of space, and a saccule and

utricle that detect linear acceleration and gravity. The inner ear

contains six sensory epithelia, which contain the sensory hair cells.

Vestibular hair cells in the two maculae and three cristae detect

motion of the head, whereas auditory hair cells in the organ of

Corti respond to specific frequencies of sound. Vestibular and

auditory information is transmitted from the inner ear to the brain

by primary sensory neurons in the vestibular or spiral ganglia

respectively.

The inner ear provides an unusually sensitive system for analysis

of gene function since small changes in the formation or structure

of the inner ear can cause profound functional deficits in hearing

and balance. For instance, Lrig3 mutant mice exhibit hyperactivity

and run in circles due to truncation of a single semicircular canal

[28]. Further, Lrigs have been shown to modulate BMP, FGF, and

Wnt signaling pathways, which all play important roles in the

morphogenesis and patterning of the inner ear [35]. Thus, analysis

of the inner ear provides an ideal opportunity to uncover the in vivo

actions of the Lrigs.

Here, we analyzed several features of inner ear development

and function in single and double Lrig mouse mutants. Our results

suggest that Lrig1 and Lrig3 cooperate during morphogenesis. Lrig1

and Lrig2, on the other hand, control largely distinct aspects of

inner ear development and function, yet act redundantly to ensure

proper innervation of the cochlea.

Results

To be able to compare and contrast Lrig gene function in the

inner ear, it is critical to know when and where each family

member is expressed. Any sites of overlap offer an opportunity to

examine redundancy, whereas unique sites of expression can be

used to reveal the biological significance of individual family

members. For instance, Lrig3 is the only family member expressed

in the developing lateral semicircular canal and Lrig3 mutant mice

circle due to defects in this canal. However, although Lrig3 is also

expressed in other regions of the inner ear, Lrig3 mutant mice

exhibit normal auditory responses, with no other obvious changes

in the structure or function of the inner ear [28]. This raises the

possibility that other Lrig genes compensate for the loss of Lrig3.

Therefore, to begin to determine whether these three family

members play overlapping functions, we compared their expres-

sion patterns in the inner ear, either by in situ hybridization (Lrig1)

or by examining the expression of bgeo reporter genes inserted into

the Lrig2 (Figure S1) and Lrig3 [28] loci.

Given the known role for Lrig3 in canal morphogenesis, we first

compared expression patterns at embryonic day 12.5 (E12.5), just

before the canals begin to acquire their mature morphology. The

inner ear develops from the otic vesicle, a simple sphere of

epithelium that invaginates from the epidermis overlying the

hindbrain beginning around E9 in mouse [35]. Over the next

several days, the vestibular apparatus and endolymphatic duct

develop from the dorsal half of the otic vesicle, while the cochlea

extends ventrally (Figure 1A). Beginning around E12, the

Author Summary

The mammalian genome encodes three Lrig family
members - Lrig1, Lrig2, and Lrig3. Lrig proteins share a
characteristic extracellular domain that can bind to a
variety of signaling receptors, but the three family
members show little homology in the cytoplasmic domain.
Lrig1 is a tumor suppressor gene required for normal EGF
signaling. Whether Lrig2 and Lrig3 play similar roles is not
known. To address this gap in knowledge, we compared
the expression and function of Lrigs in the mouse inner
ear, which is responsible for hearing and balance. Even
subtle changes in the inner ear cause easily detected
deficits in hearing and balance, making it an ideal system
for analysis of gene function. We find that Lrigs can act
both redundantly and independently in the inner ear, with
Lrig1 and Lrig3 cooperating to control morphogenesis and
Lrig1 and Lrig2 acting independently to ensure proper
cochlear function. However, loss of both Lrig1 and Lrig2
causes a more severe auditory response deficit and
additionally causes a vestibular defect, suggesting some
overlapping activities. Our findings provide new insights
into the in vivo functions for the Lrig genes, which play
important roles in vertebrate development and disease.

Lrig Gene Function in the Inner Ear
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semicircular canals are sculpted from the vertical and lateral

pouches. The utricle and saccule develop from an intermediate

region called the atrium [37]. In parallel, signaling events establish

restricted sensory regions, which ultimately produce hair cells and

support cells in the mature sensory epithelia in the canals (the

cristae), the utricle and saccule (the maculae), and the cochlea (the

organ of Corti). Non-sensory regions in the cochlea go on to form

the lateral wall, inner sulcus, and Reissner’s membrane. Consistent

with previous studies [28], Lrig1 and Lrig3 showed remarkably

restricted yet related patterns of expression at E12.5, overlapping

both in the atrium and in the non-sensory domain of the cochlea

(Figure 1B, C). In contrast, Lrig2-bgeo activity was evident

throughout the early otic epithelium (Figures 1C and S2). Indeed,

Lrig2-bgeo expression appeared nearly ubiquitous at all stages

examined, although the levels varied in different tissues (Figure

S2).

To determine whether Lrig1 and Lrig2, like Lrig3, help determine

the three-dimensional structure of the inner ear, we generated and

Figure 1. Lrigs are co-expressed in the embryonic inner ear. (A) Diagram of the immature inner ear structure at E12.5 (left) and the mature
structure at E16 (right), with schematic cross sections cut transverse to the ear at each age shown below. For the E16 cross section, the sensory
epithelia are labeled red and the neurons green. In situs for Lrig1 (B) and X-gal staining for Lrig3-bgeo activity (C) show overlapping expression for
Lrig1 and Lrig3 in the atrium (arrowhead) and the non-sensory domain of the cochlea. On the other hand, Lrig2-bgeo is active throughout the
developing otic epithelium (D). c = cochlea, ed = endolymphatic duct, lp = lateral pouch, vp = vertical pouch. Scale bar = 50 mm.
doi:10.1371/journal.pgen.1003824.g001

Lrig Gene Function in the Inner Ear
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analyzed Lrig1 and Lrig2 mutant mice. Lrig1 mutant mice harbor a

gene trap insertion in the third intron of the Lrig1 locus, and Lrig2

mutants contain a gene trap insertion after exon 11 (Figure S1).

These gene trap insertions are predicted to interfere with normal

splicing of endogenous transcripts, instead producing transmem-

brane fusion proteins that are targeted to the lysosome and

therefore unlikely to exert any effect [38]. Western blot and

immunostaining studies confirmed that Lrig1 and Lrig2 protein

levels are severely reduced in each mutant background (Figures S1

and S3). In contrast to Lrig3 mutants, however, both Lrig1 and

Lrig2 single mutant animals exhibited normal inner ear morphol-

ogies at E14.5 (Fig. 2B, C, E).

Given the striking co-expression of Lrig1 and Lrig3, we

wondered whether combined loss of these two family members

would provide any evidence for similar functions. Indeed, inner

ear development is more severely disrupted in Lrig12/2;Lrig32/2

double mutant mice than in either single mutant (Table 1). For

example, the utricle and saccule fail to separate (Figure 2G,

arrowhead), consistent with the co-expression of Lrig1 and Lrig3 in

the embryonic atrium (Figure 1). In addition, the posterior canal is

abnormally small and misshapen (Figure 2H, I). To see whether

Lrig1 and Lrig3 also cooperate in the lateral canal, we took

advantage of the fact that the lateral canal phenotype is only

partially penetrant in Lrig3 mutants maintained on this back-

ground, with truncation or thinning observed in only 33% of the

animals (Figure 2D, Table 1). However, loss of either one or two

copies of Lrig1 did not strongly enhance this phenotype (Figure 2D,

G, I; Table 1), consistent with the fact that Lrig1 and Lrig3 are not

obviously co-expressed in the lateral canal epithelium [28]. The

fact that new phenotypes emerge only in sites of Lrig1/Lrig3 co-

expression strongly suggests that these two family members act

redundantly during inner ear morphogenesis. In contrast, Lrig1

and Lrig2 do not appear to cooperate here, as Lrig12/2;Lrig22/2

double mutant ears developed normally (Figure 2F) despite the

extensive co-expression of Lrig1 and Lrig2 at E12.5 (Figure 1B, D).

To gain a broader view of genetic interactions among Lrig

family members, we asked whether either Lrig2 or Lrig3 exert

overlapping functions with Lrig1 in other regions of the inner ear.

In support of this idea, unlike either single mutant, Lrig12/2;

Lrig32/2 double mutant animals die at or before birth (Table 2)

and suffer from an array of morphogenetic phenotypes, including

microphthalmia and skeletal malformations (data not shown).

Although the presence of new defects suggests that Lrig1 and Lrig3

likely work together in many other tissues, this lethality prevented

analysis of any other aspects of inner ear function. In contrast,

Lrig12/2, Lrig22/2, and Lrig12/2;Lrig22/2 mutant mice survive

past the onset of hearing. We therefore focused the rest of the

analysis on Lrig1 and Lrig2.

As previously reported [20], Lrig12/2 mice frequently die within

the first postnatal week when maintained on an inbred

Figure 2. Lrig1 and Lrig3 act redundantly during inner ear morphogenesis. (A) Schematic of the mouse inner ear. (B–I) Light microscopy
images of E14.5 inner ears filled with paint. Lrig12/2 (B), Lrig22/2 (C), and Lrig12/2;Lrig22/2 double mutants (F) exhibit no changes in inner ear
morphology when compared to wild-type controls (E). On this genetic background, loss of both copies of Lrig3 causes a partially penetrant thinning
or truncation of the lateral canal (arrows, D, G, I). Interestingly, Lrig12/2;Lrig32/2 double mutants present additional morphogenetic phenotypes
including a failure of the utricle and the saccule to separate (compare arrowheads in E and G) and a smaller misshapen posterior canal (compare
dashed line in H and I). AC = anterior semicircular canal, C = crista, Coch = cochlea, ED = endolymphatic duct, LC = lateral semicircular canal,
PC = posterior semicircular canal, S = saccule, U = utricle. Scale bar = 100 mm.
doi:10.1371/journal.pgen.1003824.g002
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background (Table 2). Lrig22/2 mice were born in normal

Mendelian ratios and showed no obvious defects (Table 2).

However, very few Lrig12/2;Lrig22/2 double mutant animals

survived to six weeks of age. A small percentage of Lrig12/2;

Lrig22/2 double mutants survived to adulthood (Table 2) and were

noticeably runty during adolescence. More strikingly, half of the

double mutant survivors exhibited a mild vestibular defect with

circling behavior (3 of 6 animals, see video S1). Since neither

surviving Lrig12/2 nor Lrig22/2 animals showed any signs of

circling, this observation suggests that Lrig1 and Lrig2 may work

together in the vestibular system.

To investigate this possibility, we performed a more detailed

analysis of expression in the vestibular system by double labeling

with an anti-Lrig1 antibody and an anti-b-galactosidase antibody

to detect Lrig2-bgeo. Lrig2 gene trap heterozygotes were used due

to the lack of antibodies that reliably detect Lrig2 protein in tissue.

Lrig2-bgeo should serve as an accurate read-out of the pattern of

Lrig2 expression, but it should be noted that there may be subtle

differences in the stability of the Lrig2-bgeo protein compared to

endogenous Lrig2. However, our observations of Lrig2-bgeo

expression match previous reports of Lrig2 transcription [10], so

any discrepancies are likely to be minor. No Lrig1 labeling was

detected in Lrig1 mutant tissue, confirming that this antibody

detects only this family member (Figure S3).

Consistent with results from in situ hybridization and X-gal

staining (Figures 1 and S2), double labeling at E12.5 revealed

highly restricted expression of Lrig1 protein in the atrium and

cochlea, with broad Lrig2-bgeo expression throughout the otic

epithelium and in the surrounding mesenchyme (Figure 3A, B).

Within the atrium, Lrig1 was restricted to non-sensory regions,

which flank the Sox2-positive sensory patches that eventually give

rise to the maculae (Figure 3C). This pattern was maintained after

formation of the utricle and saccule, with expression in the

transitional epithelium adjacent to the utricular macula and in the

extramacular epithelium of the saccule at E16.5 (Figure 3D, F),

E18.5 (Figure S3) and P15 (Figure 3H–J). Lrig2-bgeo, in contrast,

was expressed throughout sensory and non-sensory regions of the

vestibular organs at E16.5 and continuing through the first

postnatal week (Figure 3E, G and S2). However, by P15, Lrig2-

bgeo levels were noticeably enhanced in the utricular and saccular

maculae as well as the cristae (Figure 3E, G and data not shown).

In contrast, Lrig1 protein was not detected in the vestibular

sensory epithelia at any stage. Thus, Lrig1 and Lrig2 are co-

expressed in non-sensory regions of the utricle and saccule, but

only Lrig2 seems to be present in the sensory epithelia.

One prominent site of overlapping expression was the vestibular

ganglion, which communicates head position information to the

brain. Lrig1 was present at low levels in the neuronal cell bodies,

with intense expression in projections to the utricle, saccule, and

lateral crista at E16.5 (Figure 3D), E18.5 (Figure S3), and P15

(Figure 3H–J). Lrig2-bgeo was also present in the vestibular

ganglion at all stages, with enriched expression at P15 (Figures 3H

and S2, and data not shown). The co-expression of Lrig1 and Lrig2

in the vestibular ganglion, particularly at postnatal stages, may

explain why Lrig12/2;Lrig22/2 double mutant animals display

occasional circling behavior, since the gross structure of the inner

ear is unaffected (Figure 2F) and Lrig1 and Lrig2 are not co-

expressed in the sensory epithelia at any stage (Figure 3). Thus, it is

possible that Lrig1 and Lrig2 act redundantly in the vestibular

ganglion neurons or non-sensory epithelium, though they do not

cooperate during the initial formation of the vestibular apparatus.

As in the vestibular system, Lrig1 and Lrig2 showed largely

distinct patterns of expression in the cochlea, overlapping only in

non-sensory regions. Lrig1 protein was restricted to non-sensory

regions of the cochlea at all stages, with maintained expression

only in Reissner’s membrane, a structure that regulates the

endolymph environment that is critical for cochlear function

(Figure 4A–C) [39]. Lrig2-bgeo, on the other hand, appeared

ubiquitous in the cochlear epithelium and surrounding mesen-

chyme at E12.5 and E16.5 (Figure 4A9–B9). However, similar to

the vestibular system, expression was elevated in sensory and

neural tissues postnatally (Figures 4C9 and S2). Although Lrig1

was not detected in the spiral ganglion neurons or their projections

at any stage, expression was apparent in the mesenchyme in the

region that the spiral ganglion neuron neurites grow through to

reach the cochlear duct (Figure 4A, and data not shown). In

summary, although Lrig1 and Lrig2 are at times co-expressed in the

vestibular system and cochlea, these two family members show

fundamentally different expression patterns, which contrasts with

the obvious similarities in the expression of Lrig1 and Lrig3 at all

stages examined (Figure 1 and [28]).

To assess the relative contributions of Lrig1 and Lrig2 to cochlear

function, we tested auditory responsiveness in single and double

mutant mice using two complementary assays. First, we recorded

Distortion Product Otoacoustic Emissions (DPOAEs), which are

generated by the cochlea in response to simultaneous presentation

of two slightly dissimilar pure tone frequency stimuli. Production

of DPOAEs depends on outer hair cell (OHC) function, and

DPOAE thresholds will increase if hair cells are missing, damaged,

or cannot be properly stimulated due to changes in cochlear

mechanics. Second, we recorded Auditory Brainstem Responses

Table 1. Paintfill analysis reveals inner ear morphological defects in Lrig mutants.

Lrig1; Lrig3 genotype n = Lateral canal defect Posterior canal defect Saccule/utricle defect

+/+; +/+ 8 0 0 0

+/2; +/2 9 0 0 0

2/2; +/+ 7 0 0 0

2/2; +/2 10 0 0 0

+/+; 2/2 12 4 (33%) 0 0

+/2; 2/2 10 2 (20%) 0 0

2/2; 2/2 10 5 (50%) 6 (60%) 10 (100%)

Inner ear morphology was assessed blind to genotype in animals with all possible combinations of Lrig1 and Lrig3 mutant alleles. ‘‘n’’ corresponds to the total number
of ears that were scored for each genotype. Columns indicate the number of ears of each genotype that showed defects in the lateral canal, posterior canal, or saccule/
utricle, with the percent of total ears examined in parentheses. Novel phenotypes were observed only in Lrig12/2;Lrig32/2 double mutant animals.
doi:10.1371/journal.pgen.1003824.t001
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(ABRs). ABRs reflect the sum of neuronal activity in response to

sound stimulation, starting with the initial activation of spiral

ganglion neurons (wave 1) and following with activation in the

auditory brainstem (waves 2–5). Sensitivity is assessed by

determining the lowest intensity sound stimulus (i.e. the threshold)

that is able to generate an ABR response. In addition, the strength

of the neuronal response can be evaluated by measuring the

latency and amplitude of the first wave. By altering the frequency

of the pure tone stimuli, function can be tested along the length of

the cochlea, from high frequencies in the base to low frequencies

in the apex. Together, these tests offer a sensitive way to identify

impairments in the ability of the cochlea to detect and respond to

acoustic stimuli.

DPOAE and ABR measurements revealed that Lrig1, but not

Lrig2, is necessary for normal auditory sensitivity. Lrig1 mutants

showed significantly elevated DPOAE and ABR thresholds in

response to 11.3 and 16 kHz stimuli, which typically elicit the

lowest threshold responses in control animals (Figure 5 and Table

S2). Whereas control animals reliably detected 16 kHz DPOAE

stimuli as quiet as 15 dB, mutants did not respond until the sounds

were 45 dB, which is ,30 times more intense. Thresholds were

also elevated in response to lower (5.6 and 8 kHz) and higher (22.6

and 32 kHz) frequencies, but these differences were not statistically

significant since sensitivity is already reduced in these regions of

control cochleae (for example, 57.4362.37 dB for wild-type vs.

71.8664.5 dB for Lrig12/2 animals presented with a 32 kHz

stimulus). Lrig2 mutants, on the other hand, responded with the

same sensitivity as control littermates. Similarly, Lrig1+/2;Lrig22/2

mutants also demonstrated normal thresholds. However, loss of

either one or two copies of Lrig2 from Lrig1 mutants strongly

enhanced the effect, such that the outer hair cell response of

Lrig12/2;Lrig2+/2 and Lrig12/2;Lrig22/2 animals only occurred in

response to sounds greater than 55 dB across all frequencies

(Table S1).

To understand how loss of Lrig2 might exacerbate the Lrig1

phenotype, we looked more closely at the nature of the ABR

waveforms in all single and double mutant combinations (Figure 6).

As expected, in Lrig1 mutants the amplitude of the first wave was

significantly diminished in response to a range of frequencies and

sound intensities (Figure 6C, D, and Tables S3 and S4). Combined

with the increased thresholds, this suggests that the neural

response is decreased because the cochlea is not able to detect

sounds with sufficient sensitivity. Remarkably, despite the lack of

any effect on thresholds, Lrig2 mutants showed a similar response:

the amplitude of the first wave was significantly decreased relative

to controls at multiple frequencies and across sound intensities

(Figure 6C, D, and Tables S3 and S4). Latencies were also

increased (Figure 6D). Thus, whereas Lrig1 is critical for the initial

detection of sound, Lrig2 is required for the subsequent neuronal

response. Since Lrig2 is uniquely enriched in the spiral ganglion

neurons throughout life, these findings suggest that Lrig1 and

Lrig2 control distinct aspects of cochlear function. Amplitudes and

latencies were even more affected in double mutants, as expected

based on the increased thresholds.

Although Lrig12/2;Lrig22/2 double mutants exhibit a fully

penetrant auditory response deficit, the cochlea showed no gross

malformations either at E19 (Figure S4A, B) or in adults (data not

shown). The cochlear duct had a normal histological appearance,

consistent with the absence of any morphological defect at E14.5

(Figure 2). In addition, immunostaining confirmed the presence of

hair cells and neurons in each turn of the cochlea, with spiral

ganglion neurites extending to contact hair cells in the organ of

Corti (Figure S4C, D). Similarly, in the few double mutant animals

that survived past early postnatal stages, there was no obvious
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change in the number or organization of hair cells and spiral

ganglion neurons (data not shown). However, the overall pattern

of cochlear innervation was clearly disrupted in double mutants, as

revealed by immunolabeling for neurofilament, which labels both

afferent and efferent neurites (Figure 7A–C). Whereas control

neurites aligned in regularly spaced radial bundles that were

Figure 3. Lrig1 and Lrig2-bgeo are co-expressed in non-sensory tissues and in the vestibular ganglion. Transverse sections through
Lrig2+/2 tissue at E12.5 (A–C), E16.5 (D–G), and P15 (H–K) were double labeled with combinations of antibodies to Lrig1, b-galactosidase (to detect
Lrig2-bgeo), Sox2, and neurofilament (NF). (A) At E12.5, Lrig1 was detected in the atrium (bracket), while Lrig2-bgeo was present throughout the otic
epithelium and surrounding mesenchyme (A0), overlapping with Lrig1 in the atrium (B). Within the atrium, Lrig1 was present in non-sensory tissues
that flank Sox-2 positive sensory regions (arrowheads, C–C0). This expression was maintained at E16.5, with Lrig1 in the transitional epithelium
adjacent to the utricular macula (arrowhead, D9) and in the extramacular epithelium of the saccule (arrowhead, F9), as well as in vestibular projections
to the utricle and lateral crista (arrow, D9). Lrig2-bgeo, on the other hand, continued to be expressed broadly in both sensory and non-sensory
portions of the vestibular organs at E16.5 (E9, G9). After the onset of hearing (P15), Lrig1 was expressed in NF-positive fibers innervating the utricular
and saccular maculae (arrows, I, J), whereas Lrig2-bgeo was enriched in all vestibular sensory epithelia (I9,J9,K), which were recognized by the presence
of NF labeled projections. c = crista, cd = cochlear duct, ed = endolymphatic duct, hb = hindbrain, lp = lateral pouch, sg = spiral ganglion, sm = saccular
macula, um = utricular macule, vg = vestibular ganglion, vp = vertical pouch, VIIIV = vestibular division of the eighth cranial nerve. Scale bar = 40 mm.
doi:10.1371/journal.pgen.1003824.g003
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clearly separated from each other (Figure 7A), the mutant neurites

were noticeably defasciculated and the gaps between the bundles

were smaller and present only intermittently (Figure 7C). More

strikingly, the inner spiral bundle (ISB, bracket) was reduced,

indicating a possible change in the innervation of the cochlea by

efferent neurons from the hindbrain. In contrast, no obvious

changes were apparent in Lrig1 or Lrig2 single mutants (Figure

S4E–G).

To determine whether Lrig1 and Lrig2 might act redundantly in

certain contexts, we looked more closely at the efferent innervation

of the cochlea by staining for choline acetyltransferase (ChAT)

[40] and synaptophysin in single and double mutant animals.

Consistent with results from neurofilament-staining, efferent

innervation of the cochlea was noticeably sparser in double

mutant animals (n = 4) compared to controls (n = 8) (Figure 7D, F).

In contrast, cochleae from Lrig12/2 (n = 2) and Lrig1+/2;Lrig22/2

(n = 4) animals were unaffected (Figure S4G, H). Due to the nature

of the crosses used to generate sufficient numbers of double mutant

animals, Lrig22/2 single mutant animals were not available for

analysis of efferent innervation. However, the normal pattern of

neurofilament staining (Figure S4G) together with the lack of

defects in the Lrig1+/2;Lrig22/2 cochlea (Figure S4H9) indicates

that Lrig2 is not required on its own and that Lrig1 can fully

compensate for reduced Lrig2 activity. On the other hand,

cochleae from Lrig12/2;Lrig2+/2 animals (n = 4) exhibited an

intermediate phenotype (Figure 7E), which fits with their

diminished auditory responsiveness. Taken together, these findings

indicate that Lrig1 and Lrig2 exert overlapping functions during

cochlear innervation, perhaps uncovering a novel role for Lrig

proteins in the nervous system. Moreover, the absence of any

obvious morphogenetic or gross cochlear patterning defects argues

against the idea that Lrig1 and Lrig2 act redundantly to control

any of the major signaling pathways, consistent with their distinct

effects in vitro and in cancer.

Discussion

Here, we used genetic analysis in mice to compare and contrast

the effects of Lrig2 and Lrig3 to the founding member of the family,

Lrig1. By analyzing multiple aspects of inner ear development and

function, we found that Lrig1 and Lrig3 cooperate to control inner

ear morphogenesis, whereas Lrig1 and Lrig2 appear to affect

largely distinct aspects of inner ear function. Our results highlight

the biological significance of all three Lrig genes in vivo and provide

insights into the functional diversity of the LRR-Ig superfamily of

proteins.

Our findings add to a growing body of work underscoring the

similarities between Lrig1 and Lrig3. At the molecular level, both

Lrig1 and Lrig3 can bind multiple members of the EGF receptor

family and show a similar subcellular distribution, with expression

on the cell surface and in intracellular vesicles [25,41]. Moreover,

both family members also interact with other rTKs [23,24,27],

indicating that the Lrig ectodomain does not mediate selective

binding. In addition, in vitro studies suggest that both Lrig1 and

Lrig3 can act as negative regulators of signaling pathways

[16,17,23,24,26,27]. Our findings suggest that Lrig1 and Lrig3

also exhibit common activities in vivo. For instance, Lrig1 and Lrig3

show strikingly similar patterns of expression within multiple

tissues throughout development [10,28]. Moreover, Lrig12/

2;Lrig32/2 double mutants exhibit much more dramatic pheno-

Figure 4. Lrig1 and Lrig2-bgeo are co-expressed in the non-sensory region of the cochlea. Transverse sections through Lrig2+/2 tissue at
E12.5 (A), E16.5 (B), and P15 (C) were double labeled with antibodies to Lrig1, b-galactosidase, and NF. (A) At E12.5, staining was evident in the non-
sensory region of the cochlear epithelium (asterisk) and the mesenchyme surrounding the spiral ganglion. (B) At E16.5, Lrig1 was detected in the
medial wall of the cochlea, which will form the inner sulcus and Reissner’s membrane (asterisk). (C) At P15, Lrig1 was found in the base of Reissner’s
membrane (asterisk), with localization to the cell surface (inset). In contrast, at E12.5 and 16.5, Lrig2-bgeo was found broadly in the cochlear
epithelium and surrounding mesenchyme (A9–B9). At P15, expression was enriched in spiral ganglion neurons and in the organ of Corti (C9).
cd = cochlear duct, m = mesenchyme, oC = organ of Corti, rm = Reissner’s membrane, sg = spiral ganglion. Scale bar = 40 mm.
doi:10.1371/journal.pgen.1003824.g004
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types than either single mutant. Importantly, new phenotypes

emerge at sites of co-expression, such as the developing utricle and

saccule. Conversely, the strongest phenotype in the Lrig3 mutant

ear is in the lateral canal, which is one of the few sites where Lrig1

and Lrig3 do not overlap.

Curiously, although Netrin1 is a key effector of Lrig3 activity in

the lateral canal, the atrium develops normally in Netrin12/2 mice

(A.M.N. and L.V.G., unpublished observation), suggesting that

Lrig1 and Lrig3 mediate their effects through additional molecules

in this region of the inner ear. Consistent with this idea, neither the

anterior nor posterior canal was truncated in Lrig12/2;Lrig32/2

double mutant inner ears, despite the known role of Netrin1 there

[42]. One likely explanation is that Lrig1 and Lrig3 modulate a

broadly active signaling pathway that controls expression of Netrin1

in the lateral canal, but that other target genes are responsible for

effects elsewhere in the inner ear. Indeed, our results suggest that

both of these Lrig proteins mediate their effects through key signaling

pathways underlying morphogenesis, as Lrig12/2;Lrig32/2 double

mutants die at or before birth with obvious morphogenetic

malformations in multiple tissues. A much more detailed analysis

of each affected tissue will be needed to pinpoint the pathways

involved.

Although Lrig1 and Lrig3 appear to cooperate during inner ear

morphogenesis, each protein also has its own distinct biological

Figure 5. Lrig1 but not Lrig2 mutant mice exhibit decreased auditory sensitivity. Plots of threshold values from DPOAE recordings (A) and
ABRs (B) performed on 6 week old animals. Auditory responses were tested at six frequencies (from low (5.6 kHz) to high (32 kHz)), and across a range
of intensities (from sound pressure levels of 10 to 80 decibels (dB)). DPOAE and ABR thresholds in Lrig2 mutant animals (solid blue line) were normal
when compared to control animals (solid black line), even when additionally heterozygous for Lrig1 (dashed blue line). In contrast, Lrig12/2 mutants
(solid red line) showed a moderate increase in both DPOAE and ABR thresholds. This effect was even stronger in Lrig12/2;Lrig2+/2 mutant animals
(dashed red line) and Lrig12/2;Lrig22/2 (solid orange line), which experienced a severe decrease in sensitivity across all frequencies. See Tables S1 and
S2 for raw data and analysis of statistical significance.
doi:10.1371/journal.pgen.1003824.g005
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functions. Indeed, the phenotypes already reported in Lrig1 mutant

mice indicate that this family member may play a particularly

prominent role in EGF signaling and cell proliferation [20–22].

Similarly, despite the extensive overlap of Lrig1 and Lrig3 in the

ear, loss of Lrig1 is sufficient to cause a significant auditory

phenotype, as evidenced by increased DPOAE and ABR

Figure 6. ABR amplitudes are reduced in both Lrig1 and Lrig2 mutant mice, and this effect is enhanced in double mutants. (A) For
each genotype analyzed, ABR waveforms for the first wave were averaged and overlaid with an average wild-type waveform (solid black line). The
shading indicates the standard error of the mean. The first wave is reduced in Lrig1 and Lrig2 single mutants, as well as in animals mutant for three
out of four alleles (Lrig12/2;Lrig2+/2 and Lrig1+/2;Lrig22/2). This phenotype is enhanced in Lrig12/2;Lrig22/2 mutant animals, which show a much
reduced response. (B) Quantification of the diminished ABR response for all genotypes. Plots show the amplitudes of the first wave in response to six
different pure tone stimuli each presented at 80 dB. (C) Plot of wave 1 amplitudes in response to 16 kHz pure tone stimuli presented from quiet
(10 dB) to loud (80 dB) intensities. Mutant mice responded worse to the stimulus even at low sound pressure levels. (D) Plot of the latency of wave 1
in response to a 16 kHz stimulus presented at four different sound intensities. The response is significantly delayed in double mutant animals. See
Tables S3 and S4 for raw data and analysis of statistical significance.
doi:10.1371/journal.pgen.1003824.g006
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thresholds. No auditory phenotypes were detected in Lrig3

mutant mice, in contrast [28]. Moreover, a role for ErbB

receptors in inner ear morphogenesis has not been described, and

in fact, broad inhibition of ErbB activity has no effect on canal

formation in chicks [25]. On the other hand, BMP and FGF

signaling is critical for inner ear morphogenesis [35]. Thus, one

possibility is that Lrig1 and Lrig3 work together to modulate

signaling through BMP or FGF pathways, but that Lrig1 is the

dominant regulator of the EGF pathway in vivo. In support of this

idea, Lrig1 and Lrig3 can actually exert opposing effects on ErbB

receptor levels in vitro, with Lrig1 reinforcing its effects by

decreasing Lrig3 levels [18]. Hence, the added loss of Lrig3 might

not be expected to exacerbate the effects of Lrig1 on EGF

signaling in vivo. Whether Lrig1 and Lrig3 also exert reciprocal

effects on the FGF receptor or other putative targets has not yet

been examined. An important step towards resolving these

apparent differences will be to determine the nature of the

pathways affected by both Lrig1 and Lrig3 in vivo.

Analysis of Lrig2 indicates that this family member has acquired

particularly independent functions. Unlike Lrig1 and Lrig3, Lrig2

seems to be expressed nearly ubiquitously, although final

confirmation awaits the production of reliable anti-Lrig2 antibod-

ies. Such broad expression is not typical for proteins that function

in developmental signaling pathways, which tend to show more

restricted patterns of expression. Notably, despite the fact that

Lrig2 is apparently present in every site of Lrig1 expression, no new

morphogenetic phenotypes are uncovered in Lrig12/2;Lrig22/2

double mutant mice. Thus, Lrig2 is not sufficient to compensate for

the combined loss of Lrig1 and Lrig3, whereas Lrig3 can direct

proper inner ear morphogenesis even in the absence of both Lrig1

and Lrig2. Although final proof will require analysis of triple

mutant animals, the contrasting phenotypes seen in each set of

double mutants strongly suggest that Lrig2 does not affect the

same pathways as Lrig1 or Lrig3. These genetic results fit with

previous reports that Lrig2 behaves differently in vitro and in

human tumors [18,29–31,33]. It is also possible that some residual

Figure 7. Cochlear structure and patterning is normal in Lrig12/2;Lrig22/2 double mutants but cochlear innervation is disrupted.
(A–C) Cochlear tissue from adult animals was immunostained and then imaged as a flat-mount by confocal microscopy. In controls (A), neurofilament
(NF)-positive neurites from both afferent and efferent neurons align in distinct radial bundles. Efferent projections also travel non-radially along the
length of the cochlea in the inner spiral bundle (ISB) (bracket in A). The regular spacing normally found between these axonal bundles
(A, arrowheads) is disrupted in Lrig12/2;Lrig22/2 double mutants (C, arrowheads). In addition, the ISB is reduced (brackets). Innervation was grossly
normal in Lrig12/2;Lrig2+/2 animals. (D–F) Efferent axons and their terminals were visualized by staining for Choline acetyltransferase (ChAT) (D–F and
D9–F9) and synaptophysin (Syp) (D0–F0). High power images of the boxed regions illustrate the obvious reduction in efferent innervation in double
mutants (F9, F0) compared to controls (D9, D0). Lrig12/2;Lrig2+/2 animals showed an intermediate effect (E9, E0). ISB = inner spiral bundle, oC = organ of
Corti, sg = spiral ganglion. See Figure S4 for images of additional genotypes. (A–F) Scale bar = 50 mm. (D9–F0) Scale bar = 10 mm.
doi:10.1371/journal.pgen.1003824.g007
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function persists in Lrig2 gene trap mice, thereby obscuring

redundant effects. However, this seems unlikely given the sensitivity

of the inner ear to even subtle changes in signaling levels, as well as

the fact that we were able to detect effects on auditory

responsiveness in Lrig22/2 mutants. In addition, loss of just one

copy of Lrig2 was sufficient to exacerbate the Lrig12/2 phenotype, as

assessed by DPOAE analysis. Although our work provides a useful

starting point, analysis of independent Lrig2 alleles may reveal

additional functions for this protein in the future.

Lrig2 seems to exert distinct effects from Lrig1 and Lrig3 on the

basic signaling events that underlie patterning and morphogenesis,

with an independent function in neurons. Indeed, although Lrig2

mutant mice are outwardly normal, they do not process sound

properly. Specifically, although mutant animals can detect sounds

with normal sensitivity, the subsequent neuronal response is

attenuated, as evidenced by significantly decreased ABR ampli-

tudes across multiple frequencies. Consistent with this phenotype,

Lrig2 is present in spiral ganglion neurons throughout life, with

particularly enhanced expression after the onset of hearing. How

Lrig2 affects spiral ganglion neuron function remains unclear,

though, as there were no obvious defects in the gross innervation

of the cochlea in Lrig2 mutant mice. This is not entirely

unexpected, as many forms of human deafness are not associated

with overt changes in the structure or organization of the cochlea.

A role for Lrig2 in the brainstem may exist since Lrig2 mutant mice

exhibit auditory brainstem response deficits and LRIG2 is crucial

for brainstem mediated bladder control and facial expressions in

humans [34]. Although hearing defects have not been reported,

our findings suggest that it may be worth investigating whether any

patients experience subtle auditory processing defects that might

not be detected using standard auditory testing methods.

Our results also imply that Lrig1 and Lrig2 may cooperate in

limited contexts. Indeed, Lrig12/2;Lrig22/2 double mutant mice

do show enhanced phenotypes relative to the single mutants. For

instance, some double mutants show mild circling behavior and

hyperactivity that is not seen in either single mutant. More

strikingly, acoustic responsiveness is severely impaired in all double

mutants, with both DPOAE and ABR thresholds increased across

frequencies. The ABR effect may be mostly additive, as Lrig1 and

Lrig2 single mutants each exhibit a different kind of auditory

defect: Lrig1 is required for the detection of sound and Lrig2 is

required for the appropriate neuronal response. The changes in

DPOAE thresholds, on the other hand, could be due to

redundancy, as loss of even one copy of Lrig2 enhances the Lrig1

mutant phenotype, despite the fact that thresholds are normal in

Lrig2 mutants. Since the amplification of the cochlear response by

OHC activity is non-linear, DPOAEs offer an unusually sensitive

measure of function. Hence, it is possible that the contribution of

Lrig2 is too minor to see on its own, but that this small effect is

uncovered once OHCs stop responding optimally, as occurs in

Lrig1 mutants. Alternatively, Lrig1 and Lrig2 may play similar roles

in Reissner’s membrane, which is the only apparent site of co-

expression in the mature cochlea. Reissner’s membrane controls

sodium homeostasis in the cochlear endolymph, and changes in

the endolymph are known to lead to deafness [36,39]. Intriguingly,

Lrig1 and Lrig2 are also co-expressed in analogous non-sensory

tissues in the utricle and saccule. Hence, a change in endolymph

composition could also explain the mild vestibular phenotype

uncovered in Lrig12/2;Lrig22/2 double mutants.

An alternative explanation for the enhanced phenotypes is that

Lrig1 and Lrig2 cooperate specifically in neuronal populations. In

support of this idea, Lrig1 and Lrig2 are co-expressed in the

vestibular ganglion and loss of both genes creates a vestibular

deficit. More strikingly, efferent innervation is noticeably sparse in

double mutant animals, but not obviously altered in either single

mutant. The efferent neurons play an important role in

modulating OHC responsiveness [43], so any change in their

organization or function could cause the enhanced DPOAE

phenotype. In support of this idea, an intermediate efferent

phenotype was noted in Lrig12/2;Lrig2+/2 animals, paralleling

their abnormal DPOAE responses. Understanding the origin of

this defect will be challenging, however, due to the high lethality of

Lrig12/2;Lrig22/2 animals. Nevertheless, taken together with the

proposal that the phenotypes seen in Urofacial Syndrome patients

are due to abnormal innervation by neurons in the brainstem,

these observations suggest that Lrig2 may play a particularly

important role in the nervous system, much like the vertebrate-

specific LRR-Ig proteins. Lrig1, on the other hand, may exhibit

dual effects, acting like the ancient LRR-Ig proteins to regulate

signaling in most contexts, but taking on new functions typical of

other LRR-Ig proteins when present in neurons. Our findings

underscore the need to delve more deeply into the functions of all

three family members in the nervous system.

The divergence that occurs within the Lrig gene family may be

analogous to the more general diversification in functions for the

expanded LRR-Ig superfamily in vertebrates. Analysis of function

across species strongly suggests that the original function of Lrig

proteins is to bind rTKs and regulate their activity. There are

single Lrig orthologs both in worms (sma-10) and flies (lambik).

Although nothing is known about lambik function, sma-10 is

required for normal regulation of BMP signaling and hence body

size in worms [44]. Interestingly, lambik can substitute for sma-10 in

vivo. Similarly, Sma-10 binds both invertebrate and vertebrate

BMP receptors. However, whereas Lrig1 acts as a negative

regulator, sma-10 has a positive effect on BMP signaling. Thus,

Lrig proteins from diverse species appear to share the ability to

bind to cell-surface receptors, but the consequences of these

interactions vary. Similarly, Lrig family members within a single

species may have diverged to acquire distinct signaling properties

mediated by their intracellular domains. In the case of Lrig1 and

Lrig3, the divergence from ancestral Lrig function is minimal.

Lrig2, however, seems to have gained new and distinct functions.

The presence of new behavioral phenotypes in Lrig12/2;Lrig22/2

double mutant mice suggests that this poorly understood activity

may in fact be shared by Lrig1 in some contexts. Although the

view of Lrig function in vivo is far from complete, our findings may

provide important insights into the origin and activities of

vertebrate-specific branches of the LRR-Ig superfamily.

Materials and Methods

Mice
All mice were back-crossed and maintained for more than six

generations on the C57BL/6N strain (Charles River Laboratories).

The mouse line Lrig1Gt(GST4169C6) contains the VICTR48 gene trap

vector (Lexicon Genetics) in the Lrig1 locus (Figure S1) and was

obtained from the Texas Institute for Genomic Medicine (TIGM)

at Houston, TX via the Knock Out Mouse Program (KOMP) at

the University of California, Davis. The RST656 mouse line

contains the GTOTMpfs gene trap vector [45] in the Lrig2 locus

(Figure S1). This results in production of a fusion between Lrig2

and bgeo, which mediates neomycin resistance as well as b-

galactosidase activity all under the control of the endogenous Lrig2

promoter. Mice were generated by the Mouse Gene Manipulation

Facility of Boston Children’s Hospital Intellectual and Develop-

mental Disabilities Research Center (IDDRC) which is supported

by NIHP30-HD18655. Lrig3 mutant mice contain a deletion of

exon 1 and were derived from the Lrig3flox allele which has been
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previously described [25]. Genotype distribution (Table 1) was

assessed for surviving animals at 1 week and 6 weeks of age. For

timed pregnancies, embryonic day 0.5 (E0.5) was defined as noon

on the day a copulatory plug was present. All mice were maintained

in accordance with institutional and National Institutes of Health

(NIH) guidelines approved by the Institutional Animal Care and

Use Committee (IACUC) at Harvard Medical School.

Antisera production and Western blots
Rat polyclonal antiserum to Lrig2 was raised against the

intracellular domain of mouse Lrig2 protein expressed in bacteria

(Dana-Farber/Harvard Cancer Center Monoclonal Antibody

Core). E12.5 littermate embryos were lysed in 50 mM Tris

(pH 7.4), 150 mM NaCl, 1% Igepal CA 630 (NP-40), 0.5%

sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS) and

1 mM Pefabloc (Roche). Western blot analysis was performed

using standard protocols and a 1:2000 dilution of anti-Lrig2 serum

or 1:8000 dilution of anti-actin antibody (Abcam ab8226).

In situ hybridization
Non-radioactive in situ hybridization for Lrig1 was performed on

cryosections of mouse E12.5 tissue as described [28]. A detailed

protocol is available at http://goodrich.med.harvard.edu/

resources/resources_protocol.htm.

X-gal staining
Tissue was fixed for 1 hour in 4% paraformaldehyde (PFA)/

phosphate buffered saline (PBS), equilibrated in 30% sucrose/PBS

at 4uC, and embedded in Neg50 (Richard-Allan Scientific).

Cryosections transverse to the ear (Figure 1A) were cut and

incubated in 1 mg/ml X-Gal (Sigma-Aldrich) in X-Gal buffer,

post-fixed in 4% PFA/PBS for 1 hour at 4uC, and mounted using

Glycerol Gelatin mounting medium (Sigma-Aldrich).

Immunofluorescence
E12.5 and E16.5 mouse heads were collected and fixed for

1 hour at 4uC in 4% PFA/PBS, equilibrated in 30% sucrose/PBS

at 4uC, and embedded in Neg50 (Richard-Allan Scientific). E19

heads were hemisected, fixed overnight at 4uC in 4% PFA/PBS

and processed the same way. P15 animals were perfused with 4%

PFA/PBS, the head hemisected and the brain removed, and the

remaining tissue was post-fixed in 4% PFA/PBS for 1 hour at

room temperature, decalcified in 0.12M EDTA/PBS overnight at

room temperature followed by several days at 4uC, and embedded

as before. Tissue from 6 week old animals was fixed overnight at

4uC in 4% PFA/PBS and decalcified for 5 to 7 days in 0.12M

EDTA/PBS at 4uC prior to immunostaining. Cryosections cut

transverse to the ear were blocked in PBS+3% bovine serum

albumin (BSA) and permeabilized in wash solution (PBS+1%

BSA+0.1% Triton X-100). Primary antibodies were added in wash

solution at the following concentrations: b-galactosidase (1:300,

MP Biomedicals 08559761), Lrig1 (1:75–300, R&D Systems

AF3688), Neurofilament H (1:1000, Millipore AB5539), and

Sox2 (1:500, Millipore AB5603). Whole cochleae were blocked

in PBS with 1% Triton X-100 and 5% normal donkey serum for

one hour, followed by a 20 hour incubation at 37uC in primary

antibodies diluted in blocking solution at the following concentra-

tions: Choline acetyltransferase (1:200, Millipore AB144P), Neu-

rofilament H (1:1000), and Synaptophysin (1:200, Synaptic

Systems 101011). Alexa-conjugated secondary antibodies were

used for signal detection. Tissue was imaged on an Olympus

Fluoview FV1000 confocal microscope or a Nikon E800

compound microscope. For wholemount cochleae, the middle

turn of the cochlea was imaged. The overall pattern of innervation

in each image was scored as either ‘‘normal’’, ‘‘intermediate’’, or

‘‘abnormal’’ by three observers blind to genotype.

Assessment of inner ear function
Auditory brainstem recordings (ABRs) and distortion product

otoacoustic emissions (DPOAE) recordings were performed on the

right ears (unless otherwise indicated) of mice at 6 weeks of age in a

soundproof chamber maintained at 32uC. Prior to recordings,

mutant mice were observed for circling behavior. Mice were

anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg)

prior to recordings, which were performed as previously described

[46]. Littermate control animals were included in each round of

recordings. Due to the high lethality rate of Lrig12/2;Lrig22/2

double mutants, animals used for recordings were generated by

Lrig1+/2;RST656+/2 intercrosses as well as crosses using Lrig1+/

2;RST6562/2 or Lrig12/2;RST656+/2 animals. Additionally,

recordings were made from both ears of the Lrig12/2;Lrig22/2

double mutants. Average ABR waveforms were plotted using

MATLAB (MathWorks) and a script written by Ann E. Hickox in

the laboratory of Dr. Charles Liberman (EPL Laboratories,

Massachusetts Eye and Ear Infirmary, Boston, MA).

Paintfilling
E14.5 mouse heads were fixed overnight at 4uC with Bodian’s

Fix, dehydrated in 100% ethanol, and then cleared overnight in

methyl salicylate. Heads were hemisected, and White All Purpose

Correction Fluid (Sanford Corporation) diluted in methyl salicy-

late was injected into the cochlea with a pulled glass pipette and

Hamilton syringe. Filled ears were imaged in methyl salicylate

using an Olympus MVX10 microscope to capture image stacks at

approximately 30 mm intervals through the ear. Image stacks were

processed using Image J software [47] and the Stack Focuser

plugin (author Michael Umorin) to produce a single image

representation (Figure 3).

Supporting Information

Figure S1 Gene trap insertions in Lrig1 and Lrig2 loci. (A, B)

Mutant mouse strains containing stable gene trap insertions in

either Lrig1 or Lrig2 were utilized. In mouse line GST4169C6,

insertion of the vector between exons 3 and 4 corresponds to a

protein fusion to the 3rd LRR in the ectodomain (A). Similarly,

insertion of a gene trap vector into exon 11 of Lrig2 in mouse line

RST656 results in a fusion to the 15th LRR of the ectodomain (B).

(C) Lrig2 expression is severely reduced in Lrig2 gene trap

homozygotes, as detected in Western blots of control and mutant

embryonic lysates using Lrig2 polyclonal antibody. Overexposure

of the blot suggests there is only residual Lrig2 expression, which is

typical of gene trap insertions. Actin was used as a loading control.

(TIF)

Figure S2 Lrig2-bgeo activity reveals broad expression of Lrig2

throughout development. Tissue from Lrig2 heterozygotes was

stained with X-gal to reveal Lrig2-bgeo activity. (A) E10.5 embryo

viewed laterally. Lrig2-bgeo is active broadly, including in the

early otic vesicle and cochlear vestibular ganglion. (B) Transverse

section through E16.5 inner ear. Medial is to the right. Lrig2-bgeo

activity was detected throughout the inner ear, with expression in

all auditory and vestibular epithelia and in the spiral ganglion

neurons. (C) P7 wholemount ear, viewed medially. Lrig2-bgeo

activity was sustained throughout the vestibular (dashed bracket)

and auditory (bracket) portions of the ear, with enhanced

expression in vestibular and spiral ganglion neurons. (D, E)

Transverse sections through the cochlea at E12.5 (D) and E16.5
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(E). Lrig2-bgeo was active throughout the cochlear epithelium at

both stages (asterisk), with enhanced expression in the spiral

ganglion and low levels in the surrounding mesenchyme. (F)

Wholemount P7 cochlea dissected from the inner ear. Lrig2-bgeo

activity was detected in the spiral lamina and throughout the organ

of Corti, with higher levels in the spiral ganglion. (G, H) Transverse

sections through the vestibular organs at E16.5. As in the cochlea,

Lrig2-bgeo was broadly active, indicating expression throughout the

sensory and non-sensory epithelia of the utricle (G), crista (G), and

saccule (H), as well as in the vestibular ganglion neurons (H). (I)

Wholemount stained vestibular organs dissected from a P7 inner

ear. Lrig2-bgeo activity persisted, with high levels in the sensory

epithelia in the utricle and in the cristae. ac = anterior crista,

c = crista, cvg = cochlear vestibular ganglion, g = gut, lc = lateral

crista, nt = neural tube, oC = organ of Corti, ov = otic vesicle,

pc = posterior crista, s = saccule, sg = spiral ganglion, sl = spiral

lamina, sm = somite, ssc = semicircular canal, tg = trigeminal gan-

glion, u = utricle, vg = vestibular ganglion. Scale bar = 50 mm.

(TIF)

Figure S3 Validation of Lrig1 polyclonal antibody using control

and Lrig1 mutant tissue. Transverse sections through the inner ear of

E18.5 control (A, C, E) and Lrig12/2;Lrig2+/2 animals (B, D, F)

immunostained for Lrig1 and Myo7a and counterstained with

DAPI. The Lrig1 channel is shown on its own in A9–F9 for easier

visualization. The gross structure of the vestibular (A–D) and

auditory (E, F) sections of the inner ear was unchanged in Lrig1

mutant mice when compared to controls. Lrig1 protein was

detected in the non-sensory epithelium of the utricle and saccule

(A), in projections to the utricle and lateral crista (C), and in the

medial wall of the cochlea (E). This staining was lost in mutants (B,

D, F), confirming that this antibody specifically detects Lrig1 and

not other family members. In addition, this result indicates that

Lrig1 protein is severely reduced in the gene trap mutant. c = crista,

oC = organ of Corti, s = saccule, sg = spiral ganglion, st = scala

tympani, sv = scala vestibuli, u = utricle. Scale bar = 40 mm.

(TIF)

Figure S4 Analysis of cochlear morphology and innervation. (A–

D) Transverse sections through the inner ears of E19 control (A, C)

and double mutant (B, D) animals were immunostained to

visualize neurons (NF) and hair cells (Myo7a) and counterstained

with DAPI (A, B). The cochlea was histologically normal in double

mutants at a gross level (compare A and B). There were no obvious

changes in the structure of the duct (the apical turn is at the top),

spiral ganglion neurons were present in each turn of the cochlea

(asterisks), and a well-defined eighth nerve was present (VIII).

Further, closer examination (region in box, A), showed innervation

of Myo7a-positive hair cells in the organ of Corti by NF-positive

projections from the spiral ganglion (C, D). NF staining of whole

cochleae from Lrig12/2 (F), Lrig22/2 (G), and Lrig1+/2;Lrig22/2

(H) adult animals revealed no obvious changes in the pattern of

innervation compared to control animals (E). Efferent innervation

was also unaffected, as shown by staining for choline acetyltrans-

ferase (ChAT) (F9, H9). Scale bar = 50 mm.

(TIF)

Table S1 Threshold values for ABR and DPOAE recordings.

Values indicate average thresholds (in decibels) 6 standard error

of the mean as determined by recording DPOAEs (top) or ABRs

(bottom) in response to stimuli across a range of frequencies (in

kilohertz (kHz)). Lrig12/2 mutant animals showed elevated

thresholds relative to control animals (Lrig1+/2;Lrig2+/2), but

Lrig22/2 responses were unaffected. The additional loss of Lrig2

further increased the threshold response of Lrig12/2 mutants

(compare Lrig12/2;Lrig2+/2 vs. Lrig12/2;Lrig22/2 values).

(DOCX)

Table S2 Statistical significance of differences in DPOAE and

ABR values across frequencies. Columns indicate P values obtained

by Student’s t-test comparison of DPOAE thresholds, ABR

thresholds, ABR latencies, and the maximum amplitude of the first

peak in the ABR response, with significance shown across a range of

frequencies in animals of each genotype vs. wild-types. A value of

0.05 or lower was considered significant. Lrig12/2;Lrig22/2 double

mutant animal responses were significantly different from wild-types

for all parameters at all frequencies tested. NS = not significant.

(DOCX)

Table S3 ABR amplitude values at 80 dB sound intensity

stimulation. Values represent the average amplitude (in microvolts)

6 standard error of the mean of the first peak in the ABR response

to 80 dB stimuli across a range of frequencies. Lrig12/2;Lrig22/2

double mutant animal responses show severely decreased

amplitudes across all frequencies tested.

(DOCX)

Table S4 Statistical significance of differences in ABR amplitude at

16 kHz. Columns indicate P values obtained by comparing ABR

amplitudes in animals for each genotype vs. wild-type. Responses to a

range of stimulus intensities (30 to 80 decibels (dB)) were compared. A

value of 0.05 or lower was considered significant. Lrig12/2;Lrig2+/2

and Lrig12/2;Lrig22/2 mutant animal responses were significantly

different across all intensities tested. NS = not significant.

(DOCX)

Video S1 Circling behavior in Lrig12/2;Lrig22/2 double

mutant. A movie illustrating circling behavior in a 6 week old

Lrig12/2;Lrig22/2 female.

(MOV)
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