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Background. Airway epithelium plays an important role during the development of allergic rhinitis (AR), which is characterized by
production of thymic stromal lymphopoietin (TSLP), interleukin 33 (IL-33), and interleukin 25 (IL-25). IL-35, mainly expressed
by Treg cells, have negative regulation in Th2, Th17, and ILC2 inflammation. However, the effect of IL-35 on human nasal
epithelial cells (HNECs) especially the secretion of nasal epithelial-derived proinflammatory cytokines as well as the possible
mechanism is still unclear. Methods. HNECs were cultured and stimulated by various stimulators. The expression of IL-33,
IL-25, TSLP, eotaxin-1, eotaxin-2, and eotaxin-3 from supernatant was measured using real-time reverse transcription-
polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). AR mice were developed to verify
the effect of IL-35 on nasal epithelial cells in vivo. Results. After Poly I:C stimulation, IL-35 inhibited the production of IL-25,
and TSLP from HNECs increased significantly compared with baseline levels (P < 0:05). After Dermatophagoides pteronyssinus
or Aspergillus fumigatus stimulation, IL-35 inhibited the production of IL-25, IL-33, and TSLP from HNECs increased
significantly compared with baseline levels (P < 0:05). After Dermatophagoides pteronyssinus, IL-35 inhibited the production of
eotaxin-1, eotaxin-2, and eotaxin-3 released from HNECs increased significantly compared with baseline levels (P < 0:05).
Similarly, IL-35-treated AR mice presented with decreased expression of IL-33, IL-25, TSLP, eotaxin-1, eotaxin-2, and eotaxin-3
in nasal lavage fluid. Conclusion. IL-35 suppressed both type 2 inflammation-inducing cytokines and eosinophil chemotactic
factor from HNECs, suggesting the important role of IL-35 during the development of AR.

1. Introduction

Allergic rhinitis (AR), one of the most common diseases of
the upper airway, affects more and more adults and children
with increasing worldwide prevalence [1]. Classically, type 2
CD4+ T-helper (Th2) is believed to play important roles
during the development of AR. Activated Th2 cells produce
type 2 cytokines, including interleukin- (IL-) 4, IL-5, and
IL-13, which promote the infiltration of mucosal eosino-
phils [2]. Group II innate lymphoid cells (ILC2), newly
identified cells, can also produce IL-13, IL-5, IL-4, and
IL-9 after activation by epithelial-derived cytokines even
in the absence of T cells [3].

Airway epithelium acts as both physical barrier and
immunologically active interface between environmental
stimuli and respiratory system in airway inflammation. After
interaction with different environmental stimuli, airway epi-
thelium can secrete thymic stromal lymphopoietin (TSLP),
interleukin 33 (IL-33), and interleukin 25 (IL-25), which
contribute to the initiation of type 2 and eosinophil inflam-
mation [4].

IL-35, which belongs to the IL-12 cytokine family, con-
sists of Epstein-Barr virus-induced gene 3 (EBI3) chain
and IL-12p35 chain [5]. The receptors of IL-35 included
IL-12Rβ2 and gp130 or a heterodimer of IL-12Rβ2:gp130
[6]. IL-35 is mainly expressed by Treg cells and in turn
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induces proliferation of Treg cells [7]. IL-35 inhibits the
proliferation and function of Th2 and Th17 cell populations
in vitro [8, 9]. Moreover, our previous study found that
IL-35 inhibited ILC2 responses directly or through mutual
contact between IL-35-induced Treg and ILC2 in AR [10].
However, few studies explored the regulation of IL-35 on
epithelial-derived cytokines.

In this study, we aimed to investigate the effect of IL-35
on human nasal epithelial cells (HNECs), especially the
secretion of nasal epithelial-derived proinflammatory cyto-
kines as well as the possible mechanism.

2. Methods

2.1. Cell Culture and Treatment. Human nasal epithelial cells
(HNEpC, PromoCell, Germany) were thawed and cultured
in Airway Epithelial Cell Growth Medium (PromoCell,
Germany) at 37°C with 5% CO2. The cells were subcultured
according to the instructions when they reached 70-90%
confluency with density of 10000 cells per cm2.

The confluent cells were stimulated by various stim-
ulators, which included 10-200 ng/mL IL-35, 25μg/mL
Poly I:C, 1.6μg/mL of Dermatophagoides pteronyssinus,
2.6μg/mL of Aspergillus fumigatus, 10 ng/mL of TNF-α,
and 0.1 ng/mL of IL-1β. The HNECs were cultured with
different stimulator combinations for 24 hours.

2.2. Animal Model. Thirty male BALB/c mice (eight-week-
old) were obtained (Guangdong animal experiment center,
China) and raised in pathogen-free environment. The sensi-
tization was performed intraperitoneally using 100μg of Der
p1 and 1.6mg Al(OH)3 mixed with 100μL of PBS on days 1,
5, 14, and 21. Allergic inflammation was induced by provid-
ing 100μg of Der p1, IL-35 (10-200 ng/mL), or anti-IL-35
(100 ng/mL) in 100μL of PBS nasally from day 22 to 28.
The nasal lavage fluid (NLF) was collected by nasal cavity
perfusion using a catheter from back to front with 1.1mL
of PBS. Nasal mucosa tissues were also collected for further
experiments. All animal care and experimental protocols
were approved by local ethics committee boards.

2.3. Real-Time Reverse Transcription-Polymerase Chain
Reaction (RT-PCR). Total RNA was isolated from HNECs
or nasal tissue using the TRIzol reagent (Invitrogen) accord-
ing to the manufacturer’s instructions. The cDNA was syn-
thesized from two micrograms of total RNA using an oligo
(dT)18 primer by the Superscript First Synthesis System
for RT-PCR (Life Technologies, Carlsbad, CA). Real-time
polymerase chain reaction was done using an ABI PRISM
7300 Detection System (Applied Biosystems, Foster City,
CA, USA). The primers were as follows: IL-33 forward,
5′-GACTCCTCCGAACACAGAGC-3′, IL-33 reverse, 5′-
CCCAGCTTGAAACACAAGGC-3′; IL-25 forward, 5′-
CCTGGAGATATGAGTTGGACAGAGA-3′, IL-25 reverse,
5′-CCATGTGGGAGCCTGTCTGTA-3′; TSLP forward,
5′-TGTAGCAATCGGCCACATTG-3′, TSLP reverse, 5′-
CAGCCTTAGTTTTCATGGCGA-3′; eotaxin-1 forward,
5′-CCTCTCACGCCAAAGCTCACACCTTC-3′, eotaxin-1

reverse, 5′-CGGCACAGATATCCTTGGCCAGTTTG-3′;
eotaxin-2 forward, 5′-CCTTCTGTTCCTTGGTGTCTGTG-
3′, eotaxin-2 reverse, 5′-TTCATGTACCTCTGGACCCAC
TC-3′; eotaxin-3 forward, 5′-GGAACTGCC-ACACGTGGG
AGTGAC-3′, eotaxin-3 reverse, 5′-CTCTGGGAGGAAAC
ACCCTCTCC-3′; SOCS3 forward: 5′-CACCTTCTTGG
TGCGCG-3′, SOCS3 reverse: 5′-AAGCCATCTTCACGCT
GAGCTCTG-3′; STAT3 forward: 5′-AATATAGCCGATTC
CTGCAAGAG-3′, STAT3 reverse: 5′-TGGCTTCTCAA
GATACCTGCTC-3′; and β-actin forward, 5′-AAG ATG
ACC CAGATCATG TTTGAGACC-3′ and β-actin reverse,
5′-AGC CAG GTC CAG ACG CAG GAT-3′. For determi-
nation of relative quantitation of gene expression, we used
the 2-ΔΔCt method, with β-actin as the internal control for
normalization.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA). The
levels of IL-33 (1.51 pg/mL), IL-25 (11.7 pg/mL), TSLP
(9.87 pg/mL), eotaxin-1 (5 pg/mL), eotaxin-2 (14.3 pg/mL),
and eotaxin-3 (0.125 pg/mL) were detected using commer-
cial available ELISA kits (R&D Systems, Minneapolis, MN,
USA) according to the manufacturer’s protocols.

2.5. Statistical Analysis. Values are presented as the mean ±
SD except additional note. Comparisons were performed by
one-way ANOVA with Fisher’s protected least significant
difference test for comparison among three or more groups.
P < 0:05 was considered significantly different. All analyses
were performed using statistical software SPSS (version 18).

3. Results

3.1. Effect of IL-35 on Proinflammatory Cytokines Produced
by HNECs. After Poly I:C stimulation, IL-25 and TSLP
released from HNECs increased significantly compared with
baseline levels. When IL-35 was added, the IL-25 and TSLP
production was inhibited significantly (Figure 1). The
expression of IL-33 was not changed after Poly I:C or IL-
35 stimulation (Figure 1).

After Dermatophagoides pteronyssinus stimulation, IL-
25, IL-33, and TSLP released from HNECs increased signif-
icantly compared with baseline levels. When IL-35 was
added, the IL-25, IL-33, and TSLP production was inhibited
significantly (Figure 1).

After Aspergillus fumigatus stimulation, IL-25, IL-33,
and TSLP released from HNECs increased significantly
compared with baseline levels. When IL-35 was added, the
IL-25, IL-33, and TSLP production was inhibited signifi-
cantly (Figure 1).

3.2. Effect of IL-35 on Eosinophil Chemotactic Factors
Produced by HNECs. After TNF-α and IL-1β stimulation,
eotaxin-1, eotaxin-2, and eotaxin-3 released from HNECs
increased significantly compared with baseline levels. When
IL-35 was added, the eotaxin-1, eotaxin-2, and eotaxin-3
production was inhibited significantly (Figure 2).
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3.3. Effect of IL-35 on Signaling Pathways of HNECs. IL-35
inhibited SOCS3 expression from HNECs significantly after
Poly I:C, Dermatophagoides pteronyssinus, or Aspergillus
fumigatus stimulation. IL-35 inhibited the expression of
STAT3 from HNECs stimulated with TNF-α and IL-1β
(Figure 3).

3.4. Effect of IL-35 of HNECs on Allergic Mice. IL-35-treated
AR mice presented with decreased expression of IL-33, IL-
25, TSLP, eotaxin-1, eotaxin-2, and eotaxin-3 in nasal lavage
fluid in a dose-dependent manner, whereas anti-IL-35
reversed the effect of IL-35 (Figure 4). Moreover, the mRNA
expression SOCS3 and STAT3 by nasal mucosa tissue was
also inhibited by IL-35 in a dose-dependent manner
(Figure 4).

4. Discussion

In the present study, we found that IL-35 suppressed both
type 2 inflammation-inducing cytokines and eosinophil che-
motactic factors from HNECs, suggesting the important role
of IL-35 during the development of AR.

IL-35, a recently identified cytokine, can inhibit the
production of IL-4, IL-5, and IL-13 as well as IgE from bron-
choalveolar lavage fluid (BALF) of the allergic mouse model
[11]. Moreover, intraperitoneal injection of IL-35 can reduce
the number of eosinophils in BALF [12]. These results sug-
gested that IL-35 had a potent inhibitive role for type 2

inflammation and eosinophil infiltration. However, its
mechanism was not clear.

TSLP, IL-33, and IL-25 secreted from HNECs were
known as “master switches” in the development of allergic
diseases. Of which, TSLP induces both Th2 and ILC2 [13].
IL-25 promotes the production of type 2 cytokines IL-5
and IL-13 from Th2 and ILC2 [14, 15]. IL-33 can activate
eosinophils directly except for inducing type 2 cytokines
from Th2 and ILC2 [16, 17]. Therefore, we suppose that
IL-35 may be involved in allergic diseases by regulating the
expression of TSLP, IL-33, and IL-25 from HNECs.

As we expected, our results found that IL-35 can inhibit
the production of IL-25, IL-33, and TSLP from HNECs
induced by Dermatophagoides pteronyssinus and Aspergillus
fumigatus, suggesting that IL-35 posed a negative impact on
allergic inflammation in the early stage. Similarly, IL-35
decreased the expression of IL-25 and TSLP from HNECs
after Poly I:C stimulation. Interestingly, we found that the
expression of IL-33 was not changed after Poly I:C, which
may be attributed to the activation of different Toll-like
receptors. Similarly, Boita et al.’s study found no change in
IL-33 expression from epithelial cells derived from nasal
polyps following Poly I:C stimulation [18].

The airway epithelium is also one of the main sources of
chemoattractant for eosinophils, which included eotaxin-1,
eotaxin-2, and eotaxin-3 [19]. Our results also confirmed
that IL-35 inhibited the expression of eotaxins from
HNECs significantly. Consistently, Kanai et al.’s study also
demonstrated that IL-35 suppresses LPS-induced airway
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Figure 1: The expression of IL-25, IL-33, and TSLP by human nasal epithelial cells after various stimulators. (a–c) The mRNA expression of
IL-25, IL-33, and TSLP by human nasal epithelial cells. (d–f) The protein expression of IL-25, IL-33, and TSLP by human nasal epithelial
cells. Poly I:C: 25μg/mL polyinosinic-polycytidylic acid; Dp: 1.6 μg/mL of Dermatophagoides pteronyssinus; Af: 2.6μg/mL of Aspergillus
fumigatus; IL-35: 100 ng/mL interleukin-35. ∗Compared with Poly I:C, P < 0:05; #compared with Dp, P < 0:05; ∗∗compared with Af,
P < 0:05. Three independent tests were performed for every experiment.
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Figure 3: The expression of SOCS3 and STAT3 by human nasal epithelial cells after various stimulators. (a) The mRNA expression of
SOCS3 by human nasal epithelial cells. Poly I:C: 25μg/mL polyinosinic-polycytidylic acid; Dp: 1.6 μg/mL of Dermatophagoides
pteronyssinus; Af: 2.6 μg/mL of Aspergillus fumigatus; IL-35: 100 ng/mL interleukin-35. ∗Compared with Poly I:C, P < 0:05; #compared
with Dp, P < 0:05; ∗∗compared with Af, P < 0:05. (b) The mRNA expression of STAT3 by human nasal epithelial cells. Stimulators
included 10 ng/mL of TNF-α, 0.1 ng/mL of IL-1β, and 100 ng/mL interleukin-35. ∗Compared with TNF-α+IL-1β, P < 0:05. Three
independent tests were performed for every experiment.
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Figure 2: The expression of eotaxins by human nasal epithelial cells after various stimulators. (a–c) The mRNA expression of eotaxin-1,
eotaxin-2, and eotaxin-3 by human nasal epithelial cells. (d–f) The protein expression of eotaxin-1, eotaxin-2, and eotaxin-3 by human
nasal epithelial cells. Stimulators included 10 ng/mL of TNF-α, 0.1 ng/mL of IL-1β, and 100 ng/mL interleukin-35. ∗Compared with
TNF-α+IL-1β, P < 0:05. Three independent tests were performed for every experiment.
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Figure 4: Continued.
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eosinophilia by reducing local production of eotaxin-1 and
eotaxin-2 [20].

SOCS3 is involved in Th2 differentiation, while STAT3
was involved in eotaxin expression [20, 21]. Therefore, we
detected the changes of these signaling pathways during
IL-35 treatment. Our data showed that decreased SOCS3
and STAT3 expression from HNECs was correlated with
the release of proinflammatory cytokines and chemoattrac-
tant for eosinophils, which is consistent with Kanai et al.’s
reports [20].

Consistently, our in vivo study using the ARmouse model
also showed a similar effect of IL-35 with cell model experi-
ments. However, the expression of IL-35 in the body may be
affected by multiple pathways. The detailed mechanism in
the pathophysiological process needed further exploration.

In sum, IL-35 inhibited the expression of IL-25, IL-33,
TSLP, and eotaxins from HNECs and regulated Th2, ILC2,
and eosinophil inflammation in the early stage. IL-35 may
be a potential target in the future treatment of AR.
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