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Abstract
Background: High-density oligonucleotide microarray technology enables the discovery of genes
that are transcriptionally modulated in different biological samples due to physiology, disease or
intervention. Methods for the identification of these so-called "differentially expressed genes"
(DEG) would largely benefit from a deeper knowledge of the intrinsic measurement variability.
Though it is clear that variance of repeated measures is highly dependent on the average expression
level of a given gene, there is still a lack of consensus on how signal reproducibility is linked to signal
intensity. The aim of this study was to empirically model the variance versus mean dependence in
microarray data to improve the performance of existing methods for identifying DEG.

Results: In the present work we used data generated by our lab as well as publicly available data
sets to show that dispersion of repeated measures depends on location of the measures themselves
following a power law. This enables us to construct a power law global error model (PLGEM) that
is applicable to various Affymetrix GeneChip data sets. A new DEG identification method is
therefore proposed, consisting of a statistic designed to make explicit use of model-derived
measurement spread estimates and a resampling-based hypothesis testing algorithm.

Conclusions: The new method provides a control of the false positive rate, a good sensitivity vs.
specificity trade-off and consistent results with varying number of replicates and even using single
samples.

Background
DNA microarrays have become common tools for moni-
toring genome-wide expression in biological samples har-
vested under different physiological, pathological or
pharmacological conditions. One of the most challenging

problems in microarray data analysis is probably the iden-
tification of differentially expressed genes (DEG) when
comparing distinct experimental conditions. In spite of its
biological relevance, there is still no commonly accepted
way to answer this question.
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An ideal DEG identification method should limit both
false positives, i.e. genes wrongly called significant (type 1
errors), and false negatives, i.e. genes wrongly called not
significant (type 2 errors). To this end, understanding
how gene expression values measured in replicated exper-
iments are spread around the true expression level of each
gene, would help to distinguish biologically relevant gene
expression changes from fluctuations due to different
sources of variability that are unrelated to the biological
phenomenon under investigation. Measurement error
estimates can be obtained in two ways: either by empiri-
cally inferring noise from highly replicated data or by
deducing noise from a theoretical error model [1]. Espe-
cially when the experimental design requires the investi-
gation of a high number of conditions, the former strategy
is not always feasible, because of the high cost of these
experiments or due to the availability of biological mate-
rial. In addition, there is still a lack of consensus on how
gene expression values from replicated experiments
should be theoretically distributed, which restricts the
application also of the latter strategy.

The most widely used methods for identifying DEG range
from purely empirical filtering techniques (e.g. selecting
genes that show a fold change higher than a fixed thresh-
old) to more sophisticated statistical tests such as the sig-
nal-to-noise ratio described by Golub et al. [2] or the
Significance Analysis of Microarrays (SAM) method by
Tusher et al. [3]. While empirical filtering techniques rely
on arbitrarily chosen thresholds and are unable to provide
any type of control on the significance of the results, the
more sophisticated statistical tests usually need a high
degree of replication in the data to accurately measure
gene-specific variability.

In the past years various authors have proposed compet-
ing error models for microarray data from which discord-
ant implications for the variance versus mean dependence
can be deduced. Chen et al. [4] first proposed a simple
Gaussian model, more recently Ideker et al. [5] and Li and
Wong [6] introduced two-component models containing
a multiplicative and an additive error term. All of these
models implicitly or explicitly assume a constant coeffi-
cient of variation (CV), implying that standard deviation
should vary proportionally with the mean. More recently,
Rocke and Durbin [7] proposed a variation of the two-
component model from which they derived that variance
of repeated microarray measures is a quadratic function of
the mean. Dealing specifically with spotted cDNA micro-
array technology Baggerly et al. [1] proposed a beta-bino-
mial model, from which it can be derived that variance is
a second-order polynomial function of the mean. Unfor-
tunately, most of these models are based on theoretical
assumptions that have been verified on simulated data or
on data sets consisting of small numbers of replicates.

More recently, Tu et al. [8] empirically modeled the vari-
ance versus mean dependence from a data set consisting
of ten replicated oligonucleotide microarray experiments.
According to the authors, the variance of the genes should
decay exponentially with the mean, but only for moder-
ately expression values. Taken together, all these aspects
could limit the applicability of these error models.

Independently from the choice of the error model,
another point that remains to be faced is on how to esti-
mate residual error. A discussed by Wright et al. [9] the
possibilities range between two extremes: either obtaining
a single variance estimate across all genes or obtaining a
gene-specific residual variance. In the same paper a hybrid
approach is proposed in which information from all
genes is used to fit a single linear model from which the
gene-specific variance estimates can be deduced. In the
present work we chose to follow an approach similar to
the latter.

The aim of this study was to use highly replicated micro-
array data to empirically determine the true variance ver-
sus mean dependence that exists in this type of data. This
knowledge enabled the proposal of PLGEM as a simple
but powerful error model. We fitted the proposed model
on various data sets without pre-filtering the data, deriv-
ing an improved test statistics and identifying DEG even
in data sets with very little number of replicates.

Results
Variance versus mean dependence
The relationship between measurement variability and
average expression values was investigated by means of
scatter plots where different measures of spread were dis-
played against different measures of location. For each
gene absolute or relative standard deviation was plotted
against the mean expression value in either linear or log-
log plots using data from the 16iDC data set (Figure 1).
Independently from the choice of standard deviation or
inter-quartile range as the estimate of spread and of mean
or median as the location estimate we obtained qualita-
tively similar plots (data not shown). Log-log plots of
both absolute and relative spread estimates revealed a
strikingly linear dependency, indicating that measure-
ment spread could depend on signal location following a
power law.

The power law global error model
Based on the previous observation, we chose to empiri-
cally model measurement noise through linear
regressions:

ln( ) .ln( )s k x c eqn= + +ε .1
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where s and  respectively represent standard deviation
and mean of repeated measures. Error term ε is the reali-
zation of a random variable E that we will show later to be
normally distributed as assumed when fitting a linear
model. Inspired by the previous experimental observa-
tions we propose the following power law global error
model (PLGEM):

Model parameters α and β can be estimated from linear
regression coefficients in 1 in a straightforward way:

α = ec  eqn. 3

β = k  eqn. 4

PLGEM fitting method
Instead of performing a simple linear fit through the
whole set of points, we preferred to implement a method
that could provide improved model robustness by parti-
tioning the data to gain local estimates of spread as in
Mutch et al. [9]. Most importantly, this method should
also provide the possibility to choose different levels of
confidence when modeling the spread of the data. Note
that Mutch et al. [9] proposed to model within-replicates
fold changes as a function of average expression using a
model that was very different from PLGEM. Therefore, the
following algorithm was applied:

• Rank genes according to their ln( ) value and subdivide
the overall expression range into a given number p of par-
titions containing an equal number of ranked genes.

• Choose a "modeling quantile" q and determine for all
the genes contained in each partition a single "modeling

point" with median of ln( ) values as the x-coordinate
and q-th quantile of ln(s) values as the y-coordinate.

• Finally, find a linear fit through the set of p modeling
points using the least-squares method and obtain a slope
k and an intercept c of the resulting regression function.

Thus, for all possible combinations of p and q a slope kp,q,
an intercept cp,q and a correlation coefficient r2

p,q can be
obtained. Performance of this modeling method was
tested also using different combinations of partitions, in
the range between 5 and 500, and quantiles, ranging from
0.01 to 0.99 (Supplementary Table 1). For all 77 analyzed
combinations of p and q regression lines gave good fit
with the modeling points, with an adjusted r2 that was
always very close to 0.99. In addition, all regression lines
were strikingly parallel as judged by their slopes: 0.81 ±
0.068 (mean ± sd). The reason for not considering p > 500
was that above this number we empirically revealed a
poorer modeling quality in terms of correlation coeffi-
cients (data not shown), most likely due to the decrease of
the number of data points contained in each partition.

As a straightforward application of this modeling method,
PLGEM could be fitted at the 50th-percentile to obtain a
central tendency of standard deviation to be used for
improving test statistics (see next section). Another appli-
cation of this method could be to fit PLGEM at the 5th-
and at the 95th-percentile of standard deviation, to conse-
quently find the limits of the corresponding 90% empiri-
cal confidence interval of standard deviation.

Relationship between measurement variability and mean expression levelFigure 1
Relationship between measurement variability and mean expression level. For each of the 12488 probe sets dis-
played on Affymetrix MG-U74Av2 chips the standard deviation (st. dev.) or the coefficient of variation (CV = st. dev. / mean) is 
plotted against the mean in either linear or log-log plots based on absolute expression values derived from the 16iDC data set.
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In order to verify the feasibility of the former application,
fitting of PLGEM on real-life data as well as distribution
properties of the random variable E were investigated by
analyzing the residuals of the model, i.e. differences
between observed and expected values:

Figure 2A–D shows distribution of residuals εg computed
from the 16iDC data set and its dependency on the rank
of mean expression values. Figure 2E–L summarizes
model validation on other two completely unrelated
high-density oligonucleotide microarray data sets, the
HG-U133A Leigh syndrome data set (Figure 2E–H) and
the HG-U95Av2 Muscle biopsies data set (Figure 2I–L).
For each tested data set an individual model was fitted and
a distinct set of parameters α and β was determined. In all
of the three independent data sets measurement variabil-
ity could be accurately modeled through equation 2, with
a power coefficient β that was always between 0 and 1 and
a random variable E that appeared to be normally distrib-
uted with zero-mean and constant standard deviation
over the whole range of expression values. Of course,
these findings were eventually expected only for q = 0.5,
and their occurrence demonstrated a goodness of fit of
PLGEM on a series of unrelated real-life data sets.

Improved test-statistics for detecting differential 
expression
In order to identify DEG, we implemented the following
general algorithm derived from the framework of statisti-

cal hypothesis testing, in which we test against the null
hypothesis of non-differential expression. First of all, we
chose to implement as the test statistic the signal-to-noise
ratio (STN) already used by Golub et al. [2], because it
explicitly takes unequal variances into account and
because it penalizes genes that have higher variance in
each class more than those genes that have a high variance
in one class and a low variance in another [11]:

where in the original version  and  represent,
respectively, the mean of the replicated expression meas-

ures of gene g in condition 1 and 2, whereas  and 
are the corresponding standard deviations. Instead, we
propose to use model-derived standard deviation esti-
mates predicted by PLGEM in equation 2 for the corre-
sponding signal mean, rather than data-derived standard
deviation values calculated independently from the few
data points that are usually available for every single gene.

The improvement of the test statistic in ranking DEG was
evaluated as done by Broberg [12] through receiver oper-
ator characteristic (ROC) plots on the HG-U133A Latin
Square data set, where there is an a priori knowledge on
the truly differentially expressed transcripts. ROC plots
investigate the relationship between false positive rates

Table 1: Effect of the presence of DEG when applying the classic permutation strategy to the PLGEM-STN statistic.

FPR vs. significance level estimated vs. observed FDR

including DEG excluding DEG including DEG excluding DEG

# of
genes in
data set

slope intercept adj. R^2 slope intercept adj. R^2 slope intercept adj. R^2 slope intercept adj. R^2

22300 1.690 3.070 0.856 0.871 -0.114 0.938 0.187 -0.383 0.314 1.090 -0.692 0.826
10000 1.710 2.470 0.881 0.888 -0.083 0.931 0.224 -0.247 0.433 1.040 -0.555 0.824
5000 1.460 1.270 0.880 0.877 -0.147 0.934 0.093 -0.228 0.067 1.080 -0.425 0.836
2500 1.590 1.180 0.888 0.864 -0.155 0.939 0.092 -0.176 0.135 1.110 -0.348 0.853
1500 1.670 0.935 0.908 0.876 -0.166 0.948 0.078 -0.122 0.170 1.130 -0.182 0.880
1000 1.720 0.689 0.874 0.944 0.002 0.956 0.038 -0.122 0.082 0.991 -0.226 0.897
500 1.900 0.263 0.864 0.857 -0.255 0.956 0.062 -0.030 0.307 1.160 0.038 0.909
200 2.490 -0.059 0.875 0.905 -0.378 0.946 0.064 -0.012 0.426 1.050 0.233 0.914

Eight data sets with different percentages of DEG were constructed from the Latin Square data set by keeping the 62 known spiked-in probe sets, 
but randomly removing increasing amounts of the remaining probe sets reaching the total indicated in the first column. The null distributions of the 
PLGEM-STN statistics were evaluated through the classic permutation strategy either including or excluding DEG. A wide range of significance 
levels was used to select DEG and correlation between the FPR and the significance level or between estimated and observed FDR was evaluated 
through linear regressions in log-log plots. Table reports slopes, intercepts and adjusted r2 of linear models. See text for details on estimation of 
FDR.
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(FPR) and false negative rates (FNR) at different signifi-
cance levels; in this way the performance of the PLGEM-
derived STN statistic (PLGEM-STN) has been compared
with the original STN statistic (CLASSIC-STN) and the
statistic implemented in the commonly accepted Signifi-
cance Analysis of Microarrays (SAM) DEG identification
method (SAM-STAT). To this purpose Exp01 of the Latin
Square was taken as the baseline to which the remaining
13 experiments were compared. For each comparison
absolute values of each statistic were ranked in decreasing
order and first n genes selected (where n ranged from 5 to
200). Figure 3 summarizes results only for the most
informative comparisons, but in each tested comparison
analysis PLGEM-STN was at least as good as the other two

statistics for each tested value of n (data not shown). In
addition, the ROC curve of PLGEM-STN always had the
shortest distance from origin, indicating that it resulted in
the best trade-off between sensitivity and specificity. Inter-
estingly, improved sensitivity was observed especially
when the nominal fold change was particularly low (see
Exp02 vs. Exp01 and Exp14 vs. Exp01).

Apart from discriminating between significant and not
significant gene expression changes, an optimal test-statis-
tic should additionally provide an accurate quantification
of the actual degree of differential expression. Figure 4
shows that PLGEM-STN outperforms the competing sta-
tistics in correlating the value of the statistic with the

Analysis of residuals of PLGEM fitted on three different real-life data setsFigure 2
Analysis of residuals of PLGEM fitted on three different real-life data sets. (A) PLGEM is fitted on the 16iDC data set 
(MG-U74Av2) following the method described in the text, setting p = 10 and q = 0.5. (B) Model residuals are plotted as a func-
tion of the rank of the mean absolute expression level. (C) Distribution of pooled residuals. (D) The quantiles of the distribu-
tion of pooled residuals are plotted against the quantiles of a standard normal distribution. The same procedure is applied to 
the Leigh syndrome data set (HG-U133A, panels E-H) and to the Muscle biopsies data set (HG-U95Av2, panels I-L).
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nominal concentration variation of the known Latin
Square DEG; this was particularly true for the most
extreme variations.

Performance of PLGEM-STN in ranking differentially expressed genesFigure 3
Performance of PLGEM-STN in ranking differentially expressed genes. ROC plots were used to compare the sensi-
tivity vs. specificity trade-off of the following three statistics: PLGEM-STN (black), CLASSIC-STN (blue) and SAM-STAT (red). 
SAM-STAT values were obtained using the R package "siggenes" [21]. Absolute values of the corresponding statistics were 
sorted in decreasing order, first n genes were selected (where n ranged from 5 to 200) and false positive and false negative 
rates were evaluated on the HG-U133A Latin Square dataset. Note that, while the transcripts in Exp02 (Exp14) are spiked-in 
at twice (half) the concentration than in Exp01, in both Exp06 vs. Exp01 and in Exp10 vs. Exp01 comparisons the nominal fold-
change of spiked-in transcripts ranged from 32 to 512.
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Identification of differentially expressed genes
A resampling-based method for estimating the null distribution
Though ranking of genes based on the absolute value of
their test-statistic has been proven to be an effective
method for selecting DEG, an even more useful way
would be to compare the observed statistic with its null
distribution (the distribution of values of the statistic that
are expected by chance for a not differentially expressed
gene), in order to control the FPR.

A classic approach to empirically obtain the null distribu-
tion of a test-statistic is running a series of random permu-
tations of the chip indexes of the full data set and re-
computing the test-statistics at each permutation. Permu-
tated test-statistics can then be pooled and significance
thresholds (i.e. expected false positive rates) are found as
specific quantiles of the null distribution.

Nevertheless, we can foresee that the classic permutation
strategy may not be optimal for estimating the actual FPR
when the test-statistic makes use of a global error model
such as PLGEM. We can in fact hypothesize that measure-
ment spread of DEG may not be accurately described by
means of a global error model that was designed to
describe signal variability in absence of differential expres-
sion. To test this hypothesis we compared the correlation
between the expected significance level and the observed
FPR using PLGEM-STN and the classic permutation strat-
egy either including or excluding DEG during the permu-
tation step. To this end, data sets containing different
percentages of DEG were obtained by merging the 62
known DEG of the Latin Square data set with differently
sized random samples of not DEG extracted from the
same data set. As predicted, the presence of DEG during
the permutation step caused the significance level to be
less correlated with the observed FPR and this correlation
worsened with increasing percentages of DEG (Table 1).
This lack of correlation was dramatically amplified when
expected and observed numbers of false positives were
divided by the number of selected genes to obtain an over-
simplified estimate of the false discovery rate (FDR) and
the observed FDR. Conversely, when DEG were omitted
during the permutation step the correlation between esti-
mated and observed FPR or estimated and observed FDR
was sensibly higher for each tested percentage of DEG. We
hereby by no means claim that this FDR estimate is the
most accurate. A more appropriate relationship between
FPR and FDR can be found in the paper by Storey and Tib-
shirani [13]. Nevertheless, the explicit control of the FDR
goes beyond the scope of the present paper.

Since in real-life data sets true DEG are unknown in
advance, we propose the following resampling-based
method to obtain the null distribution of not DEG when
comparing n1 replicates of condition A with n2 replicates
of condition B:

• Artificial condition A* is obtained by randomly sam-
pling with replacement n1 indexes corresponding to the
replicates of only one experimental condition. If availa-
ble, chose the condition with the highest number of
replicates;

• Similarly sample n2 values from the same set to obtain
indexes of artificial condition B*;

• Compute resampled test-statistics between A* and B* at
each cycle.

The previous resampling should be repeated a sufficiently
large number of times – as large as possible compared to
the total number of possible combinations and compati-
bly with available computational resources – and the

Correlation between the value of PLGEM-STN and the nom-inal concentration variation in comparison to competing statisticsFigure 4
Correlation between the value of PLGEM-STN and 
the nominal concentration variation in comparison 
to competing statistics. Exp01 of the Latin Square data 
set was taken as the baseline to which the remaining 13 
experiments were compared. The observed values of the 
indicated statistics are plotted against the nominal log ratio, 
deduced from the known spiked-in concentrations (left pan-
els). A nominal log ratio of 0 is assumed for the remaining 
transcripts and a box-plot of their corresponding values of 
the indicated statistics is superimposed to the plot. For those 
cases where one of the two known spiked-in concentrations 
is 0, the value of the statistic is instead plotted against the 
non-null concentration (right panels). Red and black dots 
represent transcripts that are present in Exp01 or in the 
remaining 13 experiments, respectively.
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resampled test-statistics finally pooled. In our opinion
resampling the expression values from only one experi-
mental condition, rather than permutating indexes of
both conditions, makes more sense with this particular
statistic, because in this way we avoid merging true and
false null hypothesis. Note that when more than one con-
dition (all with the same number of replicates) are to be
compared to a common baseline, the distribution of resa-
mpled test-statistics needs to be determined only once,
obviously providing a computational advantage. As a test
of substantial equivalence between this resampling
method and the classic permutation strategy (excluding
DEG), we compared the distribution of the permutated
and of the resampled PLGEM-STN test-statistics in Q-Q
plots. The distribution of the PLGEM-STN resampled
from Exp01 of the Latin Square data set was almost iden-
tical with the distributions of permutated PLGEM-STN
obtained with the classic strategy from each comparison
with the remaining 13 experimental conditions (data not
shown). Figure 5 shows that the quantiles of the resam-

pled PLGEM-STN values have a good concordance with
the mean quantiles of the classically permutated statistics
averaged over the 13 comparisons, implying that no dif-
ferences are expected also in the gene selection step.

In accordance with the previous observations, the ROC
curve of the resampling method applied to the PLGEM-
STN statistic was not significantly different from the ROC
curve of the classic permutation strategy (excluding DEG)
applied to the same statistic on the Latin Square data set
(data not shown). Conversely, ROC curves of the classic
permutation strategy (including DEG) applied to the
CLASSIC-STN statistic and of the SAM method gave
poorer performance similarly to the results in Figure 3
(data not shown).

Increased robustness to varying number of replicates
Another appealing feature of an optimal DEG identifica-
tion method is that it should provide consistent results

Comparison of two methods for inferring the null distribu-tion of the PLGEM-STN statisticFigure 5
Comparison of two methods for inferring the null dis-
tribution of the PLGEM-STN statistic. The classic per-
mutation strategy (excluding DEG) was performed for each 
comparison in the Latin Square data set and the quantiles of 
the distribution of PLGEM-STN values were averaged over 
the 13 comparisons. The mean quantiles of the permutated 
statistics are plotted against the quantiles of the distribution 
of PLGEM-STN values obtained through the proposed resa-
mpling approach performed on the same data set but includ-
ing DEG.
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ing method.
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when different replicates of a same data set or different
numbers thereof are analyzed. We therefore compared the
performance of our resampling approach applied to the
PLGEM-STN statistic (method 1) with SAM (method 2)
and with the classic permutation strategy applied to the
CLASSIC-STN statistic (method 3). The number of availa-
ble replicates for each experimental condition in the Latin
Square data set was unfortunately too small to investigate
this particular task. We therefore took advantage of the
16iDC+LPS data set, where the first sixteen columns can
be considered as the baseline condition for the remaining
four experimental replicates. We then constructed a series
of reduced data sets in which the baseline columns were
kept constant while all possible combinations of 1, 2 or 3
replicates of LPS-stimulated DC were systematically
deleted from the 16iDC+LPS data set, reaching a total of
fifteen distinct data sets including the original one. Since
methods 2 and 3 are not applicable on the four reduced
data sets containing single samples for the LPS experimen-
tal condition, only the eleven data sets with at least two
replicates were used for comparison purposes. Since the
sixteen baseline columns are identical in each reduced
data set, PLGEM parameters were determined only once
on this common baseline condition. Significance levels
used by each method in all eleven data sets were empiri-
cally selected in order to achieve a similar number of sig-
nificant genes (ca. 500 probe sets) in the full data set, i.e.
the one containing all available replicates. Thus, for each
method eleven lists of identified DEG were obtained and
the consistency between these lists was evaluated by
counting the number of times each probe set was selected,
giving a probes set count between 1 and 11. In Figure 6 we
compared the three distinct cumulative frequency curves
for each method, which show the percentage of identified
DEG that were selected at least a given number times.
While method 2 and 3 gave similar results, the method
proposed in the present work identified a larger number
of probe sets in a larger number of lists.

We finally evaluated the possibility of applying our
method also to data sets where one of the experimental
conditions was investigated only with a single sample
without replication. To this end, we used the remaining
four reduced data sets that could not be used in the previ-
ous comparison. In this case, the same PLGEM parameters
derived from the sixteen baseline columns were applied to
each of the single LPS-treated DC sample to obtain an esti-
mate of standard deviation associated to each gene expres-
sion value, treated here as if it was a mean value from a
larger group of values. Interestingly, when results
obtained through this procedure were compared to the
previously described results a comparable number of DEG
was identified and only one probe set was newly detected
in comparison to the previously identified ones (data not
shown), arguing for a good consistency of results.

Discussion
PLGEM accurately describes GeneChip data variability
In the present work we described a new global error
model for microarray gene expression data that describes
measurement variability with the same degree of accuracy
over the whole dynamic range of values and that can be
fitted at any desired quantile of spread. PLGEM has
proven to correctly model signal standard deviation, in
spite of the presence of different sources of variability, e.g.
biological variability as well as the use of different target
preparation protocols or of different chips. Moreover,
PLGEM has shown to be able to deal with the great varia-
bility that exists at low expression levels while at the same
time considering the significant relative reproducibility of
highly expressed genes. Previously proposed error models
assumed that measurement spread depended on signal
location following different mathematical relationships,
but none of them was based on a power law thus far. Anal-
ysis of the residuals showed a good fit of PLGEM to a
number of high-density oligonucleotide microarray data
sets, with model parameters being very similar to each
other even when dealing with RNA samples coming from
completely different biological sources and analyzed on
different array layouts. This suggests that PLGEM could
represent a general Affymetrix GeneChip measurement
noise model. Even though scaled MAS5 Signals gave satis-
factory modeling results, a further improvement could be
achieved by using other emerging gene expression indices
[6,14] or more sophisticated normalization techniques,
e.g. quantile normalization [15]. Interestingly, if the same
evaluation of sensitivity vs. specificity using ROC plots on
the Latin Square data set was done using GCRMA expres-
sion values [16], the results were even more striking than
using MAS5 Signals (data not shown). Further studies will
be needed to assess if PLGEM is also able to deal with data
coming from microarray technologies others than
Affymetrix GeneChips.

Interestingly, model parameter β was found to be quite
stable and comprised between 0 and 1 in all analyzed data
sets. It is noteworthy that for β ∈ (0:1) absolute variability
increases with growing expression values, while relative
variability decreases (compare panel B with panel D of
Figure 1). On the other hand, none of the models men-
tioned in the background section seem to agree with these
experimental observations. Formal statistical reasoning
could unravel the underlying theoretical error model that
leads to the power law relationship that was observed to
be at the basis of the variance versus mean dependence in
replicated microarray data.

A PLGEM-based method successfully detects differential 
expression
In spite of the lack of a theoretical statistical model, the
empirical model presented here has proven its
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applicability in the identification of DEG, providing
improved results under a wide range of different testing
conditions. In comparison to other commonly used DEG
identification methods, the proposed approach demon-
strated improved specificity and sensitivity on the Latin
Square data set and robustness to decreasing number of
replicates on the 16iDC+LPS data set. The good perform-
ance of our proposed method is reasonably due to the fact
that it relies on a global error model. As an example, when
the classic permutation strategy is applied to the CLASSIC-
STN statistic or when the SAM method is used, the
selected genes are apparently more dependent on the
number and identity of the replicates than when our pro-
posed approach is used. We hypothesize that, when no
error model is assumed and a small number of replicates
is present in the data set, the probability of observing for
some genes coincidently very similar (or very dissimilar)
values increases, thus leading to an underestimation (or
overestimation) of the standard deviation and a conse-
quent overestimation (or underestimation) of the test sta-
tistic, finally leading to false positives (or false negatives).

Interestingly, when the performance of our method was
compared on a data set of DC stimulated for 24 hours
with LPS, SAM showed a decreased sensitivity in identify-
ing down-regulated genes when the number of LPS repli-
cates was low (data not shown). Under these
experimental conditions DC undergo a process known as
maturation, which is a specialized form of cellular
differentiation, for which both up- and down-regulation
of gene expression is expected [17,18]. We speculate that
SAM did not select these genes, because of the combina-
tion of two effects. First of all, down-regulated genes are
expected to have lower and therefore intrinsically more
variable expression values in the four LPS replicates than
in the sixteen replicates of immature DC. When, in addi-
tion, the number of LPS replicates becomes too low, SAM
filters these genes out to control the FDR. In agreement
with this hypothesis SAM was perfectly able to identify
down-regulation when the full data set was used (data not
shown).

The gene selection method proposed in the present work
does not provide a direct control on the FDR, but the sig-
nificance level has been proven to be a direct estimate of
the FPR. Thus, if a significance level of 0.001 is used and
12488 probe sets are displayed on the MG-U74Av2 chip,
12–13 genes are expected to be selected by chance in cases
where all genes are in fact not differentially expressed.
Therefore, a researcher can test how many genes would be
selected over a range of different significance levels and
chose the one that results in the most acceptable compro-
mise between number of selected genes and estimated
FPR.

Conclusions
The proposed DEG identification method provides a
direct control of the FPR and an indirect control of the
FDR. Moreover, as tested on the Latin Square data set, our
method improved the specificity vs. sensitivity trade-off in
comparison to other commonly applied DEG selection
techniques. It finally showed an increased robustness
when different replicates or numbers thereof are analyzed,
giving consistent results even in data sets containing sin-
gle samples. In conclusion, the global error model pre-
sented here may facilitate the analysis of microarray gene
expression data by discriminating information from
noise, and thus possibly helping the formulation of new
hypothesis concerning gene functions.

Methods
Data sets
16iDC
RNA was harvested from ten biological samples of
unstimulated immature mouse dendritic cells (DC), each
extracted from an independent batch of cells. One opera-
tor prepared the biotin-labeled cRNA for hybridization
from three of the ten RNA samples, a second operator pre-
pared the remaining seven. While operator 1 applied the
total RNA protocol to all of its three samples, operator 2
applied the purified mRNA protocol to five of its seven
samples and the total RNA protocol to the remaining two.
Two of the three cRNA samples prepared by operator 1
and four of the seven cRNA samples prepared by operator
2 have been hybridized twice; therefore, a total of 16 MG-
U74Av2 GeneChips (Affymetrix, Santa Clara, CA) have
been employed.

Leigh syndrome
Eight RNA samples were harvested from human fibroblast
cell lines each deriving from a distinct Leigh syndrome
patient [19,20] and individually hybridized on HG-
U133A GeneChips (Affymetrix).

Muscle biopsies
Four individual and two pooled RNA samples from
human muscle biopsies of sixteen healthy young male
donors were hybridized on six HG-U95Av2 GeneChips
(Affymetrix). This data set was downloaded from [21],
experiment code: GSE80 [22].

Latin Square
This data set consists of 3 technical replicates of 14 sepa-
rate hybridizations (named Exp01–14) of 42 spiked tran-
scripts in a complex human background at concentrations
ranging from 0.125 pM to 512 pM. Thirty of the spikes are
isolated from a human cell line, four spikes are bacterial
controls, and eight spikes are artificially engineered
sequences believed to be unique in the human genome.
Further details on the design of the Latin Square data set
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can be found at [23]. Considering the redundancy of
some probe sets, there are a total of 62 distinct probe sets
designed to match the 42 spiked transcripts.

16iDC+LPS
This data set consists of the same samples of the 16iDC
data set, but includes additional four samples as a second
experimental condition. To this end dendritic cells were
stimulated to mature with lipopolysaccharide (LPS) for
24 hours. Two independent biological samples were har-
vested and individually processed by the same two opera-
tors that prepared the samples for the 16iDC data set: one
applied the total RNA protocol, the other one applied the
purified mRNA protocol. Each cRNA sample was
hybridized twice, thus using a total of four Affymetrix MG-
U74Av2 chips.

Software
All chips mentioned in the present study were hybridized
and scanned following Affymetrix recommendations and
MicroArray Suite 5.0 (MAS5) was used as the image acqui-
sition and analysis software. All data sets used passed
quality control tests and probe set signals were scaled so
that the 4%-trimmed mean of all expression values of
each chip was equal to a predefined reference intensity
(called TGT) following manufacturer's recommendations:

TGT = 100 for MG-U74Av2 and HG-U133A chips and
TGT = 500 for HG-U95Av2 chips.

All procedures for fitting PLGEM, for calculating observed
PLGEM-based signal-to-noise ratios (STN), for obtaining
expected PLGEM-STN through the resampling-based
approach and for comparing observed with expected STN
values have been implemented as R functions [24] and
will be soon submitted for integration into the Biocon-
ductor project [25].
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