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Abstract

The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals.
Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten
cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many
of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the
identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin,
CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and
CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for
survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for
trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these
proteins in endocytosis and cytokinesis, respectively.
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CC: PhD Grant reference number SFRH/BD/40223/2007; and CN: Project Development Grant reference number PTDC/CVT/098183/2008). The Wellcome Trust
Centre for Molecular Parasitology is supported by core funding from the Wellcome Trust [085349/Z/08/Z]. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Jeremy.Mottram@glasgow.ac.uk (JCM); Tansy.Hammarton@glasgow.ac.uk (TCH)

¤ Current address: Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic

Introduction

In eukaryotes, cyclin-dependent kinases (CDKs) are of funda-

mental importance for cell cycle progression [1–3] and also play

essential roles in regulating gene expression [4–7], autophagy [8]

and neuronal function [9] as well as key roles in responding to

stresses [10,11]. CDKs are proline-directed serine-threonine

kinases that are activated by the binding of a cyclin partner

protein to the highly conserved PSTAIRE helix within the CDK

[12,13]. Since the cyclins regulating the cell cycle CDKs are not

constitutively expressed, but instead are transcribed and degraded

at specific points during the cell cycle, cyclin binding provides a

cell cycle-dependent mode of CDK activation. In contrast,

transcriptional cyclins are expressed at more constant levels

throughout the cell cycle [14–16] and the neuronal CDK, CDK5,

is activated by binding to the proteins p35 and p39, which do not

have any sequence similarity to cyclins, but nevertheless adopt a

cyclin-like fold [17–19]. Cyclins not only activate CDKs, but also

determine the substrate specificity and/or localisation of the CDK.

A CDK may bind to more than one cyclin during the cell cycle,

and is thus targeted to different substrates at different phases of the

cell cycle. Similarly, cyclins may bind to more than one CDK.

Budding yeast express just one major cell cycle CDK, CDC28,

which binds to different cyclins to promote successive cell cycle

transitions [2]. On the other hand, over 20 CDKs and numerous

cyclins have been identified in mammalian cells, with many able to

compensate in the absence of others [1].

The protozoan parasite, Trypanosoma brucei, is the causative agent

of African trypanosomiasis in humans and animals. Its digenetic

life cycle, split between a mammalian host and the tsetse fly, is

characterised by multiple differentiation events that yield a series

of life cycle stages, which differ with respect to their morphology,

cell structure, surface coat and biochemistry. Cell cycle control

also differs between life cycle stages [20]. Only some life cycle

stages, such as the procyclic form in the tsetse midgut, and the long

slender trypomastigote in the mammalian bloodstream, are

proliferative, while others such as the mesocyclic and metacyclic

trypomastigotes in the tsetse fly and the short stumpy bloodstream

form are cell cycle arrested. Eleven cdc2-related kinases (CRK1-4

and CRK6-12) and ten cyclins (CYC2-11) have been identified in

T. brucei [20,21]. To date, functions have only been assigned to a

few of these putative regulators, as in many cases, depletion of the
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regulators via RNA interference (RNAi) has not resulted in a

detectable phenotype [22,23]. While this may suggest that some

CRKs and cyclins are non-essential for proliferation in culture or

that functional redundancy exists between them, it cannot be ruled

out that the small amount of protein remaining following RNAi

knockdown is sufficient for cell cycle progression. Of the CRKs

with identifiable functions, CRK1 and CRK3 appear to be

required for G1/S and G2/M phases of the cell cycle, respectively,

in both procyclic and bloodstream trypanosomes [23], while

CRK9 has been shown to phosphorylate RNA polymerase II

subunit RPB1 and to be required for maturation of spliced leader

RNA [24] and its depletion also causes mild defects in cell cycle

progression [22]. In addition, CRK2, CRK4 and CRK6 have

been postulated to play accessory roles in cell cycle progression

[25]. Functions have only been discerned so far for two cyclins,

CYC2/CycE1 and CYC6/CycB2, although gene knockout

experiments suggest CYC3/CycB1 is also essential [26], despite

RNAi experiments having yielded no detectable phenotype [27].

Depletion of CYC2 leads to an accumulation of cells in G1/S, and

in procyclic, but not bloodstream trypanosomes, this is accompa-

nied by microtubule extension at the posterior end of the parasite

[27,28]. Depletion of CYC6/CycB2 inhibits mitosis in procyclic

and bloodstream T. brucei, but due to fundamental differences in

cell cycle control in these life cycle stages, the downstream effects

of the mitotic inhibition are quite different [27,29]. In the absence

of nuclear division, procyclic trypanosomes continue to undergo

cytokinesis, while bloodstream T. brucei do not, but nevertheless

continue to replicate DNA and organelles [29].

To date, few CRKs have been demonstrated to be cyclin-

dependent in T. brucei. CRK3 has been shown to bind to CYC2

and CYC6 in vivo, and thus likely regulates G1/S as well as G2/M

[26,29]. A yeast two hybrid study identified interactions between

CRK1 and CYC2/CycE1, CYC4/CycE3 and CYC5/CycE4, as

well as between CRK2 and CYC2/CycE1 [30]. However, these

interactions have yet to be confirmed in vivo in T. brucei, and a

previous study indicated that, while CYC2 co-immunoprecipitated

with CRK3, it did not interact with CRK1 or CRK2 in procyclic

T. brucei [26]. Here we report the identification of a previously

uncharacterised CRK:cyclin complex, CRK12:CYC9 in T. brucei

and show that both CRK12 and CYC9 are essential proteins in

this important pathogen.

Materials and Methods

Ethics statement
Animal work carried out during this study was performed under

the UK Home Office Licence no. 60/3760 ‘Biochemistry, genetics

and immunology of parasitic protozoa’, approved by the Animal

Ethics Committee at the University of Glasgow, or under licence

by the Direcção Geral de Veterinária (DGV), Portugal, according

to national law no. 1005 (from 23rd Oct, 1992) at the University of

Lisbon. All studies were carried out by trained and licensed

personnel in strict accordance with the terms of the Animal

(Scientific Procedures) guidelines (1986) and the recommendations

in the ‘Responsibility in the use of animals in bioscience research:

Expectations of the major research council and charitable funding

bodies’ document (UK) and national DGV guidelines (Portugal).

Mice were euthanised before parasitaemias reached 109 cells ml21

by anaesthetising with carbon dioxide prior to cervical dislocation,

and all other efforts were made to minimise suffering.

Bioinformatic analyses
BLAST searches were performed via the NCBI website (http://

blast.ncbi.nlm.nih.gov/Blast.cgi). Pairwise alignments were made

using William Pearson’s LALIGN software available at http://

www.ch.embnet.org/software/LALIGN_form.html or using Vec-

torNTi AlignX software (Invitrogen). Cyclin (CD00043 (cyclin

superfamily) and/or COG5024 (cyclin-like superfamily CCL1

(TIGR00569)) and kinase (PKc_like superfamily) domains were

identified using the NCBI conserved domain search facility

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) or via

the website www.kinase.com. Cyclin and kinase domains were

then aligned and Bootstrap Neighbour Joining trees were

generated using ClustalX (1.81) [31]. HyperTree software was

used to format the output of the phylogenetic trees [32].

Culturing and transfection of trypanosomes
T. brucei brucei strain Lister 427 wildtype cell lines (procyclic and

bloodstream stages), Lister 427 pHD449 [33] tetracycline induc-

ible cell lines (procyclic and bloodstream stages) and the RNAi cell

lines 427 pLew13 pLew29 (procyclic form), 427 pLew13 pLew90

(bloodstream stage) [34] and Lister 427 MITat1.2 clone 221a 2T1

(bloodstream stage) [35], were cultured and transfected as

described previously [29,35,36].

Generation of CYC9:TAP-expressing procyclic cell lines
and purification of CYC9:TAP protein complexes

To create a fusion of CYC9 to the Tandem Affinity Purification

tag [37] to facilitate the purification of CYC9 protein complexes,

the 39 end of the CYC9 ORF (Tb11.01.5600) minus the stop codon

(bp 451–843) was PCR-amplified using oligonucleotides OL1547

(incorporating Nco I and Xho I restriction sites) and OL1548 (with

an Nco I restriction site) (Table S1 for all oligonucleotides used in

this study), sequenced and cloned into the Nco I site of pGL900, in

frame with the downstream TAP sequence. pGL900 is a derivative

of the yeast C-terminal TAP tagging vector, pBS1539 (Cellzome),

where a cassette consisting of BSDR flanked by tubulin intergenic

sequences was cloned between the Pst I and Apa I sites, replacing

the URA3 selectable marker. The 39 UTR of CYC9 was then PCR-

amplified with oligonucleotides OL1549 and OL1550, sequenced

and cloned into the Apa I site of the pGL900:CYC9:TAP plasmid

generating pGL1125. pGL1125 was linearised by digestion with

Xho I and transfected into procyclic form CYC9 single allele

knockout (NEOR) parasites (see below), to replace the remaining

endogenous CYC9 allele with CYC9:TAP. The clones obtained

were screened by PCR to confirm correct integration of

CYC9:TAP and absence of wildtype CYC9 alleles. The expression

of CYC9:TAP was confirmed by Western blotting with anti-

calmodulin binding protein (CBP; Santa Cruz) and anti-protein A

(Sigma) antibodies.

CYC9:TAP protein complexes were purified from 8.861010

cells by sequential IgG and calmodulin affinity chromatography,

according to [37], but adding 0.5% (rather than 0.1%) Nonidet

P40 (NP40) detergent to all buffers. The success of the purification

was monitored by Western blotting of appropriate samples with

anti-CBP antibody. Eluates from the calmodulin column were

analysed by nanoflow HPLC electrospray tandem mass spectrom-

etry (nLC-ESI-MS/MS). 10 ml eluate were mixed with 40 ml

methanol and 50 ml 25 mM ammonium bicarbonate/0.2 mgml21

trypsin before being incubated at 37uC overnight. Formic acid was

added to a final concentration of 1% and the sample dried via

vacuum centrifugation. Tryptic peptides were solubilised in 0.5%

formic acid and fractionated on a nanoflow HPLC system

(Famos/Switchos/Ultimate, LC Packings) before being analysed

by electrospray ionisation (ESI) mass spectrometry on a Q-STARH
Pulsar i hybrid MS/MS System. Peptide separation was

performed on a Pepmap C18 reversed phase column (LC

Packings), using a 5 – 85% acetonitrile gradient (in 0.5% formic
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acid) run over 45 min at a flow rate of 0.2 mlmin21. Mass

spectrometric analysis was performed using a 3 second survey MS

scan followed by up to four MS/MS analyses of the most

abundant peptides (3 seconds per peak) in Information Dependent

Acquisition (IDA) mode, choosing 2+ to 4+ ions above a threshold

of 30 counts, with dynamic exclusion for 120 seconds. Data

generated were analysed using Applied Biosystems Analyst QS

(v1.1) software and the automated Matrix Science Mascot

Daemon server (v2.1.06) was used to interrogate T. brucei genome

sequences. Protein identifications were assigned using the Mascot

search engine, which gives each protein a probability based

MOWSE score. In all cases, variable methionine oxidation was

allowed in searches and carbamidomethylation of cysteines was

selected as a fixed modification. Mass tolerances of 1.2 Da for MS

and 0.4 Da for MS/MS analysis were used.

Generation of cell lines expressing tyGFP:CRK12 or
ty:CRK12

To facilitate immunoprecipitation of CRK12, it was tagged at

its N-terminus with tyGFP as follows. The 59 end of the CRK12

ORF (Tb11.01.4130) was PCR-amplified from 427 genomic DNA

using oligonucleotides PR32 and PR33 (introducing Xba I and Xho

I restriction sites, respectively) and the 59 end of the CRK12 ORF

was amplified using PR34 and PR35 (incorporating Xho I and Bam

HI restriction sites, respectively). Both fragments were sequenced

and cloned into pEnT5-GFP-TY [38] digested with Xba I and Bam

HI using a threeway ligation procedure, generating pHG69, which

allows expression of tyGFP:CRK12 from its endogenous locus.

pHG69 was linearised by digestion with Xho I prior to transfection

into Lister 427 wildtype and CYC9:TAP procyclic form cell lines.

Expression of tyGFP:CRK12 was confirmed by Western blotting

with anti-TY (BB2 antibody; [39]; a kind gift from Keith

Matthews, University of Edinburgh) and anti-GFP (Santa-Cruz)

antibodies.

Tetracycline inducible cell lines expressing TY-tagged CRK12

(active and kinase dead) cell lines were generated to investigate

kinase activity of CRK12. The CRK12 ORF was amplified from

Lister 427 genomic DNA using PR206 and PR207 (incorporating

a TY tag and Bcl I sites), cloned into pSC-B (Stratagene) and

sequenced. To create a kinase dead variant of CRK12 (K358M),

site directed mutagenesis was performed on the cloned CRK12

sequence with oligonucleotides PR208 and PR209 using the

QuickChange Site-Directed Mutagenesis kit (Stratagene). The

CRK12 wildtype and kinase dead sequences were then subcloned

into Bam HI-digested pHD675 [33], generating pHG230 and

pHG231, respectively. pHG230 and pHG231 were linearised by

digestion with Not I prior to transfecting into Lister 427 pHD449

[33] cell lines. Inducible expression of the ty:CRK12 proteins was

confirmed by Western blotting with anti-TY antibody (as above).

Generation of CYC9 knockout cell lines
Three plasmids (pGL1124, pGL1224 and pGL1217) were

constructed to allow the replacement of one allele of CYC9 with

either blasticidin (BSDR), hygromycin (HYGR) or neomycin (NEOR)

resistance genes, respectively. All plasmids were derived from

pGL802 [40]. The CYC9 open reading frame (ORF) 59 and 39

flanking regions were PCR-amplified from Lister 427 genomic

DNA using the oligonucleotides OL1553 and OL1554 (59 flank)

and OL1549 and OL1550 (39 flank), and cloned into the Not I/Xba

I and Apa I sites of pGL802, respectively, using the restriction sites

incorporated into the oligonucleotide primers, replacing the

flanking regions for MCA2 and MCA1, generating pGL1124. To

generate pGL1224 and pGL1217, the BSDR gene was excised

from pGL1124 by digestion with Eco RI and replaced with HYGR

or NEOR genes, respectively. The CYC9 knockout plasmids were

linearised with Xho I prior to transfection into T. brucei Lister 427

cells. Trypanosomes were transfected with each plasmid individ-

ually, and then subjected to a second transfection with one of the

other plasmids, with a different resistance gene, with all pairwise

combinations performed.

Generation and induction of RNAi cell lines
The RNAit software [41] was used to identify unique gene

fragments suitable for RNAi studies. For CYC9 RNAi, a 408 bp

fragment of the CYC9 ORF (bp 335–742), was PCR-amplified

from Lister 427 genomic DNA using oligonucleotides OL2540

and OL2541 (incorporating Hind III and Bam HI restriction sites,

respectively) and cloned into the same sites of p2T7ti:GFP vector

[42] in place of the GFP coding sequence, generating pGL1759.

Plasmid pGL1759 was linearised by digestion with Not I,

transfected into the 427 pLew13 pLew29 and 427 pLew13

pLew90 RNAi cell lines, as described above and two independent

clones for each cell line were selected for downstream analyses.

For RNAi of CRK12, a 419 bp fragment of the CRK12 ORF (bp

1028–1446) was PCR-amplified from TREU 927 genomic DNA

with oligonucleotides OL3387 (incorporating Xma I and Xho I

restriction sites) and OL3388 (incorporating Bam HI and Xba I

restriction sites). The product was digested with Xho I and Xba I

and subcloned in an antisense orientation into the same sites in

pRPaiSL (MCS1/2) [35], and then digested with Xma I and Bam HI

and subcloned in a sense orientation into the same plasmid,

generating a stem-loop construct with a LACZ stuffer fragment.

The resultant construct (pGL1986) was digested with Asc I to

release the RNAi stem-loop cassette and transfected into

bloodstream 2T1 cells, as described above. Hygromycin-resistant

clones were analysed for puromycin sensitivity and two puromy-

cin-sensitive clones selected for downstream analyses.

The RNAi response was induced in vitro by the addition of

1 mgml21 tetracycline to the culture medium. Knockdown was

confirmed by real time PCR, and for CRK12 RNAi cell lines, also

by Western blotting cell lysates with a specific monoclonal

antibody. The CRK12 monoclonal antibody was generated by

immunisation of a Balb/c mouse with purified recombinant

6xHis:CRK12 in Incomplete Freund’s Adjuvant (Sigma). Cells

from the spleen were removed and fused with myeloma SP2/0

AG14 cells cultured in DMEM supplemented with 5% foetal

bovine serum (Gibco) at 37uC, in the presence of 5% CO2, as

previously described [43]. Hybridoma supernatants were screened

by ELISA and Western blot to identify anti-CRK12-producing

hybridomas, and clone 4D7 was selected. The antibody isotype

was determined to be IgG using the Mouse MonoAB ID (alkaline

phosphatase) kit (Zymed), and the antibody was used neat for

Western blotting. For in vivo RNAi of CRK12, four experimental

ICR mice were injected intraperitoneally with 250 ml (56105)

parasites taken from a donor mouse and parasitaemias monitored

daily thereafter by tail bleed. At 48 hours post-inoculation, when

parasitaemias had reached .107 cells ml21, the drinking water of

two mice was replaced with a 0.2 mgml21 doxycycline/5% (w/v)

sucrose solution to effect induction of the RNAi response. Mice

were euthanised before parasitaemias reached 109 cells ml21.

Real-time PCR analysis
Total RNA was prepared from 16108 trypanosome cells using

the RNeasy Mini kit (Qiagen) and treated with 2U RNase-free

DNase I (Ambion) per 10 mg RNA for 30 minutes at 37uC to

digest genomic DNA before the DNase I was inactivated with

5 mM EDTA at 75uC for 10 minutes. 2 mg of RNA was used in

cDNA synthesis reactions with random hexamers (Invitrogen)
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using the Omniscript RT kit (Qiagen), according to the

manufacturer’s protocol. Real time PCR was performed as

described previously [44] in triplicate (CYC9) or quadruplicate

(CRK12). Dissociation curves were performed on the products to

check that only one product was amplified by each primer set.

Yeast two-hybrid analysis
To investigate the interaction between CYC9 and CRK12, the

Hybrid Hunter system (Invitrogen) was used. CYC9 was PCR-

amplified from EATRO 795 genomic DNA with oligonucleotides

OL1163 and OL1164 (introducing Bam HI and Hind III sites,

respectively), sequenced and cloned into the same sites in the prey

plasmid pYESTrp to create pGL932 (expressing B42:CYC9),

while CRK12 was amplified with OL1600 and OL1601 (incorpo-

rating Sac I and Kpn I sites, respectively), sequenced and cloned

into the same sites in the bait plasmid pHybLex/Zeo, generating

pGL1277 (expressing LexA:CRK12). Saccharomyces cerevisiae strain

L40 (Invitrogen) was transformed with the two plasmids together

to generate L40 pGL932 pGL1277. As autoactivation controls, the

empty vector prey and bait plasmids were transformed into L40

together or in combination with pGL932 or pGL1277. Positive

and negative L40 control strains, expressing LexA:Fos/B42:Jun or

LexA:Lamin/B42:Jun, were also generated using plasmids sup-

plied by Invitrogen. To analyse protein:protein interactions, b-

galactosidase and histidine prototrophy assays were performed

according to the manufacturer’s instructions and as previously

described [45].

Immunoprecipitation
S100 lysates were prepared from 56108 trypanosome cells as

described previously [44]. Soluble cell extracts were incubated

with anti-glutathione S-transferase (GST, Santa Cruz), anti-TY

(BB2, [39]) or anti-rabbit IgG-conjugated Dynabeads (prepared

using the Immunoprecipitation Kit - DynabeadsH Protein G,

Invitrogen, according to the manufacturer’s instructions) at 4uC
overnight. Beads were washed with the wash buffer supplied with

the kit supplemented with 0.1% Triton X-100 and assayed for

kinase activity (below) or analysed by SDS-PAGE and Western

blotting using anti-GFP (Santa Cruz), anti-oligopeptidase B (OPB;

[46]) and horseradish peroxidise-conjugated anti-PAP (Roche) as

an anti-TAP antibody.

Kinase assays
Kinase assays were performed as described previously [47].

Assay samples were electrophoresed on SDS-PAGE gels, which

were stained with Coomassie Blue, dried and analysed by

autoradiography.

ATP assay
26107 cells were washed in Voorheis’ modified phosphate

buffered saline (vPBS; [48]), resuspended in 300 ml ddH2O and

passed through a 27G needle five times to lyse the cells. Cellular

debris was removed by centrifuging at 14,000 x g for 5 minutes at

4uC and the supernatant was assayed for ATP activity using an

ATP bioluminescent assay kit (Sigma) and an EnVision 2102

Multilabel plate reader (Perkin Elmer).

4,6-Diamidino-2-phenylindole (DAPI) staining and flow
cytometry analysis

The nucleus/kinetoplast configurations and DNA content of

cells were analyzed by DAPI staining in conjunction with

fluorescence microscopy and by flow cytometry of propidium

iodide stained cells, respectively, as described previously [29].

Immunofluorescence analyses
Cells were washed in PBS (procyclic form) or vPBS (blood-

stream form) and were settled onto poly-L-lysine coated glass slides

(CYC9-TAP) or fixed in solution (clathrin heavy chain (CLH)). For

CYC9-TAP immunofluorescence, cells were fixed in methanol at

–20uC for 1 hour, before being transferred to a PBS bath for 5

minutes. Following a further PBS wash, cells were incubated with

a 1/5000 dilution of rabbit anti-protein A antibody for 1 hour at

room temperature. To detect CLH, cells were fixed in 3% PFA for

1 hour at 4uC before being allowed to adhere to poly-L-lysine

coated slides for 20 minutes. Cells were permeabilised in PBS/

0.1% Triton X-100 and neutralised in 100 mM glycine, as above,

before being blocked for 1 hour in PBS/10% foetal calf serum at

room temperature and then incubated with 1/500 dilution of

rabbit anti-CLH antibody [49] for 1 hour at room temperature.

Following incubation in primary antibody, all cells were washed

twice in PBS, and then incubated in a 1/100 dilution Alexa-Fluor

594- or Alexa-Fluor-488 conjugated anti-rabbit IgG (Invitrogen)

for 1 hour in the dark. Cells were then washed twice in 100 mM 4-

(2-hydroxyethyl)piperazine-1-ethanesulphonic acid (HEPES)

pH 7.5, incubated with 10 mgml21 DAPI in 100 mM HEPES

pH 7.5 for 5 minutes, washed twice more in 100 mM HEPES

pH 7.5 before SlowFade Gold antifade reagent (Invitrogen) and a

coverslip were added and the cells observed using a DeltaVision

RT epifluorescence imaging system (Applied Precision) and Soft

WoRx software.

Uptake assays for endocytosis
Uptake assays were performed for bloodstream form CRK12

RNAi cell lines using the FM4-64FX (N-(3- triethylammonium-

propyl) -4-{6-[4-(diethylamino)phenyl]hexatrienyl} pyridinium di-

bromide) dye (Invitrogen) at 4uC and 37uC and AlexaFluor-594

(AF594)-conjugated human transferrin (Sigma) at 37uC essentially

as described in [50], with cells being incubated with the fluorescent

cargo for 5 minutes.

Transmission Electron Microscopy
Specimens were prepared and viewed as described previously

[51].

Results

CYC9 clusters phylogenetically with cyclin C
CYC9 is the only T. brucei cyclin not to have been studied to

date. The CYC9 gene comprises a 843 bp ORF that Rapid

Amplification of cDNA ends (RACE) analysis revealed is flanked

by a 53 nucleotide 5’ UTR and a 3’UTR of 230 or 272 nucleotides

depending on which of two possible polyadenylation sites are used

(data not shown). The CYC9 protein (281 amino acids) contains

two cyclin-like conserved domains (IPRO11028) at residues 50-

144 and 143-196 and a transcription regulation cyclin domain

(IPRO15429) at residues 36-147 (www.genedb.org). A phyloge-

netic comparison of the cyclin domain of CYC9 with the cyclin

domains of other eukaryotic cyclins reveals that it clusters tightly

with CYC9 from T. cruzi and Leishmania species, and clusters more

closely with transcriptional cyclins (human and Drosophila cyclins

C, H, K, L and T, as well as with fission yeast Srb11, a cyclin C

orthologue) than any other class of cyclin (Fig. S1A).

CYC9 associates with CRK12 in vivo
To enable functional characterisation of CYC9, CYC9 was

tagged at its C-terminus with a Tandem Affinity Purification

(TAP) [37] tag (CYC9:TAP) in procyclic T. brucei to facilitate the

identification of in vivo kinase partner(s) of CYC9. A procyclic cell
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line was generated where one CYC9 allele was replaced with

CYC9:TAP and the other allele was replaced by a neomycin

resistance gene, and PCR was used to confirm correct integration

(Fig. 1A). Hence, CYC9:TAP was the only expressed copy of CYC9

in this cell line, and since data described below indicate that CYC9

is an essential gene, this points to CYC9:TAP being functional.

Expression of CYC9:TAP (51.6 kDa) was confirmed by Western

blotting with anti-Calmodulin Binding Protein (CBP) and anti-

protein A antisera (Fig. 1B) and by immunofluorescence analysis

with the anti-protein A antibody, which showed CYC9:TAP to be

localised to the nucleus (Fig. 1C). CYC9:TAP was expressed in

cells of all cell cycle stages, as expected due to the tubulin 39 UTR

sequence downstream of the tagged gene. CYC9:TAP complexes

were purified via affinity purification, firstly on IgG sepharose.

Following binding of the CYC9:TAP complexes to the beads and

extensive washing, CYC9 complexes were released from the beads

by TEV protease cleavage. The resultant CYC9:CBP (35.5 kDa)

and associated protein(s) were then bound to calmodulin resin,

washed and eluted by the addition of EGTA. The success of the

purification was assessed by Western blotting with anti-CBP (Fig.

1D). In the cell lysate, two protein species were recognised by the

antibody, one at ,50 kDa, consistent with it being CYC9:TAP,

and a smaller one of ,30 kDa, which most likely represented a

degradation product of CYC9:TAP since it was also present in the

elutions from the second affinity chromatography step. Following

TEV protease treatment, a ,35 kDa protein was detected, most

likely CYC9:CBP, indicating that CYC9:CBP and associated

protein(s) were successfully purified by tandem affinity purification.

Mass spectrometry of elution 3 identified two peptides, KMDAI-

DEVVRL and KKLHEMGIIHRD, that corresponded to T. brucei

CRK12 (amino acids 404-414 and 464-475, respectively), strongly

suggesting that CYC9 binds to CRK12 in vivo.

To confirm the interaction between CYC9 and CRK12, two

other approaches were taken. Firstly, a yeast two-hybrid assay was

used. The CRK12 and CYC9 open reading frames were cloned into

the bait (pHybLex/Zeo) and prey (pYESTrp) vectors, respectively,

such that CRK12 was expressed as a LexA binding domain fusion

(LexA:CRK12; pGL1277) and CYC9 was expressed fused to the

B42 activating domain (B42:CYC9; pGL932), and the plasmids

were transformed into the yeast-two hybrid reporter strain L40.

L40 co-transformed with both pGL1277 and pGL932 plasmids

exhibited b-galactosidase activity (Fig. S2A), indicating an

interaction between LexA:CRK12 and B42:CYC9, since neither

LexA:CRK12 or B42:CYC9 alone was able to induce expression

of LacZ. Additionally, yeast expressing LexA:CRK12 and

B42:CYC9 displayed histidine autotrophy (Fig. S2B), providing

further evidence that these proteins interact in yeast.

Secondly, co-immunoprecipitation of CRK12 and CYC9 from

T. brucei cell lysates was demonstrated (Fig. 2 and S3). CRK12 was

tagged at its N-terminus with TY1 [39] and GFP epitopes

(tyGFP:CRK12) to facilitate its detection, and expressed from the

CRK12 endogenous locus in either a wildtype or a CYC9:TAP

background (Fig. 2A). Use of tagged CYC9 was required since

useful anti-CYC9 antibodies could not be generated. Immuno-

precipitations were performed by incubating cell lysates of these

cell lines with beads conjugated to anti-TY antibody (to precipitate

tyGFP:CRK12), anti-rabbit IgG (to precipitate CYC9:TAP) or

anti-GST antibody (a specificity control) and appropriate samples

analysed by Western blotting with anti-GFP (to detect

tyGFP:CRK12), anti-PAP (to detect CYC9:TAP) and anti-OPB

or anti-EF1a (loading control) antibodies (Fig. 2). Anti-GST beads

did not pull down tyGFP:CRK12 or CYC9:TAP from cell lysates,

demonstrating that neither of these proteins bound to the beads

non-specifically (Fig. 2B). Anti-TY beads immunoprecipitated

tyGFP:CRK12 and CYC9:TAP was coprecipitated (Fig. 2C).

Similarly, anti-rabbit IgG beads immunoprecipitated CYC9:TAP

and co-precipitated tyGFP:CRK12 (Fig. 2D), thus confirming that

CRK12 and CYC9 interact in vivo in procyclic T. brucei. Tagged

cell lines were also generated in the bloodstream form; CYC9:TAP

was found to interact with tyGFP:CRK12 (Fig. S3A) and was

localised in the nucleus (Fig. S3B) as in the procyclic form.

Bioinformatic searches did not reveal the presence of a conven-

tional nucleus localisation signal (NLS) in CYC9 (data not shown),

but this does not preclude there being one, since NLS consensus

sequences are not well defined in T. brucei.

CRK12 autophosphorylates in vivo
To determine whether CRK12 is an active protein kinase,

lysates of the cell lines described above (Fig. 2A) were incubated

with anti-TY beads; the beads were then washed extensively and

used in in vitro kinase assays (Fig. 3). No specific protein kinase

activity against several generic substrates (histone H1, myelin basic

protein, alpha and beta casein) was observed (not shown), but a

protein, consistent in size with tyGFP:CRK12, and only present in

assays using cell lysates expressing tyGFP:CRK12 was phosphor-

ylated (Fig. 3A), indicating that either tyGFP:CRK12 is able to

autophosphorylate, or that a protein kinase(s) non-specifically

interacting with the beads was/were able to phosphorylate it.

In order to distinguish between these possibilities, and to rule

out that the observed phosphorylation was occurring on the GFP

tag rather than on CRK12, two new cell lines were generated that

inducibly expressed ty:CRK12, either wildtype (kinase active) or

with a mutation (K358M) of the invariant catalytic lysine residue

of the protein kinase domain predicted to result in a dead kinase.

Both ty:CRK12 and ty:CRK12 (K358M) were inducibly ex-

pressed at similar levels following the addition of tetracycline (Fig.

3B). Immunoprecipitated wildtype ty:CRK12 was phosphorylated

while ty:CRK12 (K358M) was not, indicating that the phosphor-

ylation occurred as a result of autophosphorylation by the active

kinase (Fig. 3C).

CYC9 is essential in procyclic and bloodstream stage T.
brucei

To investigate the function of CYC9, attempts were made to

knockout the CYC9 gene in procyclic and bloodstream trypano-

somes. First, one allele of the gene was replaced with either a

blasticidin, neomycin or hygromycin resistance marker. Single

allele CYC9 knockout mutants were obtained for both life cycle

stages (Fig. S4) and were then transfected with a different

resistance construct to try to delete the second allele. This was

unsuccessful in all cases; either no clones were obtained from the

transfection (despite multiple attempts) or double drug resistant

clones were subsequently found to still have a copy of CYC9

present, with the second drug resistance marker having integrated

erroneously elsewhere in the genome (Fig. S4). Attempts to

generate a conditional CYC9 null mutant, where an ectopic copy

of CYC9 (ha:CYC9) under tetracycline-inducible control was

introduced prior to knocking out the second allele, also failed.

Overexpression of ha:CYC9 was not stable, with expression of

ha:CYC9 falling to undetectable levels within a few days,

suggesting that overexpression of ha:CYC9 was toxic.

An RNAi approach was therefore taken to investigate CYC9

function. Tetracycline-inducible CYC9 RNAi procyclic and

bloodstream cell lines were generated, and two independent

clones of each life cycle stage were selected for downstream

analyses. Induction of CYC9 RNAi in procyclic T. brucei resulted in

a decreased growth rate or growth arrest from 120 hours post-

induction (Fig. 4A). Real time PCR demonstrated that CYC9
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mRNA was significantly depleted from induced cells at 48 hours

post-induction (Fig. 4B). Induction of CYC9 RNAi in bloodstream

stage T. brucei also lead to a growth arrest, which was apparent

from 12–18 hours post-induction (Fig. 4C). Real time PCR

indicated that CYC9 mRNA was reduced by 35–50% at 20 hours

post-induction (Fig. 4D). Thus, CYC9 is essential for proliferation

for both procyclic and bloodstream stage T. brucei.

CYC9 depletion does not result in a cell cycle block in
procyclic T. brucei

To determine whether the growth arrest observed following

knockdown of CYC9 occurred as the result of a cell cycle arrest,

RNAi cells were examined by DAPI staining to determine the

nucleus/kinetoplast (N/K) configurations of cells and by flow

cytometry to measure DNA content. RNAi of CYC9 in procyclic

cells resulted in only minor changes to N/K configurations (Fig.

S5A). The proportion of 1N1K cells increased slightly, while the

proportions of 1N2K and 2N2K cells decreased slightly during the

induction period, indicating a slight accumulation of cells (5–10%

extra 1N1K cells) in G1 phase of the cell cycle. This effect was

more obvious for clone 2, in which CYC9 was knocked down to a

greater extent (Fig. 4B). However, depletion of CYC9 did not

result in an efficient G1 cell cycle block, and abnormal cells

including zoids (0N1K), 1N0K and 2N1K also arose in small

numbers following depletion of CYC9. Flow cytometry profiles

(Fig. S5B) were consistent with the DAPI staining; a slight increase

in the 2C peak was observed following induction for clone 2, and a

small ,1C peak appeared at later time points, most likely

reflecting the generation of zoids. Thus, although CYC9 is

essential for in vitro growth of T. brucei, it does not appear to play a

key role in cell cycle progression in procyclic trypanosomes.

Figure 1. Identification of CRK12 as a CYC9 interaction partner using tandem affinity purification. A. Construction of procyclic CYC9:TAP
cell line. CYC9 alleles were replaced sequentially with a neomycin resistance (NEO) cassette and a CYC9:TAP cassette, which included a blasticidin
resistance marker (BSD) for selection, thus generating a cell line expressing CYC9:TAP in a CYC9 null mutant background. Light grey boxes: CYC9 UTR
sequences; white boxes: tubulin intergenic sequences. PCR (reactions a-e, sizes and positions of products amplified indicated by black bars) was used
to verify correct integration of the cassettes. Reactions (a) and (b) (panel (i)), were used to confirm correct integration of the NEO cassette in the single
allele CYC9 knockout line; negative control (–): procyclic 427 wildtype. Reaction (c) (panel (ii)) was used to confirm that a wildtype copy of CYC9 no
longer existed in the CYC9:TAP cell line; positive control (+): procyclic 427 wildtype cell line transfected with CYC9:TAP cassette. Reactions (d) and (e)
(panel (iii)), were used to confirm correct integration of the CYC9:TAP cassette at its 5’ and 3’ ends; positive and negative controls as for (c) and (b),
respectively. B. Western blots probed with anti-CBP (left), anti-protein A (right, upper blot) and EF1a (loading control; right, lower blot) antibodies.
Lane 1: procyclic 427 transfected with NEO cassette; lane 2: as for lane 1 but also transfected with CYC9:TAP construct. Expected size of CYC9:TAP is
51.6 kDa. Asterisk: degradation product; arrowhead: cross-reacting band that serves as a loading control. C. (i) Immunofluorescence analysis of
procyclic CYC9:TAP cell line. Top left: DIC; top right: DAPI; bottom left: anti-protein A (CYC9:TAP); bottom right: DAPI/anti-protein A merge. (ii)
Wildtype control. Top: DIC; bottom: DAPI/anti-protein A merge. The configuration of nuclei (N) and kinetoplasts (K) per cell is given. Scale bar: 5 mm.
D. Western blot of CYC9:TAP purification, probed with anti-CBP. In: input to the IgG column; FT: flow through; W: washes; E: elution fractions.
Expected size of CYC9:CBP (after cleavage of CYC9:TAP from the IgG column with TEV protease) is 35.5 kDa. Asterisk: degradation product.
doi:10.1371/journal.pone.0067327.g001
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Figure 2. Co-immunoprecipitation of CRK12 and CYC9. A. Schematic showing features of procyclic cell lines generated. B–D.
Immunoprecipitation (IP) was performed with (B) an irrelevant antibody (anti-GST), (C) anti-TY antibody (for tyGFP:CRK12) and (D) anti-rabbit IgG
(for CYC9:TAP). Samples (In: input; FT: flow through; W1: first wash; W4: last wash; E: elution) were analysed by Western blotting with anti-GFP to
detect tyGFP:CRK12, anti-PAP to detect CYC9:TAP and anti-oligopeptidase B (anti-OPB) to act as a loading control for the input fractions and control
for the stringency of the purification.
doi:10.1371/journal.pone.0067327.g002

Figure 3. CRK12 is an active protein kinase. A. Anti-TY immunoprecipitates from procyclic cell lysates (1: 427 wildtype; 2: 427 tyGFP:CRK12; 3:
427 CYC9:TAP; 4: 427 tyGFP:CRK12 CYC9:TAP, see Fig. 2A) were subjected to a radiolabelled in vitro kinase assay and analysed by SDS-PAGE and
autoradiography. Lane 5: kinase assay buffer only. Bands likely representing phosphorylated tyGFP:CRK12 (113.5 kDa) are indicated. B: Western blot
of 427 cell lysates overexpressing ty:CRK12 (active) or kinase dead ty:CRK12 (K358M) in response to tetracycline (tet) induction. A 427 wildtype cell
lysate is included as a negative control. Western blots were probed with anti-TY antibody to detect ty:CRK12 or anti-OPB as a loading control, as
indicated. C. Immunoprecipitation of ty:CRK12 performed using anti-TY beads and 427 cell lysates overexpressing either ty:CRK12 (active) or kinase
dead ty:CRK12 (K358M). 427 wildtype lysates were included as a non-specific binding control. Western blots (left) were performed on the input (In),
flow through (FT) and elution (E) fractions with anti-TY antibody to detect ty:CRK12 or with anti-OPB antibody as a control for non-specific binding to
the beads, as indicated. Immunoprecipitates were then subjected to a radiolabelled kinase assay (autoradiograph, right). 1: 427 tyGFP:CRK12; 2: 427
wt; 3: 427 ty:CRK12 (active); 4: 427 ty:CRK12 K358M. Bands likely representing phosphorylation of tyGFP:CRK12 (113.5 kDa) or ty:CRK12 (86 kDa) are
indicated.
doi:10.1371/journal.pone.0067327.g003
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Depletion of CYC9 blocks cytokinesis in bloodstream
stage T. brucei

In contrast to depletion of CYC9 in procyclic trypanosomes,

RNAi of CYC9 in bloodstream parasites resulted in aberrant cell

cycle progression. Since data for the two independent clones were

very similar, only data for one clone is presented here. DAPI

staining revealed a two fold increase in 2N2K cells over the first

12 hours of induction (Fig. 5A). Examination of 2N2K cells

revealed that while the majority of this cell type had not yet

commenced cytokinesis, over time, the proportion of 2N2K cells

with a visible cleavage furrow significantly increased (from 6%–

23% (one way ANOVA; F = 176.58, df = 5, p = 0.00); Fig. 5B).

Taken together, these data suggest that depletion of CYC9 inhibits

cytokinesis. At 18 hours post-induction, a population of cells with

abnormal N/K configurations (many of which contained multiple

nuclei and kinetoplasts) and increased ploidy was detected by

DAPI staining (‘others’ in Fig. 5A) and flow cytometry (Fig. 5C; 8C

peak), respectively. While some of these multi-nucleate cells did

not appear to have commenced cytokinesis (Fig. 5Di and iii),

others were observed to have an invagination at their anterior end

(Fig. 5Dii and iv), suggesting they had attempted to begin furrow

ingression, and some were observed to be attempting to undergo

abscission, although since some cells were observed to have

multiple cell bodies still attached at their posterior ends (Fig. 5Dv),

it is likely that completion of cytokinesis was inhibited (Fig. 5D).

CRK12 displays similarity to PITSLRE protein kinases, but
forms a separate phylogenetic clade

CRK12 contains a PITSLRE motif in its PSTAIRE box,

characteristic of metazoan CDK11 [52]. BLAST searches were

performed for CRK12 revealing that it did indeed display

similarity to other PITSLRE kinases, but was also similar to the

transcriptional CDKs, CDK9 and CDK12 [52] (data not shown).

However, a bootstrapped phylogenetic tree of all of the T. brucei

CRKs, other kinetoplastid CRK12 kinases, all 21 human CDKs

and selected CDKs from Drosophila melanogaster and Caenorrhabditis

elegans revealed that the kinetoplastid CRK12 proteins formed a

separate clade and were more similar to T. brucei CRK8 and

CRK11 than to the PITSLRE clade (Fig. S1B). Thus CRK12

might have novel functions in T. brucei.

CRK12 is an essential protein in bloodstream stage T.
brucei

To investigate the function of CRK12, RNAi was used to

deplete CRK12 from T. brucei. Previously, downregulation of

CRK12 from procyclic T. brucei did not lead to a discernible

phenotype [22], and hence our work focussed on the bloodstream

stage. Tetracycline-induction of two independent CRK12 blood-

stream stage RNAi cell lines arrested growth within 18 hours, and

cells died following longer exposure to tetracycline (Fig. 6A).

CRK12 mRNA was depleted to around 30% of uninduced levels at

18 hours post-induction (Fig. 6B) and Western blotting with an

Figure 4. RNAi of CYC9 reveals it is essential for viability in procyclic and bloodstream form trypanosomes. A. Cumulative growth
curves for two independent procyclic CYC9 RNAi clones (clone 1: C1; clone 2: C2) cultured in the presence or absence of tetracycline (tet). B. Real time
PCR analysis of CYC9 transcript for procyclic CYC9 RNAi clones 1 and 2 at 48 hours post-induction. Error bars represent standard deviations of three
replicates. The percentage of mRNA transcript remaining is indicated. C. Cumulative growth curves for two independent bloodstream CYC9 RNAi
clones (clone 1: C1; clone 2: C2) cultured in the presence or absence of tetracycline (tet). D. Real time PCR analysis of CYC9 transcript for bloodstream
form CYC9 RNAi clones 1 and 2 at 20 hours post-induction. Error bars represent standard deviations of three replicates.
doi:10.1371/journal.pone.0067327.g004
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anti-CRK12 monoclonal antibody demonstrated that CRK12

protein was also substantially depleted by 12 hours after RNAi

induction (Fig. 6C). Western blotting cell extracts from procyclic

and bloodstream cell lines overexpressing ty:CRK12 confirmed

the specificity of the antibody. However, all attempts to detect

CRK12 by immunofluorescence have been unsuccessful to date.

The importance of CRK12 for proliferation of bloodstream T.

brucei in a mouse model was also investigated. Mice were

inoculated with CRK12 RNAi trypanosomes and the RNAi

response induced via doxycycline added to their drinking water.

Non-doxycycline treated mice had to be culled at 72 hours post-

infection due to their high parasitaemias, while doxycycline-

treated mice had no detectable parasitaemia at 72 or 96 hours

post-infection (Fig. 6D), indicating that CRK12 is essential for

survival of T. brucei in mice.

Depletion of CRK12 results in enlargement of the
flagellar pocket and defects in endocytosis

Cell cycle progression was examined in CRK12 RNAi cell lines

cultured in vitro. DAPI staining (Fig. 6E) and flow cytometry (data

not shown) did not reveal any major defects in cell cycle

progression. However, closer examination revealed defects in

kinetoplast positioning in 1N2K and 2N2K cells at 12 and

18 hours post-induction (Fig. 7A,B), which were not observed in

uninduced cells. Instead of the kinetoplasts being arranged

longitudinally along the cell axis, 1N2K and 2N2K cells with

the two kinetoplasts positioned laterally across the cell accumu-

lated (Fig. 7A–C). Many of these cells also had enlarged flagellar

pockets (Fig. 7C–F), which could be visualised by DIC microscopy

(Fig. 7C,D) and by TEM (Fig. 7E), that might have caused the

distortion in kinetoplast position. 1N1K cells with an enlarged

flagellar pocket were also observed occasionally (Fig. 7C), but the

flagellar pocket enlargement was not as substantial as in 1N2K and

2N2K cells, suggesting that flagellar pocket enlargement increased

as the cell progressed through the cell cycle. The majority of 2N2K

cells were able to undergo cytokinesis regardless of whether they

possessed enlarged flagellar pockets, although defects in cytokinesis

were observed in some cells (Fig. 7D).

An enlarged flagellar pocket has previously been linked to

defects in endocytosis [53]. To determine whether CRK12-

depleted cells with enlarged flagellar pockets had defects in

endocytosis, uptake of the fluorescent lipophilic dye, FM4-64, was

analysed. While FM4-64 was efficiently taken up and internalised

by uninduced cells at 4uC and 37uC (Fig. 8A, left panels), as well as

Figure 5. Depletion of CYC9 in the bloodstream form inhibits cytokinesis. A. DAPI staining of nuclei (N) and kinetoplasts (K) at the time
points indicated (post-induction). .200 cells per time point were classified according to their N/K configuration. B. Cytokinesis stage analysis of 2N2K
cells. 2N2K cells (n . 200/timepoint) were scored by differential interference contrast (DIC) microscopy for whether or not they had a visible cleavage
furrow (furrow ingression) or were undergoing abscission. Error bars represent the standard deviations from three replicate experiments. C. Flow
cytometry analysis of propidium iodide stained cells at the time points indicated (in hours). The ploidies of the peaks are indicated. D. Example
images of multinucleate/kinetoplast cells. Left panels: DIC image; right panels: DAPI staining. The N/K configuration of each cell is indicated. Scale
bars: 5 mm. Arrows indicate partially ingressed cleavage furrows.
doi:10.1371/journal.pone.0067327.g005
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by induced CRK12 RNAi cells with no obvious enlargement to

their flagellar pocket (Fig. 8A, middle panels), induced cells with

enlarged flagellar pockets showed no FM4-64 signal under

identical conditions (Fig. 8A, right panels). We therefore

hypothesised that cells with significant flagellar pocket defects

were unable to internalise the dye due to blocked endocytosis, and

that the dye then diffused out of the flagellar pocket when cells

were washed prior to imaging. The trypanosome clathrin heavy

chain (CLH) is required for endocytosis at the flagellar pocket, and

localises to numerous tubule-vesicular structures in the cytoplasm

[49]. Immunofluorescence with an anti-CLH antibody revealed a

normal distribution of CLH in uninduced and induced CRK12

RNAi cells without enlarged flagellar pockets, but in CRK12 RNAi

cells with enlarged flagellar pockets, clathrin was not internalised

and instead was restricted to the periphery of the flagellar pocket

(Fig. 8B), thus corroborating the FM4-64 data that endocytosis is

inhibited in induced CRK12 RNAi cells with enlarged flagellar

pockets. Uptake of AF594-transferrin at 37uC was also examined

in CRK12 RNAi cells. In contrast to FM4-64, AF 594-transferrin,

which is taken up by receptor-linked endocytosis [54], was not

internalised by induced CRK12 RNAi cells and remained in the

flagellar pocket, regardless of pocket size (Fig. 8C). Thus it appears

that depletion of CRK12 blocks receptor-linked endocytosis

(AF594-transferrin), and also blocks endocytosis of FM4-64 in

some cells. Since endocytosis in BSF parasites is energetically

expensive, ATP levels were assayed to determine whether CRK12

depletion resulted in a reduction in intracellular ATP concentra-

tion that might account for the observed defects in endocytosis.

However, ATP levels in induced CRK12 RNAi cells were found to

be equivalent to those in uninduced and wildtype 427 cells (Fig.

8D).

Figure 6. CRK12 is essential for viability in the bloodstream form. A. Cumulative growth curves for two CRK12 RNAi clones (C1 and C2)
cultured in the presence or absence of tetracycline (tet). B. Real time PCR analysis of CRK12 transcript at 18 hours post-induction (% mRNA transcript
remaining is indicated). Error bars: standard deviations of four replicates. C. Western blot analysis of CRK12 protein depletion following RNAi
induction. Cell lysates (106 cell equivalents/lane) of CRK12 RNAi clone 1 at 0, 12 and 24 hours post-induction were analysed by Western blotting with
anti-CRK12 antibody (upper blot). CRK12/ty:CRK12 (85/86 kDa) is indicated. To demonstrate anti-CRK12 monoclonal antibody specificity, procyclic
(PCF) and bloodstream form (BSF) cell lysates of 427 wildtype (WT) and 427 pHD449 pHG230 (ty:CRK12 inducible overexpression cell line, OE, induced
(+) or not (–) with tetracycline for 24 (bloodstream form) or 48 (procyclic form) hours) were also blotted. As a loading control, blots were probed with
anti-EF1a antibody (lower blot). D. Growth curves of CRK12 RNAi cell lines in a mouse model. Mice were inoculated intraperitoneally with 56105

parasites on day 0; mice 3 and 4 were provided with doxycycline in their drinking water at day 2 (indicated with arrow) to induce the RNAi. Mice 1 and
2 were euthanised on day 3 due to their high parasitaemias. E. DAPI staining of nuclei (N) and kinetoplasts (K) at the time points indicated for CRK12
RNAi clones 1 and 2 induced or not with tetracycline (tet). .200 cells per time point were classified according to their N/K configuration.
doi:10.1371/journal.pone.0067327.g006
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Discussion

We report the identification and characterisation of the third

CRK:cyclin complex in vivo in T. brucei. CRK12:CYC9 interact in

a yeast two-hybrid assay and form an active protein kinase

complex in procyclic and bloodstream form T. brucei. Intriguingly,

although CRK12 was able to autophosphorylate, it was unable to

phosphorylate several common generic CDK substrates, suggest-

ing that it may have very narrow substrate specificity. Given that

this is the first CDK to be linked to a role in endocytosis (see

below), it may perform this function by phosphorylating a

trypanosome-specific substrate.

RNAi depletion experiments indicate that both partner proteins

are essential; CYC9 was essential for proliferation in culture of

both procyclic and bloodstream trypanosomes, while CRK12 was

found to be essential for proliferation of bloodstream trypano-

somes in vitro and in vivo in mice. Our CRK12 data is in agreement

with another study published recently, which identified CRK12 as

an essential protein kinase in bloodstream form T. brucei [55]. In

contrast, CRK12 may not be required for the proliferation of

procyclic T. brucei [22], which given the apparent role of CRK12

in endocytosis (see below), might reflect the downregulation of

endocytosis in this life cycle stage [56], as has been hypothesised to

account for stage-specific differences in sensitivity to depletion of

the late endosomal protein, RAB7 [57]. Our data provide genetic

validation of CRK12:CYC9 as a potential novel drug target for

African trypanosomiasis and future work should focus on

identifying substrates to allow the development of an in vitro assay

for this kinase complex that would facilitate high throughput

screening for small molecule inhibitors.

This study began the functional characterisation of

CRK12:CYC9. CYC9 most closely clusters phylogenetically with

transcriptional cyclins. CRK12 has a ‘PITSLRE’ motif in its

protein kinase domain located towards the C-terminus of the

Figure 7. Depletion of CRK12 in bloodstream form T. brucei results in a defect in endocytosis. A and B. Quantification of 1N2K and 2N2K
cells, respectively, with normal and abnormal kinetoplast positioning at 12 and 18 hours post-induction with tetracycline (tet). No cells were observed
to have abnormal kinetoplast positioning at 0 hours. n .200 cells/time point. C. Visualising enlarged flagellar pockets and mispositioned
kinetoplasts. Uninduced cells are shown at the top for comparison. Example images of induced cells with abnormally enlarged flagellar pocket
regions (one example indicated by arrow) are shown below. From left to right: DIC image, DAPI image, DIC/DAPI merge. The N/K configuration of
each cell is indicated. Note the lateral positioning of the 2 kinetoplasts in some induced cells (indicated by asterisks) compared to the longitudinal
positioning in the uninduced cells. Scale bar: 10 mm. D. Example images of cells in abscission with enlarged flagellar pocket regions. From left to right:
DIC image, DAPI image, DIC/DAPI merge. Scale bar: 10 mm. E. Transmission electron microscopy (TEM) images of flagellar pockets in CRK12 RNAi cells
induced (+) or not (–) with tetracycline (tet) (t = 18 hrs). A: axoneme; BB: basal body; FP: flagellar pocket; K: kinetoplast. Scale bars: 500 nm. F.
Quantification of 1N2K (top) and 2N2K (bottom) cells with normal and enlarged flagellar pockets (FP) at 12 and 18 hours post-induction with
tetracycline (tet). No cells were observed to have enlarged flagellar pockets at 0 hours. n .200 cells/time point.
doi:10.1371/journal.pone.0067327.g007
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protein [20] and thus resembles PITSLRE kinases including

metazoan CDK11 [58]. There are many isoforms of CDK11

[59,60], some of which regulate splicing and transcription [58,61–

63] while others are required for centrosome maturation, mitotic

spindle formation and sister chromatid cohesion [64,65], or are

involved in cytokinesis [66–69]. BLAST analyses also revealed

similarity between CRK12 and the transcriptional kinases CDK9

and CDK12. However, phylogenetic analysis shows that the

trypanosomatid CRK12 proteins form their own clade separate

from the PITSLRE and transcriptional CDK clades, and thus may

have evolved their own novel functions. Indeed, depletion of

CRK12 from bloodstream stage T. brucei resulted in flagellar

pocket enlargement, suggestive of a defect in endocytosis [53]. Our

data showing a lack of AF594-transferrin internalisation, reduction

in FM4-64 uptake and mislocalisation of clathrin heavy chain

following CRK12 depletion supports CRK12 playing a critical

role in endocytosis, a function which to our knowledge, has not

been described for any CDK previously. CRK12 could directly

Figure 8. CRK12 depleted bloodstream form T. brucei exhibit defective FM4-64 uptake and receptor-linked endocytosis. A. FM4-64
uptake assay at 4uC and 37uC for CKR12 RNAi cells (clone 1) induced or not with tetracycline (tet) for 18 hours. For each pair of images: left: DIC
images; right: DAPI (white)/FM4-64 (red) merge. Two sets of + tet images are shown: those without enlarged flagellar pockets (centre panels) and
those with enlarged flagellar pockets (right panels, as indicated by arrows). B. Clathrin heavy chain (CHC) immunofluorescence analysis of CRK12 RNAi
cells (clone 1) induced or not with tetracycline (tet) for 12 hours. Left: DIC images; right: DAPI (white)/CHC (green). Induced cells exhibiting normal
(upper panels) and enlarged (lower panels, as indicated by arrow) flagellar pockets are shown. C. AF594-transferrin uptake assay at 37uC for CKR12
RNAi cells (clone 1) induced or not with tetracycline (tet) for 18 hours. Left: DIC images; right: DAPI (white)/AF594-transferrin (red) merge. Scale bars:
10 mm. D. Bioluminescent intracellular ATP assay for 427 wildtype and CRK12 RNAi cells (induced or not with tetracycline (tet)). Assays were
performed in quadruplicate and the luminescence obtained was averaged and normalised to the wildtype control. Error bars show the standard
deviations.
doi:10.1371/journal.pone.0067327.g008
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regulate endocytosis, by phosphorylating a component of the

endocytic machinery, or could do so indirectly by phosphorylating

a nuclear factor that regulates the expression of genes involved in

endocytosis. Future work should focus on determining the

localisation of CRK12 to help shed further light on its function.

We could not, however, detect a role for CRK12 in regulating the

T. brucei cell cycle.

Depletion of CYC9 gave rise to different phenotypes in

bloodstream and procyclic life cycle stages, which could be due

to CYC9 interacting with additional different CRKs in the

different life cycle stages, or because CRK12:CYC9 phosphory-

lates different substrates according to the life cycle stage. In

bloodstream stage T. brucei, depletion of CYC9 rapidly led to a two

fold increase in 2N2K cells with an increased proportion

undergoing furrow ingression, and later, these cells continued to

re-replicate their organelles despite not having completed division,

and even attempted to divide again, resulting in cells with multiple

cell bodies. Given its nuclear localisation, and its similarity to

transcriptional cyclins, it is unlikely that CYC9 directly effects

cytokinesis, but it could regulate gene expression of cytokinesis

effectors which are not expressed constitutively throughout the cell

cycle, such as Polo-like kinase [70,71]. In comparison to the

bloodstream form, few alterations to cell cycle progression were

detected following CYC9 depletion in procyclic T. brucei, and thus,

if CYC9 does regulate gene expression, it may regulate expression

of different genes in this life cycle stage.

Different phenotypes were observed following CYC9 and

CRK12 depletion in bloodstream stage T. brucei, which was

intriguing given that they form a complex. This may indicate that

CYC9 and/or CRK12 interact with additional partners to

perform distinct functions, which would be differentially affected

by the individual RNAi knockdowns. Alternatively, it is possible

that CYC9 and/or CRK12 do indeed play roles in both

cytokinesis and endocytosis, but functional redundancy within

these pathways may mean that a potential endocytosis function for

CYC9 or a potential cytokinesis function for CRK12 is provided

by another cyclin or CDK, respectively, in their absence.

Additionally, the threshold level of CYC9 or CRK12 required

for each of these functions may be different, so that depletion of

CYC9 or CRK12 may be sufficient to disrupt cytokinesis or

endocytosis, but not both.

Our functional characterisation of CYC9 provides additional

evidence that cell cycle regulation varies considerably during the

life cycle of T. brucei, while our analysis of CRK12 demonstrates

for the first time that trypanosomatid CRK functions are not

limited to cell cycle regulation. Additionally, our work genetically

validates a novel CRK:cyclin complex as a potential drug target in

this devastating human and animal pathogen.

Supporting Information

Figure S1 Phylogenetic analysis of CYC9 and CRK12. A:

Phylogenetic analysis of CYC9. The cyclin domains of CYC9 and

other selected kinetoplastid, human (H. sapiens), Drosophila (D.

melanogaster) and yeast (S. pombe) cyclins were aligned and

bootstrapped as described in the Materials and Methods. T. brucei

cyclins are highlighted in bold font, transcriptional cyclins are in

red font, mitotic cyclins in blue font and stress response cyclins in

green font. The CYC9 kinetoplastid cluster is shaded in red. B:

Phylogenetic analysis of CRK12. The kinase domains of CRK12

and other selected kinetoplastid, human, Drosophila and worm (C.

elegans) CDKs were aligned and bootstrapped as described in the

Materials and Methods. T. brucei CRKs are highlighted in bold

font, the CRK12 kinetoplastid cluster is shaded in red and the

PITSLRE kinases clade is shaded in blue.

(PDF)

Figure S2 CRK12 and CYC9 interact in a yeast two
hybrid assay. A: b-galactosidase assay for transcription of LacZ

reporter gene. (a): L40 pHybLex/Zeo pYESTrp; (b): L40

pGL1277 (LexA:CRK12) pYESTrp; (c): L40 pHybLex/Zeo

pGL932 (B42:CYC9); (d): L40 pGL1277 pGL932. B. Histidine

prototrophy assay. Colonies of yeast strain L40 expressing

LexA:Fos/B42:Jun (positive control), LexA:Lamin/B42:Jun (neg-

ative control) and LexA:CRK12/B42:CYC9 (two independent

transformants) were suspended in PBS, diluted as indicated and

spotted onto minimal medium plates containing (+) or lacking (-)

histidine (His).

(PDF)

Figure S3 CYC9:TAP interacts with ty:CRK12 in blood-
stream form T. brucei. A. Immunoprecipitation (IP) of

ty:CRK12. Cell lysates co-expressing CYC9:TAP (from the

endogenous locus) and ty:CRK12 (under tetracycline inducible

control) were incubated with either anti-TY (left panel) or anti-

rabbit IgG beads (right panel) before the beads were washed and

proteins remaining eluted from the beads. Samples of the input

(In), flow through (FT), washes 1 and 3 (W1 and W3) and the

elution (E) were analysed by Western blotting with anti-PAP, anti-

TY and anti-EF1-a (specificity control) as indicated. D: Immuno-

fluorescence analysis of bloodstream cell line expressing CY-

C9:TAP. Top right: DIC; top left: DAPI stain for DNA; bottom

left: anti-protein A (to detect CYC9:TAP); bottom right: DAPI/

anti-protein A merge. Scale bar: 5 mm.

(PDF)

Figure S4 PCR analysis of putative CYC9 knockout cell
lines. Five putative double knockout clonal procyclic cell lines (A)

and one putative double knockout clonal bloodstream cell line (B)

(each resistant to two different selective drugs) were analysed by

PCR alongside appropriate control cells lines (see keys in each part

of figure). PCR primers were designed to test correct integration of

the 59 and 39 flanks of the drug resistance markers used as well as

presence of the drug resistance marker ORF, and for the presence

of an intact copy of the CYC9 gene. The expected size of each

fragment is indicated. L: 1 kb DNA ladder (see bottom of key for

fragment sizes); KO: knockout; HYG, NEO, BSD: resistance genes

for hygromycin, neomycin and blasticidin, respectively.

(PDF)

Figure S5 Depletion of CYC9 in procyclic T. brucei does
not result in a significant cell cycle defect. A: DAPI

staining of procyclic form CYC9 RNAi cell lines. Cells were stained

with DAPI and the number of nuclei (N) and kinetoplasts (K) per

cell quantified at the time points indicated in hours (n .300 cells

per time point). B: Flow cytometry analysis of procyclic form CYC9

RNAi. Cells were stained with propidium iodide and analysed by

flow cytometry at the time points indicated following induction

with tetracycline (tet). The ploidies of the peaks are indicated.

(PDF)

Table S1 Oligonucleotides used in this study.
(DOCX)
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