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ABSTRACT: Preserving the correct dynamics at the coarse-grained (CG)
level is a pressing problem in the development of systematic CG models in
soft matter simulation. Starting from the seminal idea of simple time-scale
mapping, there have been many efforts over the years toward establishing a
meticulous connection between the CG and fine-grained (FG) dynamics
based on fundamental statistical mechanics approaches. One of the most
successful attempts in this context has been the development of CG models
based on the Mori−Zwanzig (MZ) theory, where the resulting equation of
motion has the form of a generalized Langevin equation (GLE) and closely
preserves the underlying FG dynamics. In this Review, we describe some of
the recent studies in this regard. We focus on the construction and simulation
of dynamically consistent systematic CG models based on the GLE, both in
the simple Markovian limit and the non-Markovian case. Some recent studies
of physical effects of memory are also discussed. The Review is aimed at summarizing recent developments in the field while
highlighting the major challenges and possible future directions.

1. INTRODUCTION

The development of methods for dynamically consistent
systematic coarse-grained simulations is a relatively new and
promising research area in the field of soft matter simulations. In
this Review, we discuss the current state of affairs of introducing
memory effects in coarse-grained molecular simulations. We
particularly focus on recent methodological advances, high-
lighting the underlying challenges and capabilities. For
alternative approaches in the field of dynamic coarse-graining
and systematic coarse-graining methods based on structural and
thermodynamic properties, we refer the reader to other recent
reviews.1−5

The 1998 twin papers by Tschöp et al.6,7 have been seminal in
the field of systematic coarse-graining of soft matter systems.
They paved a new route for linking chemistry and properties of
polymers based on ideas to map between a fine-grained (FG:
high resolution) and a coarse-grained (CG: low resolution)
configuration space in, both, forward and backward directions.
Regarding the dynamics of the CG system, they made two
important observations. First, they showed that structural
quantities equilibrate faster and more efficiently in CG models,
which is good news from a sampling point of view. Second, in
order to recover quantitatively reliable information on the
dynamics of the system as well, they introduced the novel
concept of time-scale mapping: They proposed to identify the
(reduced) time scale in the asymptotic long-time regime of the
CG molecular dynamics (MD) simulation with the correspond-
ing experimental time scale by comparing the predicted melt

viscosity (within the Rouse model) with its experimental
counterpart.6,8 In later approaches, monomer mean-square
displacements of the FG and CG models were used to define a
so-called time mapping (or speed-up) factor, effectively
accounting for the lost friction of the fast atomistic degrees of
freedom (DoF) in the CG model.8−11

Applying this a posteriori time mapping procedure to CGMD
simulation trajectories led to several successful quantitative
predictions of dynamical properties on time and length scales,
which went far beyond those that could be addressed with
detailed atomistic simulations. These include dynamic chain
scattering functions,9 self-diffusion coefficients, and viscoelastic
properties of unentangled and entangled, high-molecular-
weight, polymer melts.12 Furthermore, the diffusive dynamics
of small penetrant molecules in a polymer matrix (ethylbenzene
in polystyrene) could be described with CG models and time
mapping procedures in quantitative agreement with experi-
ments, achieving transferability over a wide range of temper-
atures.13,14 This, heuristic, time mapping technique was the first
to successfully link chemistry and dynamic properties of
polymers used in daily life. However, the applicability of the
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approach was mostly limited to homogeneous single-compo-
nent systems. In the case of small penetrant diffusion in a
polymer matrix, even though the temperature dependence of the
penetrant diffusion coefficient was in agreement with experi-
ments, the scaling factor differed for the two components
(polymer and penetrant) within the same system and depended
on the composition of the binary system.15

The scale (or speed-up) factors, in general, depend on the
simulation state point and system properties such as polymer
tacticity, solvent volume fraction, etc. Several studies have
attempted to predict this speed-up factor in simulations based
on relative entropy, interactions, and mechanical consider-
ations.16−18 While this speed-up factor allows one to quantify
the dynamics at the CG level in agreement with the FG
counterpart, its choice is rather empirical. Moreover, it relies on
the existence of a single CG time scale corresponding to the
long-time diffusive limit. However, in multicomponent systems
where the overall dynamics of a system is governed by relaxation
mechanisms on distinct time scales, coarse-graining affects the
various energy barriers differently, thereby accelerating the
dynamics of the various components to different extents. In
realistic chemical systems with a moderate degree of coarse-
graining, such effects are expected to be more pronounced, and
therefore, the use of a simple time-scale mapping approach is
severely limited.
One way of preserving the real FG dynamics in a CG system is

to apply the fundamental statistical approach based on the
generalized Langevin equation (GLE), where the friction
resulting from the lost DoF upon coarse-graining is explicitly
taken into account. Over the past two decades, such an approach
has been formalized based on the Mori−Zwanzig (MZ)
theory,19−22 which can, in fact, be viewed as one of the first
rigorous theories of systematic coarse-graining. Starting from an
underlying microscopic system with Hamiltonian dynamics, the
MZ formalism uses projection operators to derive an exact
equation of motion (EoM) for a reduced set of relevant variables
at the CG level. The resulting EoM has the form of a GLE, with
frictional and random forces coupled through the fluctuation−
dissipation theorem (FDT). The GLE is non-Markovian, as the
instantaneous force depends on the entire dynamical history of
the system, unlike the Hamiltonian EoM. However, depending
on the nature of the system of interest, this “memory” can
sometimes be short-lived, in which case it can be replaced by an
instantaneous friction term. The GLE can then be approximated
by a simpler stochastic equation: the Langevin equation (LE).
While analyzing the non-Markovian GLE in simulation is
nontrivial and computationally demanding, several studies have
attempted to employ this approach to investigate the dynamical
properties of various chemical systems. In this Review, we will
highlight some of the recent works along this line.
The aim of this Review is to summarize the recent

methodological developments in the field of dynamically
consistent systematic coarse-graining. We particularly focus on
studies which employ GLEs to analyze and/or simulate
physicochemical systems based on the underlying FG dynamics.
A concise, but not exhaustive, list of studies are briefly discussed
to motivate the fundamental background and methodological
progress. For a more general discussion on consistency of
dynamics in CG simulations, readers are referred to another
recent review.5

The present Review is organized as follows. The GLE as
derived from the MZ formalism is briefly discussed in section 2.
Section 3 describes selected studies that employ a Markovian

approximation to the GLE. While highlighting the usefulness of
the Markovian assumption, these studies also demonstrate the
need to explicitly include memory effects depending on the
nature of the underlying FG system. Section 4 discusses various
possible ways to extract the memory kernel from FG trajectories
with special focus on single diffusing particles. Strategies to go
beyond single-particle systems and use GLE-based modeling in
coarse-graining and multiscale modeling are reviewed in section
5. A crucial issue in such simulations is the availability of efficient
GLE integrators. Different approaches have been proposed,
some based on straightforward integration and some based on
techniques that introduce auxiliary variables to map the GLE on
a system of coupled Markovian Langevin equations in an
extended space. These are discussed in section 6. Section 7
highlights selected recent studies of systems where memory
effects have a qualitative impact on the dynamical behavior. We
conclude in section 8 with a discussion on open questions and
possible future directions.

2. MORI−ZWANZIG FORMALISM

The Langevin equation (LE), introduced by Paul Langevin in
1908,23 is a prototypical example of a CG EoM. It is used to
model the dynamics of a heavy Brownian particle dispersed in a
fluid and describes it solely via a dynamical equation for the
momentum of the Brownian particle itself, while its interactions
with the fluid particles are modeled implicitly by frictional
dissipation and impacts. For a given viscosity of the fluid and size
of the Brownian particle, dynamical properties can be derived
from the LE. The formal connection between the atomistic
description of Brownian dynamics based on the Hamiltonian
equation with all DoFs and a CG description of the form of a LE
was established by Mori19 and Zwanzig20 based on a projection
operator formalism.22 In this section, we briefly summarize the
main ideas behind theMori−Zwanzig (MZ) theory as discussed
in ref 22 and recent extensions in the context of dynamic coarse-
graining.
The projection operator formalism is based on the idea that

any dynamical variable for a given Hamiltonian system can be
described as a vector in a Hilbert space, consisting of a vector
space spanned by a set of orthonormal basis functions and an
inner product. The choice of the inner product is crucial for a
consistent coarse-graining procedure. In equilibrium, the most
common choice is the phase space integral

A B X f X A X B X AB( , ) d ( ) ( ) ( )eq eq∫= * = ⟨ *⟩
(1)

for two arbitrary observables A(X) and B(X), phase space points
X, and equilibrium probability distribution feq. The inner
product, (A, 1), thus corresponds to the usual phase space
average.
In general, not all dynamical variables are of interest. For

example, in coarse-graining, the central idea is to average over
the fast microscopic processes and just keep a small number of
slow effective variables that can represent a system on larger
length and time scales. Having defined an inner product in the
microscopic system now allows us to formally select some
variables to be relevant (i.e., slow representatives) and others to
be irrelevant via the introduction of a projection operator. Based
on eq 1, a projection operator, , can be defined, which projects
any dynamical variable B onto the subspace of relevant variables
{Aj}, as
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B B A A A A( , ) ( , )
j k

j jk k
1∑ ∑= [ ]−

(2)

Here, (A, A) denotes the n × nmatrix of inner products (Ai, Aj),
where n is the dimensionality of the relevant subspace. In the
following, we will restrict ourselves to the one-dimensional case,
which can easily be generalized to n dimensions.

B B A A A A( , )( , ) 1= − (3)

With these definitions and starting from the Liouville equation

t
A t A t( ) ( )

∂
∂

=
(4)

after somemathematically exact reordering which is described in
detail in ref 22, a CG EoM for A(t) can be derived as

t
A t A t s K s A t s F t( ) i ( ) d ( ) ( ) ( )

t
R

0
∫∂

∂
= Ω − − +

(5)

which has the form of a generalized Langevin equation (GLE).
Here we have introduced the frequency matrix

A A A Ai ( , )( , ) 1Ω = − (6)

and the “noise”

F t A( ) eR t= (7)

where 1= − is the projector on the irrelevant dynamical
variables. The extended time-evolution operator, et , is often
referred to as “orthogonal”, “projected”, or Q-dynamics. Finally,
the memory kernel is formally given by

K t F t A A A( ) ( ( ), )( , )R 1= − − (8)

Equation 5 is an exact reformulation of the original Liouville
equation. Being in the form of a GLE, the interpretation of FR(t)
as a random process allows one to model the irrelevant variables
of the original problem by a stochastic process with equivalent
statistical properties. To illustrate the meaning of the separate
terms in eq 5, we can assume the simplest case, in which the
relevant variable is given by the momentum of a single particle
A(t) = p(t). We can then write the frequency matrix Ω as

p p p p
Fp

mk T
i ( , )( , ) 01

B
Ω = =

⟨ ⟩
=−

(9)

where F p p
t

d
d

= = is the total force on the tagged particle.

Here, Ω vanishes due to the fact that the dynamics are time-
translationally invariant and the Liouville operator is anti-
Hermitian. (If the microscopic dynamics is diffusive and not
Hamiltonian, a similar formalism can be applied. In this case, the
frequency matrix Ω might not vanish.) The scalar memory
function, in this case, is given as

K t F t p p p

F t p p p

F t F
mk T

( ) ( ( ), )( , )

( ( ), )( , )

( ) (0)

R

R

R R

1

1

B

= −

=

= ⟨ ⟩

−

−

(10)

w h e r e w e h a v e e x p l o i t e d F t( ) 0R = a n d
F p(0) (1 ) .R = − Equation 10 relates the random force
FR(t) with the memory kernel K(t) and is usually referred to as
the second fluctuation−dissipation theorem (FDT). It should
be noted that the derivation of the FDT only requires the

assumption of an anti-Hermitian Liouville operator and the
definition of an inner product. The second FDT should thus be
seen as a mathematical identity, which is valid independent of
the specific choice of the inner product and which can even be
extended to nonstationary systems.24 Having identified the
different contributions to the GLE, we can rewrite the full EoM
for the single Brownian particle as

p t
t

F t s s v t s F t
d ( )

d
( ) d ( ) ( ) ( )

t
R

0
∫= = − Γ − +

(11)

with Γ(t) = mK(t).
If A(t) stands for a set of momenta of different particles rather

than themomentumof a single tagged particle in one dimension,
the vector ΩA(t) in eq 5 represents linearized interaction forces
between the particles. Importantly, since the MZ formalism is a
purely linear theory, any nonlinear contributions to the
associated potential of mean force (PMF) or any nonlinear
friction terms will be absorbed in the distribution of the random
forces and a renormalized memory kernel.
This structure is difficult to reconcile with standard

philosophies of coarse-graining, where a clear distinction is
typically made between external driving forces, conservative
interactions that determine the stationary distribution of the
variables at thermodynamic equilibrium (the Boltzmann
distribution), and dissipative forces that determine the dynamics
and the entropy production in nonequilibrium.25,26Making such
distinctions helps to devise coarse-grained models that are
thermodynamically consistent by construction, and are thus
clearly desirable.
To overcome these shortcomings of the MZ formalism,

modified projection operator formalisms have therefore been
proposed,27,28 which allow conservative and dissipative forces to
be separated. Kinjo and Hyodo derived the equation of motion
(EoM) for CG clusters of microscopic particles. A monatomic
fluid served as the microscopic system, while clusters of several
atoms formed the CG particles, with centers at the respective
center of masses (CoMs). The resulting CG EoM has the form
of a GLE

P
F X V F

t
t

t s t s s t
d ( )

d
( ( ) ) d ( ) ( ) ( )I

I
C

J

N t

IJ J I
R

1 0
∫∑ Γ= [ ] − − +

=
(12)

where [X, P] defines the 6N-dimensional phase space of CG
particles. The first term on the rhs represents the conservative
force on the CG particle I, which now, indeed, corresponds to
the gradient of the PMF. The second term represents the friction
force (dissipation) due to the removed DoFs and involves the
integral of the product of the memory kernel matrix,ΓIJ, with the
velocities VJ(t) = MJ

−1PJ(t) of all other particles of mass MJ. In
general, ΓIJ may be different for all pairs I, J and depend on their
state (i.e., on the relative distance between particles I and J). The
third term represents the random force, which is related to the
friction term via the FDT

F F t k T t(0) ( ) ( )I
R

J
R

IJB Γ⟨ ⟩ = (13)

In structural coarse-graining, multibody contributions to the
PMF are often neglected and the conservative forces are pairwise
decomposed, FI

C ≈ ∑J≠I FIJ
C. If one additionally neglects many-

body correlations in the friction forces, eq 12 can be
reformulated as29
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t

d ( )
d

( ( )) d ( ) ( )

( )

I

J I
IJ
C

IJ

t

IJ IJ

IJ
R

0

DPD∫∑ Γ= − −

+

≠

(14)

with relative positions XIJ(t) = XI(t)− XJ(t) and velocities VIJ(t)
= VI(t) − VJ(t) of particles I and J. This pairwise GLE
corresponds to a non-Markovian formulation of the EoM of
dissipative particle dynamics (DPD).30

All generalized Langevin equations presented in this section
are clearly non-Markovian, but they can be reduced to
Markovian variants under specific assumptions (see section 3
for details). In the case of a freely diffusing Brownian particle, the
Markovian variant of the GLE (eq 11) is the standard LE

p t
t

v t F t
d ( )

d
( ) ( )Rγ= − +

(15)

where γ =
0

∫ ∞
dt Γ(t) is the friction coefficient. The random

force, FR, now describes uncorrelated white noise and is related
to the friction coefficient via the usual FDT

F F t k T t(0) ( ) 2 ( )R R
B γδ⟨ ⟩ = (16)

In a similar way, the Markovian version of the pairwise GLE as
derived in eq 14 can be reduced to the DPD EoM

P
X V

t
t

t t tF F
d ( )

d
( ( ( )) ( ) ( ))I

J I
IJ
C

IJ IJ IJ IJ
R∑ γ= − +

≠ (17)

Since they are based on an underlying systematic coarse-
graining procedure, these EoMs are thus suitable starting points
for the parametrization of molecular CG models in simulations.
Examples will be discussed in the following section.

3. THE MARKOVIAN ASSUMPTION
While the evaluation of the memory kernel is a central step when
constructing dynamically consistent coarse-grained models
based on the GLE (eq 12), its implementation in CG
simulations is technically nontrivial and computationally
expensive. Therefore, Markovian approximations to the GLE
have been widely used in simulations.27,31−37 The approach
assumes the fluctuating forces to be delta-correlated in time, and
not temporally correlated as in the non-Markovian case (which
similarly holds for the memory kernel). The resulting EoM has
the structure of a DPD equation, as defined in eq 17, and can be
implemented in a relatively straightforward manner. This
assumption, however, is valid only in the case where the time
scales of the fast and slow variables in the system are completely
separated: The time scale of the random force fluctuation must
be sufficiently fast compared to the time scale of the CG bead
motion. Intuitively, such an approximation should hold for high
degrees of coarse-graining or systems at low density, where the
atomic collisions happen on a much smaller time scale than the
change in momentum of the CG beads. Whether or not this is
the case can be inferred in simulations from the decay of the
force and velocity auto-correlation functions (FACF and
VACF): The time scales are well-separated if the former decays
much faster than the latter. In contrast, in chemically specific
molecular CG models with low to medium degrees of coarse-
graining, the time scales of the slow and fast dynamics (the P-
and Q-DoF) are not fully separated and, thus, the Markovian
assumption breaks down.35−37 Nonetheless, the Markovian

DPD has been extensively used in molecular CG models. Some
examples are briefly discussed in this section.
The GLE, as derived following the MZ formalism, takes into

account the projected dynamics of the underlying FG system,
which is different from the real FG dynamics that one observes
in a molecular dynamics (MD) simulation. In such a case, one
workaround is the so-called Q-approximation, where the
projected (or Q-) dynamics is approximated by the real
dynamics; i.e., one assumes for the orthogonal time-evolution

operator e et t≈ .28,32,37 This implies
0

∫ ∞
dt⟨FR(t)FR(0)⟩ ≈

0
∫ τ

dt⟨F(t)F(0)⟩ on intermediate time scales τ. While this

approach allows for an easier implementation of the CG EoM, it
also leads to the well-known “plateau problem”, where the
friction for finite mass CG particles, as determined fromGreen−
Kubo integrals of the FACF, vanishes on long time scales rather
than converging to a finite plateau.38−40 The existence of a
plateau is guaranteed in the infinite mass limit, where the
correlation function of the random forces in a GLE equals the
correlation function of the total forces.41 In this limit, the large
inertia of the heavy particle ensures a good separation of the time
scales of the slow and fast DoFs. In this line, Sanghi et al. used the
GLE to characterize memory effects in fullerene nanoparticle
dynamics and investigated the scaling of thememory kernel with
the nanoparticle mass, shape, and size. They observed that the
FACF and the random force ACF are indeed comparable in the
large nanoparticle mass limit.42 Nonetheless, for finite mass CG
models, an intermediate plateau can be found in several cases,
and the plateau values can then be taken to determine the
friction coefficient.36,37

To circumvent the issue of time-scale separation, Hijoń et al.31

proposed a scheme in which, by appropriately constraining the
MD trajectory of the FG system, the CG dynamics was made
exactly Markovian and the resulting Green−Kubo integrals were
shown not to suffer from the plateau problem. The theoretical
background was developed following the MZ formalism, and a
star polymer melt was considered as a specific example. The
modified dynamics was obtained by constraining the relevant
variable, i.e., the CoM of the polymers to their respective
positions in a set of configurations and carrying out short
independent MD runs from each configuration. The resulting
time averaged FACF and its integral (friction), calculated using
the constrained MD trajectories, were found to exhibit well-
defined plateaus as opposed to those calculated using uncon-
strained trajectories. Also, the radial distribution function
(RDF) and VACF, calculated in the CG simulation, were
found to be comparable to their FG counterparts.31

Treḿent et al.34 used the Markovian DPD approach to
coarse-grain n-pentane and n-decane molecules as single DPD
beads with a degree of coarse-graining (number of carbon atoms
per CG bead: λ) = 5 and 10, respectively. The conservative force
was calculated in constrained MD simulations as the PMF, and
the normal and transverse pair frictions were calculated
following Hijoń et al.31 The random forces were calculated
from the FDT as a linear combination of Wiener processes.43 As
expected, the conservative interaction was found to be softer,
while the decay of friction became slower with increasing λ. The
ratio of the transverse to radial friction also increased,
highlighting the role of molecular anisotropy. The models
could well reproduce the RDF, the diffusion coefficient, and the
viscosity of the underlying MD systems of n-pentane at 293 K
and n-decane at 393 K. However, the results of the low-
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temperature n-decane DPD simulation were less convincing,
owing to the anisotropic shape of the molecules and the fact that
the time scales were not well separated. To check the possible
transferability of the DPD force field, the authors modeled n-
decane as a dimer of two n-pentane blobs, and interestingly, it
could reproduce the low-temperature MD results quite well.
Lei, Karniadakis, and co-workers32 employed the GLE EoM

as derived by Kinjo and Hyodo28 to study the behavior of
mesoscopic clusters of Lennard-Jones (LJ) particles, con-
strained within a constant radius of gyration (Rg). Under the
Markovian assumption, they investigated the performance of
three distinct CG models: (1) using only conservative forces,
(2) using a Langevin thermostat, and (3) using a MZ DPD
thermostat. The first model could only capture the FG structural
properties, such as the RDF and the pressure, but not the
dynamical properties, such as the diffusion coefficient and the
viscosity. Furthermore, the resulting dynamical quantities could
not even be matched with the corresponding FG results by
simple time-scale mapping approaches.12,15 In the Langevin
dynamics, the friction coefficient was calculated using the auto-
correlation function (ACF) of the fluctuating forces, and the
random forces onCG particles were assumed to be independent.
The resulting diffusion coefficient was found to be 4 times
smaller than that of the underlying FG system, which was
attributed to the missing contribution of the configuration
dependence of the frictional and random forces. In theMZ-DPD
model, the random force was considered to be pairwise additive.
For each pair, the memory kernel and the random force were
decomposed into the radial and perpendicular contributions.
The resulting EoM had the form of a DPD equation, with a
transverse friction44 term in addition to the standard DPD
friction term. This CG model could well capture the mean-
square displacement (MSD), the diffusion coefficient, and the
VACF of the FG system, except in the case of high Rg and high
density where many-body correlations are important. In these

cases, theMarkovian assumption was also found to be inaccurate
due to the lack of a clear time-scale separation.
In their following work, Li, Karniadakis, and co-workers33

studied melts of star polymers with CG centers at the
corresponding CoM. Based on unconstrained MD simulation,
they derived various DPD models with increasing degree of
complexity: from the standard parametrized DPD model to
DPD with radial and transverse forces and frictions and finally
DPD with interactions in all three spatial directions that include
explicit rotational motion of the CG particles. According to their
findings, the absence of transverse interaction at the CG level
leads to an underestimation of friction, whereas including it
leads to an overestimation in the absence of rotational motion.
When the rotation of the CG particles was accounted for in the
presence of spatially resolved interactions, the DPDmodel could
reproduce both the short- and long-time dynamics of the system.
As one might expect, all DPD models except for the standard
one were able to reproduce the static structure of the FG system
in terms of the RDF. Yet again, the results were most satisfactory
in cases where the many-body correlations could be neglected
and the Markovian assumption is valid, i.e., star polymers with
short arms at low density.
With an aim to extend the conditional reversible work (CRW)

model45,46 to retain dynamical properties, Deichmann et al.35

used a Markovian DPD approach to coarse-grain a set of model
molecular liquids, where the dissipative interactions were
obtained using constrained simulations.31,32,34 Neopentane,
tetrachloromethane, and cyclohexane were coarse-grained into a
single interaction site each, with centers at their respective
CoMs, and a two-site mapping was chosen for n-hexane. Based
on the integral of the FACF, they showed that the Markovian
assumption was most inaccurate in the case of n-hexane, where
the orientation of the CG n-hexane was a slow DoF explicitly
present at the CG level. For this system, the radial and transverse
frictions were found to be comparable, similar to Treḿent et
al.,34 whereas in the other three cases the latter was insignificant.

Figure 1. VACFs calculated using FG-MD, CG-MD, and MZ-DPD for various poly(2,2-dimethylpropane) systems: VACFs of the CoM of (a)
monomers in a single-component system, (b) 24mers in 25% 24mer−75% dimer solution, and (c) monomers in a network of long poly(2,2-
dimethylpropane) chains. The insets compare the corresponding diffusion constants. The top panel shows a representative configuration from each
system where monomers are shown as blue beads and 24mers are shown as green chains. In spite of the apparent differences in the VACFs at shorter
times, the long-time diffusion constants are better reproduced withMZ-DPD than CG-DPD in the first two cases. The CG-MD andMZ-DPDmodels
fail to reproduce the FG-MD monomer diffusion coefficient in the polymer network. Adapted with permission from ref 37. Copyright 2018 AIP
Publishing.
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The resulting dynamics in the CRW-DPD simulations showed
varying accuracy in comparison to the FG results. The diffusion
coefficients of all molecules, except neopentane, were found to
be smaller than their FG counterparts when both the radial and
transverse frictions were used, mainly due to the overestimation
of the friction as previously observed by Lei et al.32 In the case of
neopentane, however, the agreement with the FG result was very
good. As we will discuss later, one possible reason for the varying
performance could be the imposed constraints,47 which affect
the dynamics of these molecules to different extents. Nonethe-
less, the work of Deichmann et al. highlighted the issues of long-
time tails in the FACF and the lack of time-scale separation in
molecular models that involve a small to medium degree of
coarse-graining andmultiple CG sites. These factors are relevant
in chemical specific coarse-graining of polymers, where the time
scales of the FG and CG systems may not be well separated.
Lemarchand et al.36 employed the framework of Hijoń et al.31

to coarse-grain cis- and trans-1,4-polybutadiene and investigated
the validity of the underlying Markovian and pairwise
interaction assumptions. They systematically studied the effect
of the degree of coarse-graining (λ) on the ability of the CG
simulation to reproduce the correct dynamical and structural
properties of the FG system. They observed that the dynamical
properties improved with λ, owing to the better separation of the
CG and FG time scales and, thereby, the accuracy of the
Markovian assumption. However, the structural properties were
found to deviate from those of the FG system with increasing λ
due to the presence of many-body effects. Their study also
highlighted the effect of constraints on the CG dynamics, where
the slow rotation of the CG beads leads to a slower decay of the
FACF, an artifact that is not present in unconstrained FG
trajectories and had also been observed in previous studies.35

In their following work, Deichmann and van der Vegt37

performed MZ-DPD simulations of liquids, polymer solutions,
and melts, comprising single- and multiple-site CG models of
monomers, dimers, and 24mers based on 2,2-dimethylpropane
repeat units. They used the effective-force coarse-graining (EF-
CG) method48 to extract the conservative interactions, which
also included bonded potentials in the case of the dimer and
24mer. TheQ-approximation28,32 was employed to calculate the
frictional forces from the FACF.31 They observed long-time tails
in the FACFs, which were noticeable in the dimer case and most
significant for the 24mer case. These were attributed to the slow
rotation of the CG beads which led to a nonzero average
fluctuating force on short time scales. The study, thus,
highlighted one of the major challenges in multiple-bead
representations of small molecules and polymers: Constraining
the slow DoF by means of introducing bond connectivity in CG
models also slows down the relaxation of the intramolecular
DoF of the chemical repeat unit removed upon coarse-graining.
The long tails were a posteriori fitted to linear functions and
subsequently subtracted from the original FACFs, resulting in
converging integrals. However, as shown in Figure 1, the authors
reported noticeable differences between the FG-MD and MZ-
DPD VACF for all of the systems under study. At short times,
the particle motion is ballistic in FG-MD and dissipative in MZ-
DPD, leading to faster decay of the VACF in the latter. On the
other hand, elastic collisions of particles lead to a faster decay of
the VACF in FG-MD at longer times. The resulting diffusion
coefficients were however in good agreement with those
calculated from the atomistic MD simulation of the pure liquids
of monomers (see the inset of Figure 1a) and dimers. The MZ-
DPD model was also found to describe polymer diffusion in

polymer solutions (mixtures of dimers and 24mers), especially
at low polymer density, in good agreement with FG-MD, as
shown in the inset of Figure 1b. Finally, the authors investigated
the dynamics of penetrants (monomers and dimers) in networks
of long poly(2,2-dimethylpropane) chains in MZ-DPD. As
shown in Figure 1c, the resulting long-time dynamics in this case
was found to be inconsistent with the FG-MD results. The
authors concluded that, in the case of molecular liquids or
polymer solutions, where particle collisions govern their
dynamics, the Markovian MZ-DPD approach satisfactorily
reproduces the dynamics of the FG system on long time scales,
in spite of the deviations at short time scales (as apparent in the
VACF). However, when many-body contributions are impor-
tant (the case of polymer solutions at high polymer
concentration) or the dynamics is governed by activated barrier
crossing47,49,50 (the case of penetrant diffusion in a polymer
matrix), the explicit inclusion of memory effects becomes
necessary.
These studies, while exploring the viability of the Markovian

assumption in molecular coarse-graining, also highlight its
limitations. In spite of the relative simplicity, its application has
so far been mostly limited to model systems with high degrees of
coarse-graining, such as LJ clusters and star polymers at low
density, where the Markovian approximation remains relatively
accurate. However, this approximation breaks down in cases
where chemically specific CG models are used with small to
medium levels of coarse-graining. The results of Treḿent et
al.,34 Deichmann et al.,35 and Lemarchand et al.36 have
emphasized this point. Despite incomplete time scale separa-
tions, the dynamic properties of chemically specific models
could however be improved:37 Contrary to standard DPD with
soft conservative interactions, it was demonstrated that MZ-
DPD can be used to serve as a bottom-up-informed thermostat
that fixes the long-time diffusive dynamics in the coarse-grained
simulations of molecular liquids in which hard-core repulsions
are retained. This work additionally emphasized the need to
incorporate memory effects in the CG model when the
dynamics is governed by activated barrier crossing as opposed
to particle collisions as in molecular liquids.

4. RECONSTRUCTION OF MEMORY KERNELS
While the original MZ theory was developed already in the early
1960s,19,20 recently, it has regained a lot of attention in the
context of dynamic molecular coarse-graining, where the
memory kernels are extracted from FG trajectories. As discussed
in the previous section, the Q-approximation has been
extensively used to parametrize CG DPD models of chemical
systems with varying success31,34,37 and the limitations have also
been discussed. Recently, attempts are also being made to find
solutions for the plateau problem.51 Nonetheless, the most
straightforward way to calculate friction coefficients is to
formulate an appropriate GLE for the system under consid-
eration, from which methods for the extraction of the memory
kernel can be developed. This not only allows a more accurate
determination of friction coefficients but also enables the study
of time- or frequency-dependent phenomena based on the
memory kernel. In the case of low-dimensional GLEs, e.g., GLEs
for single diffusing particles, it is possible to exactly reconstruct
memory kernels (within numerical and statistical errors) from
FG simulation trajectories. Several methods have been
developed, some of which are reviewed in this section.
We begin with some general remarks. A typical problem in

memory reconstruction is to determine memory kernels from a
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given auto-correlation function CAA(t) = ⟨A(0)A(t)⟩ of a target
CG observable A that is taken to evolve according to a GLE, eq
5. Multiplying eq 5 with A(0) and taking the thermal average,
one derives an equation for CAA(t)

C t C t s K s C t s( ) i ( ) d ( ) ( )t AA AA

t

A AA
0

∫∂ = Ω − −
(18)

In the caseΩ = 0, eq 18 has the form of a Volterra equation of the
first kind. It can be inverted numerically, e.g., by Laplace
transform. However, from the point of view of numerical
stability, it is often more convenient to first take the time
derivative, thus converting eq 18 into a Volterra equation of the
second kind52

C t C t K t A

s K s C t s

( ) i ( ) ( )

d ( ) ( )

tt AA t AA A
t

A t AA

2

0
∫

∂ = Ω∂ − ⟨ ⟩

− ∂ −
(19)

for which more stable algorithms exist. We note that the time
derivatives ∂tCAA(t) = CȦA(t) and ∂ttCAA(t) = −CȦȦ(t) can often
be determined directly from simulations, so that it is not
necessary to numerically calculate the derivatives of CAA(t).
Alternatively, one can also integrate eq 18,53−55 which yields

an equation for the running integral over the memory kernel:

GA(t) =
t

0
∫ ds KA(s),

C t A s C s G t s( ) d ( )(i ( ))AA

t

AA A
2

0
∫= ⟨ ⟩ + Ω − −

(20)

Replacing the origin of time t = 0 by t = t0 throughout and taking
the derivative with respect to t0 for t0 → 0, one can derive an
implicit equation54 for the quantity JA(t) = i Ω − GA(t):

J t j t s j s J t s( ) ( ) d ( ) ( )A

t

A0 0 0∫= − −
(21)

with j t C t( ) ( )
A t AA0
1

2= ∂
⟨ ⟩

. It can either be solved directly by

matrix inversion after discretization in time55 or iteratively54 by
successive application of eq 21

J t j t s j s J t s

J t j t

( ) ( ) d ( ) ( ),

with ( ) ( )

A
n

t

A
n

A

( )
0 0 0

( 1)

(0)
0

∫= − −

=

−

(22)

This method can also be used to determine memory kernelsK(t,
t0) in nonstationary nonequilibrium situations.54 In that case, eq

21 for JA(t, t0) = iΩ(t) −
t

t

0
∫ ds KA(s, t0) reads

J t t j t t s s s J s t( , ) ( , ) d ( , ) ( , )A t

t

A0 0 0 0 0
0

∫= +
(23)

with

j t t
C t t

C t t C t t( , )
1
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0 0
0 0 00

= ∂ −
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t t
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00

= ∂

The methods described above have been developed for linear
GLEs and cannot easily be extended to GLEs that contain
anharmonic conservative force terms (as may occur in eq 12). In
that case, numerical reconstruction methods can be applied that
rely on an iterative refinement ofKA(t) based on successive GLE

simulations,56,57 similar to the iterative Boltzmann inversion
(IBI) method in structural coarse-graining.58

In the next sections, we will now present specific examples of
memory reconstruction methods for low-dimensional GLEs. In
multidimensional systems, e.g., multiparticle systems, further
approximations are necessary, which are mainly discussed in
section 5.

4.1. Freely Diffusing Particles. In the simplest case of
freely diffusing particles, the EoM of a system can be formulated
in terms of a GLE without any conservative interactions. For
simplicity, we will consider one-dimensional systems. The GLE
then takes the form

mv F t s t s v s F t( ) d ( ) ( ) ( )
t

R

0
∫̇ = = − Γ − +

(24)

It describes the CoM dynamics of a tagged particle with velocity
v in an isotropic solvent. As discussed earlier, in the limit of large
particle mass, eq 24 can be reduced to a Markovian LE, which
describes the motion of a heavy Brownian particle. In the
Markovian case, the dynamics is governed by the scalar friction
coefficient γ, which determines the diffusion coefficient via the
Stokes−Einstein relation and leads to a VACF that shows an
exponential decay and determines theMSD. In a similar way, the
memory kernel Γ(t) determines the dynamics of a single tagged
particle with memory. According to eq 20, the VACF obeys the
relation

m v t v m v s s v t s v( ) (0) d ( ) ( ) (0)
t

2

0
∫ γ⟨ ⟩ = ⟨ ⟩ − ⟨ − ⟩

(25)

where γ(s) =
s

0
∫ ds′ Γ(s′). Using ⟨Δx2(t)⟩ = t

0
∫ dt′ t

0
∫ dt″⟨v(t′)

v(t″)⟩ and the equipartition relationm⟨v2⟩ = kBT, one can derive
an equation for the mean-square displacement (MSD)53

m x t k Tt s x t s s( ) ( ) ( ) d
t

2
B

2

0

2∫ γ⟨Δ ⟩ = − ⟨Δ − ⟩
(26)

On long time scales, once the memory function has fully
decayed, the dynamics becomes uncorrelated, thus fulfilling the
Stokes−Einstein relation. The friction coefficient governing the
diffusion on long time scales is then given by γ=

0
∫ ∞ Γ(t) dt. The

MSD for a memoryless LE exhibits a ballistic regime at time
scales t ≈ 0 and smoothly transitions into a linear regime for
larger time scales. Anomalous diffusion with different scaling
exponents can thus be attributed to the memory kernel, as given
by eq 26. It is known that subdiffusive dynamics, in which the
MSD scales as ⟨Δx2(t)⟩ ∝ tα with α < 1, can be described in
terms of a GLE with a memory kernel of the form Γ(t) ∝ t−α at
large times.59 This especially occurs in viscoelastic materials
such as polymer melts, in which stresses relax very slowly.
Over the last couple of decades, different methods have been

proposed to extract the memory kernel of a tagged particle from
trajectories based on higher resolution (FG) mod-
els.52,53,56,60−66 One approach is to discretize eq 25 or 26,
calculate γ(t) from the time evolution of the position of a tagged
particle,53 and then take the time derivative. Another widely
used approach29,52,67 is based on the Volterra eqs 18 and 19,
which here can be written in the form

F t v t s v s v s( ) (0) ( ) ( ) (0) d
t

0
∫⟨ ⟩ = − Γ − ⟨ ⟩

(27)

and
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F t F s F t s v s m t v( ) (0) ( ) ( ) (0) d ( )
t

0

2∫⟨ ⟩ = Γ ⟨ − ⟩ + Γ ⟨ ⟩

(28)

The force−velocity correlation function (FVCF) and the FACF
can be computed directly from the FG trajectories. Sub-
sequently, Γ(t) can be calculated from eq 28 by discretization in
the time domain52,67,68 or by exploiting the convolution
theorem to extract Γ(t) in the Fourier or Laplace
space.27,63,69−71 Additional relations can be formulated in the
Fourier space such as

i
k
jjjjj

y
{
zzzzzRe

k T
C

( ) 2 vv
BωΓ̃ =
+̃ (29)

and72

C
k T

i m
( )

( )
1 ( )/( )FF

B
2 2ω

ω
ω ω ω

̃ =
Γ̃

| − Γ̃ |+ (30)

where C̃+
vv is the one-sided Fourier transform of the VACF and

C̃FF(ω) is the Fourier transform of the FACF.
While Γ(t) can be obtained from eq 29 by means of an inverse

Fourier transform, eq 30 can be solved by assuming a functional
form of Γ(t) and optimizing the fitting parameters, which
reproduce C̃FF(ω).

72 Kowalik et al.53 compared the performance
of approaches derived from eqs 25−30 for calculating the
memory kernel of a freely diffusing methane particle in water.
The authors found that the methods described by eqs 25, 26, 29,
and 30 perform equally well, while methods based on eqs 27 and
28 are prone to numerical instabilities at long times. In general,
the high-frequency contributions of the memory kernel are
usually better reconstructed by methods that are directly based
on the force auto-correlation function, while discretization
errors in the long-time dynamics can commonly be reduced
using slower decaying correlation functions such as the VACF.
Recently, this observation has been used to construct a high-
precision hybrid method.73

While the memory kernel at thermal equilibrium can be
described in terms of the FDT, kBT Γ(t) = ⟨FR(t)FR(0)⟩, the
above-mentioned methods to extract the memory kernel do not
require the direct calculation of the projected dynamics defined
in the MZ formalism. They rather exploit general properties of
the GLE which are independent of its MZ theory background.
Carof et al. derived a method to explicitly calculate the projected
force correlation function from the FG trajectories based on a
rigorous application of the MZ theory.60 The original numerical
schemes applied first order approximations for numerical
discretizations, while second order schemes were shown to be
significantly more accurate.56,61 While the extracted memory
kernels should be the same as those obtained with the other
methods discussed above (within the numerical error), the
projected dynamics scheme by Carof et al. offers more general
insight, as it also allows one to calculate the projected dynamics
for other dynamical variables that depend on the chosen CG
variables. This allows, for example, one to separate interactions
into different contributions and independently calculate their
contributions to the memory kernel and, thus, to the total
friction. This was applied in the same study to calculate the
contributions of short-range repulsive and long-range attractive
interactions and their cross-correlations to the memory kernel.
Based on their results, the authors concluded that friction in LJ
fluids is dominated by the short-range interactions, which is
expected, as the repulsive interactions are much steeper and thus

contribute to dissipation through a stronger transfer of
momentum.
Recently, two works have explored the possibility of using

fine-grained trajectories to extract extended Markov models74,75

from which the memory kernel can be calculated. The idea of
extended Markov models is to artificially include a coupling of
the CG variables to additional degrees of freedom with
Markovian interactions, which mimic the non-Markovian
dynamics of the system. This approach thus directly combines
reconstruction of memory with the construction of models that
can be integrated very efficiently, as will be discussed in detail in
section 6.2.

4.2. Particles Diffusing in Harmonic Potentials. Studies
of particles diffusing in harmonic potentials are of special
interest, because such potentials can model typical setups of
single-molecule force spectroscopy and/or microrheological
experiments. In such experiments, optical or magnetic tweezers
are used to trap large molecules such as DNA, proteins, or
colloids. The tweezers can be calibrated such that, effectively, a
harmonic external potential is applied to the trapped tracer
particle. Monitoring the trajectory allows one to calculate the
rheological properties of the fluid in which they are suspended.
However, the temporal resolution in experiments is typically
limited to a time scale of ∼0.1 ms, which is too large to resolve
atomistic fluctuations; therefore, an interpretation in terms of
GLEs is appropriate.
In the analysis of experimental data, the motion is typically

taken to be overdamped. If the mass of the tracer particles is
large, memory effects can be neglected. This approximation is
well justified for tracer particles of size around ∼0.25−0.5 μm.76

The standard procedure in the analysis of force spectroscopy
measurements is thus to fit the power spectrum of positional
noise by a Lorentzian function, from which the viscosity of the
fluid can be deduced. Taking memory effects into account in the
analysis of the experimental data can give further information on
the properties of the fluid. For example, the measurement of the
frequency-dependent viscosity gives insight into the viscoelastic
properties such as the storage and the loss moduli.77 In order to
understand such experiments, one must understand the effect of
confinement on the measured rheological properties.
Daldrop et al.72 and Kowalik et al.53 have studied memory

effects of solutes whose CG EoM is given by the GLE

m
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F t s t s v s s F t
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where FC(t) is the force due to an external harmonic potential,
FC(t) = kx(t). The case k = 0 describes a freely diffusing particle
and the case k = ∞ can be implemented by constrained
dynamics. In ref 72, the authors carried out atomistic MD
simulations of a single methane molecule in water, wherein a
harmonic confinement potential was applied to the CoM of the
molecule. To extract the memory kernel, they derived a
generalized variant of eq 30
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from which the friction coefficient for k ≠ 0 can be evaluated as
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Here Γ̃(0) and C̃FF(0) are the Fourier transforms of the memory
kernel and the FACF at frequencyω = 0, which can be evaluated
as the time integrals over Γ(t) and CFF(t). Equation 33 shows
that the friction coefficient can be extracted directly from the
integral of the FACF for weak confinement forces. Asmentioned
in section 3, this is not possible for unconfined dynamics due to
the plateau problem. By varying the strength k of the confining
potential, its influence on the friction coefficient can be
evaluated. It is important to stress that eq 33 only holds for
the frequency ω = 0 and thus only relates the integrals of the
memory kernel and the FACF, but not the functional form itself.
Daldrop et al.72 analyzed the influence of the confinement on

the form of the FACF and the memory kernel independently.
For weak confinement, the integral over the FACF exhibits a
distinct maximum value followed by a decay to zero similar to
the unconfined case. On larger time scales, the weak confining
forces induce a long-lived positive tail in the FACF which
generates a finite plateau in the running integral over the FACF
on large time scales. Harmonic potentials were shown to slow
down the relaxation of the FACF on intermediate time scales.
This leads to an increase in the plateau value of the integral in
confined simulations and thus to an increase in the apparent
friction coefficient. In the limiting case of a constrained particle,
the friction coefficient was found to be overestimated by a factor
of ∼1.5. The authors note that this enhancement of the friction
due to confinement does not result from any structural changes
in the solvation shell, as the confinement forces do not affect the
equilibrium structural properties. However, the confinement of
the methane molecule influences the relaxation of the water
molecules in the hydration shell, effectively increasing the local
viscosity in the first hydration shell. They observed a similar
effect when artificially increasing the mass of the methane
molecule.78 Higher solute masses also resulted in a slowdown of
hydration shell dynamics and a local increase of the viscosity.
In the above approach, the memory kernel Γ(t) was extracted

by parametrization, which allowed a separation of contributions
to thememory kernel on different time scales. The authors could
attribute them to distinct molecular processes72 and concluded
that the imposed confinement mainly affects the hydrogen bond
breaking processes. The time-scale analysis furthermore
suggested that the impact of confinement on the local viscosity
is only significant if the inertial time scale of the tagged particle is
comparable to or smaller than the time scale of the memory
kernel. In the Markovian limit of heavy particles, confinement is
not expected to influence the measured friction.
In a follow-up study,53 the authors studied the influence of

harmonic potentials on the memory kernel for a broader set of
solutes and solvents with varying viscosities. The solutes under
study were methane, water, sodium cations, sodium anions, and
glycerol, while the viscosity of the solvent was varied by changing
the composition of a water−glycerol mixture. When comparing
different solutes for a fixed solvent, the confinement effects on
the friction were found to be negatively correlated with the
amplitude of the friction coefficient of the free solute. On the
other hand, when varying the solvent for a fixed solute (i.e., a
confined glycerol molecule), the correlation was positive. This
can be understood in terms of time-scale separation due to size
effects: The larger the solute and the less viscous the solvent, the
clearer is the time-scale separation and, hence, the smaller the
memory-induced confinement effects on the friction.
As mentioned above, the computational studies of Daldrop

and Kowalik et al.53,72 can give insight into the dynamical
processes in typical single-molecule force spectroscopy experi-

ments. The numerical findings53 suggest that significant
confinement effects are unlikely in typical optical trap experi-
ments, as the applied harmonic potentials are too weak and thus
introduce modes which have larger time scales than the memory
kernel. However, the spring constants applied in atomic force
microscopy experiments can be orders of magnitude higher and
thus can couple with the dynamical modes of the solvent,
thereby introducing confinement-dependent frictional effects.

4.3. Iterative Reconstruction. The memory reconstruc-
tion methods described above are restricted to freely diffusing
particles and particles in harmonic potentials. Jung et al.
introduced two techniques for the iterative reconstruction of
memory kernels (IMR) from FG simulations,56 which can be
applied more generally.
The methods take their inspiration from the iterative

Boltzmann inversion (IBI) method, which was introduced for
structural coarse-graining.58 The memory reconstruction
methods use either the force correlation function (IMRF) or
the velocity correlation function (IMRV) as the target function
in the iterative schemes. The IMRF method is based on the fact
that in the infinite mass limit the force correlation function is
exactly proportional to the memory kernel. This can be used to
motivate an iterative optimization scheme for the memory
kernel which is linear in the deviations of the force correlation
functions determined from the FG input and CG simulations
using the current guess for the memory kernel. The iterative
procedure is initialized using the Q-approximation; i.e., the
memory kernel is initialized as the FACF. Starting from the
IMRF method, the IMRV method exploits the fact that the
second derivative of the VACF is proportional to the FACF;
hence, the FACF is replaced by the finite-difference
representation of the second derivative of the VACF in the
IMRV scheme. To enhance convergence of the optimization
procedure, a time-dependent and adaptive choice for the step
size of any given iteration was introduced.
The method was evaluated using the example of a freely

diffusing colloid in a LJ particle bath. Both IMRV and IMRF
were applied for the reconstruction of the memory kernel
starting with the FACF as the initial guess. Both schemes
reasonably converged after 100 iterations. The IMRV was found
to be more stable, i.e., exhibiting less noise in the resulting
memory kernel, and resulted in a better representation of the
VACF in the final model. The memory kernel obtained by the
IMRV was also compared to the memory kernel as calculated
from inverting the Volterra equation (eq 27) or determining the
projected force correlation function following Carof et al.,60 and
the results were found to be virtually equivalent. In terms of
reproducing the VACF of the underlying system, the IMRV
scheme, by construction, proved to be less prone to errors due to
discretization. Moreover, the IMRV method optimizes, also by
construction, the representation of the memory kernel in the
target GLE integration scheme, and thus automatically accounts
for time-discretization effects at the GLE level. In the example
above, the time step in the GLE simulations could be chosen to
be 200 times larger than that in the FG simulations, making the
integration of the GLE efficient, despite the need of explicitly
calculating the convolution integral (see also section 6). In a
follow-up paper, Jung et al. applied their method to the
reconstruction of pair memory kernels.57 This work will be
discussed in more detail in section 5.
The recent work byWang et al.74 is based on a similar iterative

approach and optimizes the CG model via a Bayesian
optimization scheme.
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4.4. Generalized Variables.TheMori−Zwanzig formalism
and the memory reconstruction methods quoted above are
clearly not restricted to particle-based descriptions but can
similarly be applied to generalized coordinates. Some popular
examples are molecular hydrodynamic or fluctuating hydro-
dynamic descriptions,79−82 in which the distinguished variables
are density, energy density, and longitudinal current modes and
the corresponding correlation functions are, e.g., intermediate
scattering functions (ISFs). In this subsection, we will briefly
discuss such techniques.
Deriving molecular hydrodynamic equations is one of the

oldest applications of the memory function formalism.79,80

Originally, it was believed that certain correlation functions (i.e.,
the VACF) must decay exponentially in time due to the
molecular chaos assumption, which states that collisions
experienced by a particle in a fluid are uncorrelated. However,
in a pioneering work in the 1970s, Alder and Wainwright
unmistakably demonstrated the existence of long-time tails
already in hard-sphere fluids.83 Their observation could be
explained based on a molecular hydrodynamic description, in
which the memory kernel is approximated using mode-coupling
theory.84 Similar anomalous properties of various important
transport coefficients have been studied extensively since then,
also in the context of the glass transition.85 For detailed
discussions, we refer to recent reviews and standard textbooks
on related topics such as anomalous transport,86 molecular
hydrodynamics,80 and memory in glassy systems.85,87,88

Amati et al.89,90 used the Mori−Zwanzig formalism to study
memory effects in the density fluctuations of a Fermi−Pasta−
Ulammodel, i.e., a linear chain with anharmonic bond potential.
The reconstruction technique was based on a series expansion of
the numerically calculated ISF. The detailed analysis of the
short-time behavior of both the classical and quantum
mechanical versions of the Fermi−Pasta−Ulam model revealed
zero-point energy effects that affect the mobility of the particles.
Chen et al. investigated the non-Markovian conformational

motion of large proteins such as HIV-1 protease, which consists
of nearly 200 residues,91 showing that the conformational
motion of proteins, which is usually modeled via Markov
models, can exhibit memory effects, depending on the degree of
coarse-graining. This study was based on an analysis of the
potential energy of the protein only and did not yet include
solvent effects. Later, Ma et al.92 and Lee et al.93 used molecular
simulations to reconstruct the non-Markovian conformational
motion of chignolin92 and alanine dipeptide.93

Memory kernels have also been reconstructed for non-
equilibrium nonstationary GLEs.24 Meyer et al. used their
memory reconstruction methods (eq 22) to study the
fundamental problem of nucleation.54,94 In this case, the time
dependence of the nucleation-cluster size was chosen to be the
relevant generalized variable. The authors found intriguing non-
Markovian effects in the dynamics of the cluster size, which
explicitly depend on the age of the sample.

5. GLE-BASED COARSE-GRAINING AND MULTISCALE
MODELING

In the previous section, we have discussed how FG systems can
be mapped onto (mostly low-dimensional) GLEs in order to
study the nonlocal effects in the friction (memory kernel) and
properties of colored noise. In dynamic coarse-graining, the goal
is often to construct dynamically consistent high-dimensional
CGmodels with many interacting CG variables. Such efforts will
be discussed in this section.

Smith et al.95,96 and Tuckerman et al.97 were among the first
to derive an effective GLE type EoM from MD simulations and
employ it in CG simulations. While the foundations of this
approach were thus already laid quite some time ago, in recent
years, increasing efforts have been dedicated to deriving
methods for non-Markovian CG models using bottom-up
approaches. So far, successful models in this direction include
models on freely diffusing Brownian particles with single-particle
friction kernels,29,67 dilute and dense particle systems with
pairwise friction interactions,29,57,98,99 and also models based on
generalized CG variables that do not have a (CG) particle
interpretation such as density fields.100,101

5.1. Particle-Based Coarse-Graining. The earliest at-
tempts to solve stochastic differential equations with inter-
actions that are nonlocal in time date back to the beginning of
the 1980s with the works of Ermak and Buckholz102 and Ciccotti
and Ryckaert.103 Details of the numerical implementations will
be discussed in section 6. Smith et al.95,96 were the first to apply
these ideas to real systems and to thus propose a systematic
dynamic coarse-graining procedure. They applied their methods
to the vibrational relaxation of iodine suspended in LJ xenon atT
= 300 K. The integration of the generalized Langevin equation is
based on an auto-regression model, which has been shown to be
equivalent to themethod of Ciccotti and Ryckaert103 and related
to the auxiliary variable approaches discussed in section 6.2.
They compared the results of their GLE model to MD
simulations, showing that such a simple model is indeed able
to describe the FG dynamics in full detail, thus laying the
foundation for future works on dynamic coarse-graining. One
year later, Tuckerman and Berne97 used methods derived earlier
by Berne et al.65,66 to extract the memory kernel of a constrained
diatomic LJ harmonic oscillator immersed in a LJ particle bath.
Later, they generalized this to anharmonic coupling,104 thus
providing the first dynamically consistent coarse-grained model
in a complex energy landscape.
Only recently, this idea was brought back to life and

generalized to multiparticle systems. The simplest approach is
to neglect particle correlations in the friction terms and assume
that the motion of CG particles can be described by a single
effective “self-friction kernel” according to the EoM29,67,105
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where Γ(t) is a single-particle memory kernel and particles can
only interact via the conservative forces FI

C([X(t)]).
Recently, Wang et al.74 showed that, for star polymer systems,

eq 34 suffices to reproduce dynamical properties of the
underlying FG system over density ranges from dilute solutions
to a melt. In this study, all memory effects were described by an
average scalar self-friction memory kernel, which can be
modeled by the auxiliary variable approach (see section 6.2).
The authors used a Gaussian process based Bayesian
optimization scheme106 to optimize the memory kernel to
match the VACF of a single particle. The fundamental idea is
comparable to the IMRV scheme; however, it is better suited for
the auxiliary variable approach, because the parameters of the
integrator are optimized directly instead of being fitted a
posteriori to a memory kernel. A similar Bayesian approach was
used to parametrize CG DPD models in ref 107.
While these models can well reproduce the tagged-particle

motion, it is expected that pair diffusion will not be appropriately
described. Already in 1990, Straub et al. showed that the relative
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motion between two bounded LJ particles can be described by a
GLE with a memory kernel that strongly depends on the particle
distance.108 An alternative approach is thus to assume that the
friction forces can be decomposed into pair friction terms that
solely depend on the relative velocity VIJ of the interacting
particles I and J,29,108 resulting in the approximation (cf. eq 14)
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As discussed in section 2, this corresponds to a non-Markovian
extension of DPD-like models. For such models, an additional
fundamental problem arises: Pair memory kernels typically

depend on the distance between particles, which changes with
time. Therefore, the problem of determining pair frictions is only
well-defined in cases where the distance between the particles is
confined by a potential, e.g., a bond potential, or if the CG sites
belong to the same molecule.108 In all other cases, one must
make the additional approximation that the particle distance is
roughly constant on the time scale of memory decay; i.e., one
must assume that the time scales of the memory kernel and the
characteristic diffusion time of particles are well separated. If this
is indeed the case, pair memory kernels can be extracted from
FG simulations in the same way as single-particle memory
kernels29,108,109 (section 4).
Li et al. considered a GLE of the form of eq 35 and introduced

a pairwise decomposition of conservative interaction and the
memory kernel.29,98,109 The EF-CG approach48 and the IBI58

Figure 2.Non-Markovian coarse-graining procedure for a star polymer melt.98 (a) Illustration of the coarse-graining procedure in which each polymer
is replaced by a single CG particle, which interacts with the other particles via the EoM (35). (b, c) VACF for the non-Markovian DPD (NM-DPD)
model in comparison to the MD results and a Markovian DPD model for low (b) and high (c) density. Reprinted with permission from ref 98.
Copyright 2015 AIP Publishing.
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method were used to derive the conservative interactions, while
a pairwise variant of the Volterra equation (eq 27) was used for
the derivation of the pairwise memory kernels. Furthermore, for
numerical simplicity, the time and distance dependence of the
memory kernels were assumed to be separable. In all cases, the
star polymer systems were considered with varying polymer
sizes and densities.
In ref 98, Li et al. considered star polymers consisting of 11

beads interacting through Weeks−Chandler−Andersen inter-
actions at reduced densities of 0.4 and 0.7. They found that, at
both densities, the non-Markovian DPD approach performed
well in reproducing the VACF of the underlying FG system (see
Figure 2). A comparison with Markovian DPD simulations
further showed that the improvement due to the incorporation
of memory effects was stronger for the dense systems, which
lacked time-scale separation. However, the Markovian DPD
simulations also performed relatively well at both densities,
which highlighted the possibility of using Markovian approx-
imations in a wide range of implicit solvent polymer systems,
depending on the desired accuracy. Only for high frequencies
(i.e., small times), one can observe clear deviations between the
non-Markovian and Markovian DPD models, as highlighted in
the insets in Figure 2.

Yoshimoto et al.109 combined a non-Markovian DPD model
with the IBI58 and EF-CG48 methods and applied it to a dense
system of LJ colloids. They found that the dynamic properties
did not depend on the specific coarse-graining strategy for the
conservative interactions. Furthermore, they compared two
different approaches for extracting the memory kernel: first,
approximating the memory kernel by the force auto-correlation
function (Q-approximation), and second, by inverting the
Volterra equation. Since the chosen system was dense, a time-
scale separation cannot be assumed and the memory kernel
extracted from the Volterra equation led to a better
representation of the dynamics. Being exact for t = 0, the Q-
approximation shows good agreement for the short-time
behavior; however, for long times, the force auto-correlation
function significantly deviates from the real memory kernel and
also suffers from the plateau problem,38,40 as discussed earlier.
Another interesting, more qualitative approach to include

memory on the pairwise level to coarse-grained simulations has
been suggested in ref 110 and applied several times since then in
the context of star polymer melts111 and polymer solutions.112

The idea is to include additional, physically motivated degrees of
freedom to the system which mimic the slow structural
relaxation of the orthogonal variables. This approach is thus
connected to the data-driven auxiliary variable approach, in

Figure 3.Non-Markovian coarse-graining procedure for a colloidal suspension. (a) Illustration of the coarse-graining procedure, in which every colloid
is represented by a single CG particle and the interaction with the solvent is incorported purely implicitly. (b) The velocity auto-correlation function,
Cvv(R, t), for colloids which have a nearest neighbor at a distanceR. (c) The velocity cross-correlation function,Cvv

c (R, t), for pairs of colloids at distance
R. The results in parts b and c are compared between MD results and the non-Markovian coarse-grained model (CG). (d) Comparison of the
reconstructedmemory kernels Γ(R, t) of the CGmodel (see eqs 37 and 38) with fluid dynamics (FD) theory.113 This also shows the importance of the
introduction of distance-dependent memory kernels. Figure adapted with permission from ref 57. Copyright 2018 Royal Society of Chemistry.
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which these additional degrees of freedom, however, usually do
not have any physical interpretation.
The “pure self-friction kernel” models (eq 34) and the non-

Markovian DPD models (eq 35) discussed so far can be
implemented efficiently, but they impose rather severe
restrictions on the form of the multiparticle memory kernel,
compared to eq 12.Moreover, they are not even compatible with
each other. In particular, the self-friction contribution of the
memory kernel in the non-Markovian DPD model

X( )I
J I

IJ IJ
DPD∑Γ Γ=

≠ (36)

depends solely on the surrounding particles and may either
become very large (in dense systems) or very small (in dilute
systems). This causes problems, e.g., when looking at colloidal
suspensions where the dominant friction stems from the
interaction with the (implicit) solvent, but collective memory
effects113 (frequency-dependent hydrodynamic interactions)
may, nevertheless, not be neglected. Theoretical and numerical
studies of a system containing two colloids only reveal an
intriguing dependence of both the pair- and self-memory on the
interparticle distance.113 Methods that are purely based on self-
memory or on DPD-type pair-friction are thus expected to fail.
To solve this problem, Jung et al.57 proposed a generalization of
the non-Markovian DPD models. In this study, the memory
matrix as defined in eq 12 consists of a self-memory matrix
coupling to the velocity of the particle and a set of pair matrices
coupling to the velocities of the other particles in the system.
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The self-memory matrix is assumed to depend on the
configuration, as the friction with respect to the background
medium can be altered by nearby particles.113 It thus has a
configuration-independent “bare” component and a contribu-
tion that depends on the relative positions of other particles in
the vicinity
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The set of eqs 37 and 38 is still less general than eq 12, but it
can interpolate between eqs 34 and 35 and includes them both as
special cases. Using this framework, Jung et al. studied a dilute
system of repulsive nanocolloids (radius Rc = 3σ) in a LJ liquid
(diameter d = 1σ), as illustrated in Figure 3. The memory kernel
was reconstructed using the iterative reconstruction.56 As an
initial guess for the memory kernel, a generalization of the
Volterra equation (eq 27) including distance-dependent
velocity auto- and cross-correlations for a system containing
only two particles was used, similar to ref 113. Effective many-
body effects in multiparticle systems were then implicitly
introduced by optimizing the memory matrix via the IMRV
method. In order to validate and test the approach, the authors
compared the distance-dependent velocity auto-correlation and
cross-correlation functions from the original FG system to those
in their model, with excellent results, as shown in Figure 3b and
c. The authors also compared the reconstructed memory kernel
to fluid dynamics theory, obtained by analytically solving the
linearized Navier−Stokes equation for two embedded
spheres.113 The simulation and theoretical results are in
quantitative agreement (see Figure 3d), which not only validates

the assumptions made for the simulation model but also
highlights the importance of using distance-dependent memory
kernels to capture the relevant physics of the fluid. Moreover, for
the first time, the authors also analyzed the transferability of the
CG model to different colloid densities. They found that the
model not only describes the dynamic properties of one
particular system but indeed captures the fundamental non-
Markovian interactions of colloids suspended in a Lennard-
Jones fluid over a wide range of colloid densities. A significant
gain in performance could be achieved for colloid number
densities corresponding to dilute systems compared to FG
simulations, not only due to the reduction of the number of
particles but also because the time step could be chosen to be
about 50 times larger than that in the reference FG simulations.
The portfolio of methods for bottom-up non-Markovian CG

simulations with consistent dynamics has grown quite
substantially over the past decade. The choice of the method
strongly depends on the system under study and the properties
of interest. The general method proposed by Jung et al.57 can be
applied to a large set of systems and is most efficient in cases
where the relevant particles only represent a very small fraction
of the microscopic degrees of freedom, e.g., in implicit solvent
models. In the opposite case, in which the coarse-grained system
incorporates most of the microscopic degrees of freedom, as is
the case, for example, for the coarse-graining of polymer melts,
the non-Markovian DPD approach by Li et al.29 might, however,
be more suitable due to its numerical efficiency. Both methods
are clearly less efficient compared to the pure self-frictionmodels
that have been applied in refs 48, 98, and 105. These simplified
models are able to describe tagged-particle motion in a
numerically efficient and dynamically consistent manner.
Many physical and chemical processes, such as hydrodynamic
motion or diffusion in complex environments, however, crucially
depend on the relative motion of molecules. An additional
problem is the transferability of these models. Since the single-
particle memory does not include any information on the (local)
density of the system, one would expect that themodels can only
reproduce the correct dynamics in exactly the same system in
which they were reconstructed and that any change of state
variables will require a re-evaluation of the memory kernel.
Furthermore, any information on dynamic heterogeneities in the
system will be lost due to the averaging over all particles. These
problems will have to be discussed in the future in order to
improve the practical use of dynamically consistent coarse-
grained models.

5.2. Coarse-Graining with Generalized Collective
Variables. Much of the work on GLE-based coarse-graining
so far has addressed particle-based CGmodels. In section 4.4, we
have discussed some recent works where memory kernels were
reconstructed for GLEs operating with generalized collective
variables, focusing on the interpretation of memory effects in
dynamics and not on the construction of CG models for actual
non-Markovian simulations. In the following, we will highlight a
few examples where GLE-based coarse-graining was applied to
derive CG models with generalized CG variables.
One example is the set of non-Markovian models that were

constructed to describe the conformational motion in
proteins,91−93 which were already mentioned in section 4.4.
Chen et al. studied a high-dimensional model, where the coarse-
grained variables correspond to low-frequency eigenmodes of
HIV-I protease (the authors also provided results for more
standard, particle-based coarse-graining). In terms of complex-
ity, the model operates on a similar level as ref 57, introducing
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dissipative forces for both the self- and pair-interactions in the
system.
Other examples are the non-Markovian dynamic density

functionals, which are attracting growing attention. Very
recently, Russo et al.114 developed a multiscale framework for
describing reacting multispecies fluids in equilibrium and
nonequilibrium. They started from an already coarse-grained
GLE-system of particles with pure self-memory, and then
performed ensemble averages over local densities, momenta,
and reaction sources, applying a local equilibrium assumption.
The resulting theory had the form of a fluctuating non-
Markovian dynamic density functional and was used to study,
e.g., the diffusion of a gas in a double well potential and the
influence of memory on Turing patterns.
Memory effects are particularly prominent in polymer systems

where the dynamics of density fluctuations is governed by chain
relaxation processes on multiple time scales.115−117 Wang et
al.118 recently investigated the influence of memory on the
kinetics of relaxation and structure formation in copolymer
melts and polymer blends. They derived an analytic expression
for the memory kernel in random-phase approximation and
constructed a non-Markovian dynamic density functional theory
(NM-DDFT) based on this kernel. They showed that NM-
DDFT calculations can quantitatively reproduce the collective
disordering dynamics of particle-based reference simulations.
Based on this work, Rottler and Müller119 used the method of
Meyer et al.54 (eq 22) and further approximations regarding the
collective dynamic structure factor to derive amemory kernel for
block copolymer melts and applied it to study pattern formation
in thin block copolymer films.
Memory is also a central ingredient in the recently proposed

hydrodynamic models for fluctuating viscoelasticity.120−122 The
Oldroyd-B and related models for viscoelastic flow of polymeric
melts are examples of multiscale models with memory, where
the memory is approximated by a physically motivated auxiliary
variable, which is usally denoted as an extension tensor that
basically “memorizes” the local extension of polymers. This
description has been generalized to a GLE-based model in two
works by Hohenegger et al.100,101 Instead of applying a single-
modeMaxwell model for the stress tensor (which would result in
the Oldroyd-B model), they assumed that the memory can be
expressed as a series of exponentials (see also section 6). In this
way, they were able to describe, in very general terms, the
movement of passive tracers in a viscoelastic medium.

6. IMPLEMENTATION OF GLE SIMULATIONS AND
EFFICIENT INTEGRATION

In the previous section, we have introduced and discussed
various different models to incorporate non-Markovian
dynamics into complex coarse-grained models. We have mostly
skipped details of the numerical implementation and efficient
integration of the equations of motion. These will be discussed
in this section.
The first papers on the integration of stochastic differential

equations based on the GLE date back to the 1980s. In a seminal
contribution, Ermak and Buckholz proposed two novel
approaches for the integration of a GLE in an arbitrary external
potential.102 The first is based on a direct integration scheme
that can be applied to arbitrary memory kernels, in which the
memory integral is discretized in time using a standard midpoint
rule and the noise is calculated using a convolution approach,
similar to the Fourier transform method which will be
introduced below.123 The second approach is based on the

assumption that the memory kernel is exponential, which allows
it to be replaced by an equivalent extended Markovian model
with one additional variable. This method is based on an idea
presented 1 year earlier by Ferrario and Grigolini,124 and it is the
precursor of the auxiliary variable technique discussed below
(see section 6.2). In the same year, Ciccotti et al. published two
works103,125 in which they integrated the GLE by assuming a
truncation of the continued fraction representation of the
memory kernel,126 which is equivalent to the auto-regression
model used by Marchesoni et al.127 and Smith et al.95

Generally, one faces twomain issues when trying to integrate a
GLE: first, the integration of the friction force which, in
principle, requires the storage and evaluation of the entire past of
all coarse-grained particles and, second, the generation of
suitably correlated random numbers. In the most complex
situation, where the system is governed by non-Markovian
interactions between different particles, these random numbers
must be correlated in space and time.57,91 Two distinct types of
approaches have been used to solve these problems, the direct
integration and the auxiliary variable methods. Both have their
advantages and disadvantages, which we will discuss in the
following.

6.1. Direct Integration. In the direct integration approach,
the convolution integral appearing in the friction force is
integrated numerically using a time cutoff tcut, which effectively
corresponds to multiplying the memory kernel with a Heaviside
theta function Θ(tcut − t). This allows for a straightforward and
easy evaluation; however, it can introduce artifacts. The most
obvious artifact is that any long-time tails in the dynamics will be
disregarded, which can be problematic in situations involving
hydrodynamic tails (see the discussion in ref 57). In most
applications, however, in which the introduction of memory is
supposed to be an improvement compared to the idealistic
Markovian assumption, the cutoff is not expected to lead to
serious errors.
One major challenge in direct integration methods is to

produce suitably correlated random forces. The most popular
approach is based on the original idea of Ermak et al.102 to
express the colored noise as a convolution of an unknown
function with a white noise variable. The method was
successfully applied by Barrat et al.123 using a Fourier transform
approach, but the function can also be determined by auto-
regressive techniques95 or optimization.29 For non-interacting
particles, the scaling of the method is similar to that of the direct
integrator of the friction force; i.e., the computational costs
increase linearly with the particle number N and the number of
memory steps, Nt = tcut/Δt (where Δt is the time step) with the
scaling N N( )t· .
Producing colored random numbers becomes much more

problematic when simulating interacting particles or integrating
multidimensional GLEs, in which the random force also has
cross-correlations, described by the off-diagonal terms in the
memory kernel matrix. This problem was addressed by Chen et
al.91 and Jung et al.57 and, in both cases, was solved using the
Lanczos method.128 In short, the Lanczosmethod can be used to
approximate highly dimensional matrices by tridiagonal
matrices in Krylov subspaces with significantly reduced
dimension, thus allowing for efficient matrix inversion and
Cholesky decomposition. If one can further assume that every
coarse-grained dimension only interacts with a fixed number of
“connected” variables (e.g., neighbors in particle-based
descriptions), this method allows the computational time to

The Journal of Physical Chemistry B pubs.acs.org/JPCB Review Article

https://doi.org/10.1021/acs.jpcb.1c01120
J. Phys. Chem. B 2021, 125, 4931−4954

4944

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01120?rel=cite-as&ref=PDF&jav=VoR


be reduced to N N( )t· , making it suitable for applications in
large-scale simulations.
The last remaining problem is the choice of an efficient GLE

integrator. Generally, one can use any standard Langevin
integrator, since the time-retarded contributions to the force can
just be added to the total force on the coarse-grained variables.
Addressing specifically GLEs, Tuckerman and Berne have
derived a multiple time-stepping algorithm in 1991, which can
be used in cases where the typical frequencies related to the
conservative forces differ very much from the time scale of the
memory.97 Jung et al.56,57 derived an alternative integrator which
generalizes the Grønbech-Jensen/Farago Langevin (GJ-F)
thermostat129 and was found to perform very well for both
non-interacting and interacting particles.
The direct integration method is thus very flexible and can be

applied to basically all non-Markovian models that were
discussed in the literature. However, in cases where Nt is large,
the computational overhead for the evaluation of the friction and
the random force is significant.
6.2. Methods Based on Auxiliary Variables. The central

idea of auxiliary variable approaches is to introduce additional
stochastic variables and replace a GLE by an equivalent extended
system of Markovian LEs. Let us consider a Markovian LE for
two coupled degrees of system. As we will show below,
integrating out one of them automatically results in the
emergence of a memory kernel in the dynamical equation for
the other.22 Inverting this procedure, one can transform a system
with exponential memory into an extended Markovian system
with an additional, auxiliary variable that mimics the effect of the
memory. The auxiliary variable approaches use this fact to
construct extended Markovian models for the GLE. The idea is
to expand the memory kernel into multiple exponentials and
then represent each one by an additional auxiliary variable.
Related approaches were already proposed in some of the very

first works on numerical GLE integrators.124,127 In these studies,
the auxiliary variables were constructed by a truncation ofMori’s
continued fraction expansion.126 The method was revived about
10 years ago, mainly due to the work of Ceriotti et al., who used it
as a practical numerical tool, in which the expansion is
determined by a fitting procedure.130−139 Recently, two works
have also extracted extended Markov models directly from fine-
grained trajectories, with great success.74,75

To introduce the technique, let us consider the following two-
dimensional linear differential equation22
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Solving eq 39 for the variable a2 and putting the result back in
the equation for a1 gives
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In eq 40, the dynamics of a1 now only depends on the initial
conditions of a2 and not its time evolution. Instead, an integral
term appears, which involves the history of a1. This procedure is
exact and reversible. Since the Markovian eq 39 and the non-
Markovian eq 40 are equivalent, it is evident that it should in
many cases be possible to rewrite non-Markovian integro-
differential equations such as GLEs in a Markovian form by the
introduction of additional variables. Such a procedure allows

one to describe the evolution of the convolution integral in a
GLE in terms of a set of auxiliary variables, thus rendering the
EoM Markovian.
This method was used by Ceriotti et al. to introduce a general

framework for exploiting the GLE as a flexible thermostat inMD
simulations.130−135 Following their scheme, a non-Markovian
GLE of the form

mv F t F t t s v s s F t( ) ( ) ( ) ( ) d ( )C
t

R

0
∫̇ = = − Γ − +

(41)

can be rewritten in a Markovian form as
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where A and B are the drift and diffusion matrices, respectively.
For canonical sampling, B is fully determined by A in terms of
the FDT. The noise term ξ is a vector of uncorrelated Gaussian
random numbers with zero mean and unity variance, which can
be implemented rather efficiently compared to correlated noise.
The vector s is a set of auxiliary variables, which effectively
“stores” the dynamical history of v, while the drift matrix A
includes the self- and cross-coupling of the momentum and the
auxiliary variables. The matrix A must satisfy the requirement
that A + AT is positive (semi)definite to ensure that B can be
chosen in a manner consistent with the FDT and that a
stationary distribution of (v, s) exists. This can be ensured by
choosing the nondiagonal elements in the drift matrix to be
antisymmetric and the diagonal elements to be positive or zero,
Aii ≥ 0.
As long as this specific condition is met, one has some

freedom in the choice of A. For certain functional forms of the
memory kernel Γ(t), equivalent parametrizations for eq 42 were
proposed. Ceriotti et al. proposed parametrizations for
exponential memory kernels and memory kernels that are δ-
correlated in Fourier space.131 The total memory kernel can also
be constructed as a sum of contributions, which allows, for
example, one to use a sum of exponentials to describe memory
decaying on different time scales140 or to approximate a power-
law memory kernel.135 The δ-like memory kernel is defined by
its amplitude, mean value, and a line width in Fourier space,
which allows one to define a memory kernel with an arbitrary
power spectrum by a sum of δ-like functions.131

As a side note, we remark that Ceriotti et al. did not have
dynamic coarse-graining in mind in their work but rather the
development of enhanced sampling schemes for MD
simulations. Applying thermostats with memory and colored
noise allows one to control and optimize the correlation times of
modes with different frequencies independently.131 Ceriotti et
al. also proposed to use nonequilibrium GLEs (with colored
noise that does not fulfill the FDT) tomimic the effect of nuclear
quantum fluctuations.132

Similar approaches can be used to parametrize memory
kernels in GLE simulations.29,67,74 Li et al. considered a star
polymermelt with the dynamics of a single-star polymermapped
onto aGLE and exploited the Volterra inversionmethod (eq 27)
for the extraction of the memory kernel.29 In the CG
simulations, they compared the results obtained using a
discretized calculation of the convolution kernel with those
using the auxiliary variable approach due to Ceriotti.131 Both
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methods were found to reproduce the VACF with small
deviations on large time scales, which were, however, more
pronounced in the discretized convolution integral approach.
The direct calculation of the convolution integral necessarily
involves cutting off the number of time steps considered in the
evaluation of the GLE. In particular, if the memory kernel
exhibits a slowly decaying tail, this will always lead to a
overestimation of the dynamics due to the truncation of the
long-time friction. The auxiliary variable approach shows a
similar but slightly lower deviation. For the parametrization of
the auxiliary variable approach, a set of damped oscillators was
used. This fitting procedure allows one to represent the memory
kernel for larger time scales, which can enhance the
representability of the long-time-scale behavior. Even though
the memory kernel is not truncated in the auxiliary variable
approach, approximating long-tail memory kernels by a finite
sum of exponentials still implicitly results in a, though less
severe, truncation error.
The same approach was also applied to solutions ranging from

generic star polymer solutions to a solution of tri-n-butyl
phosphate in chloroform.67 In these systems, it was possible to
capture the long-time scaling of the memory kernel accurately
enough tomatch the VACF over all time scales with a reasonable
number of fitting functions for the memory kernel. Furthermore,
the authors established a GJ-F integrator129 for the auxiliary
variable approach, thus enhancing the performance of the CG
simulation due to larger time steps.
Li et al. also extended the auxiliary variable approach for the

case of non-Markovian DPD equations and derived it in a
pairwise-decomposed form, including also complex exponentials
which allows for a better representation of the memory kernel.29

Here, the auxiliary variables were coupled to the relative
velocities of the bead pairs, instead of the absolute velocity of a
single particle. This leads to an increase in the computational
cost compared to the GLE thermostat, as auxiliary variables
must now be introduced for each bead pair. Nonetheless, it was
found that this approach is roughly 20 times more efficient than
the direct evaluation of the convolution integral in the same
system.98 The authors demonstrated that both approaches can
well capture the dynamical properties of the underlying FG
system.
The auxiliary variable approach is thus clearly more efficient

than the direct integration technique which we have discussed in
section 6.1. One challenge is an accurate reconstruction of the
non-Markovian dynamics, which often requires fitting of
memory kernels with a series of (complex) exponentials. This
problem, however, might not be very severe, because it is often
not necessary to reproduce memory kernels in full detail.
Furthermore, recent work on direct optimization has demon-
strated that it is possible to faithfully represent self-friction
memory kernels over several orders of magnitude in time with
auxiliary variables.74

On the other hand, when looking at multidimensional
memory kernels with distance-dependent pair memory
contribution, the approach may also fail and it may not be
possible to find an equivalent representation of the form of eq
42. The problem is that the different entries in the memory
kernel matrix then depend on the relative distances between all
particles in the system, and there is no (obvious) way to ensure
that this memory kernel matrix is always positive (semi)-definite
(see the discussion in the Appendix of ref 57).

7. PHYSICAL IMPACT OF MEMORY

From the point of view of dynamic coarse-graining, it is clear that
memory effects should be included in CG models in many cases
in order to quantitatively reproduce the dynamics of the
underlying FG model. In addition, memory can have a
significant impact on the qualitative behavior of materials. One
particularly prominent example is the glass transition, which has
been the subject of intense research for almost a century now
and will not be discussed here (see refs 85, 87, and 141−145 for
recent advances and reviews). Another important field where
memory plays a central role is anomalous diffusion (see section
4.1), which has also attracted enormous interest due to its many
applications in physics and biology and will also not be discussed
here (for reviews, see, e.g., refs 59, 86, and 146). There are many
other cases wherememory has a physical impact on systems, and
we will now illustrate this using a few selected examples.
Mankin and co-workers studied the influence of memory on

the motion of trapped Brownian particles in oscillatory
viscoelastic shear flow with a power-law-type memory
kernel.147,148 Among other things, they discovered a dynamic
phase transition from a trapped to a diffusive state when
increasing the memory exponent. Moreover, the cross-
correlation of the particle motion in flow and shear direction
changed sign twice with increasing exponent.
Lesnicki et al.61 gave a beautiful example of how the analysis of

memory kernels can enhance the understanding of physical
phenomena. They performed an accurate calculation of the
memory kernel of a tagged LJ particle in a bath consisting of
equivalent particles on long time scales, using the method of
Carof et al.,60 and numerically derived the algebraic long-time
tail for the memory kernel. They related this result to the
Basset−Boussinesq hydrodynamic force equation, which is
typically used to model colloidal spheres in suspension.149,150

Thus, they showed that the Basset−Boussinesq equation is also
applicable in the microscopic regime, with parameters that can
be directly derived from the memory function.61 Seyler and
Presse151,152 investigated the influence of this “Basset history
force” on the motion of microspheres in oscillatory flow and a
periodic potential. They showed that hydrodynamic memory
significantly enhances the mobility of microspheres and helps
them to escape potential wells in which they would otherwise
remain trapped for much longer times.
Goychuk153,154 considered the effect of hydrodynamic

memory on the diffusion in so-called washboard potentials,
where the diffusion is enhanced by orders of magnitude already
in the absence of anymemory.155 He showed that hydrodynamic
forces can enhance the diffusion even further in such systems
and induce a transient but long-lived superdiffusion regime,
where the mean-square displacement scales with t3.
The above situations have in common that the memory

kernels were long-range in time. However, memory effects may
also qualitatively affect the dynamics of systems if the memory
kernels are short-range, i.e., decay exponentially. One such
example was recently discussed by Kappler et al.,47 who analyzed
the influence of memory with an exponentially decaying
memory kernel on the mean first passage time (MFPT), τMFP,
in a generic symmetric double well potential (see Figure 4). For
fixed inertial and diffusive time scales, τm and τD, they reported
an intriguing non-monotonous behavior as a function of the
time scale τΓ of the memory kernel, where the MFPT first
decreases with τΓ (“memory speedup” regime in Figure 4) and
then grows as τΓ

2 for large τΓ (“memory slowdown” regime in
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Figure 4). If multiple memory time scales τΓ,i with different
associated friction constants γi are involved, then the behavior of
the MFPT is dominated by the time scale τΓ,j for which γj/τΓ,j

2 is
the largest.140,156 This study demonstrated that, remarkably,
memory effects in the presence of conservative interactions can
affect the long-time dynamics far beyond the time scale of the
memory. It further showed that this effect strongly depends on
the chosen barrier height.
The findings of Kappler and co-workers might provide a

possible explanation for the observation that Markovian DPD
models can capture the long-time dynamics rather well in simple
liquids with low viscosity, in which energy barriers are
significantly smaller than kBT, whereas they tend to overestimate
the diffusion coefficient in systems in which energy barriers due
to conservative interactions are rather highas is the case for
polymer melts and solutes in polymer networks.37 In both cases,
the separation of time scales is incomplete. However, the
diffusion of the polymer should not depend much on the local
relaxation processes in dilute polymer solutions and thus can be
well captured by a Markovian approximation after appropriate
time-scale mapping.37 In the case of penetrant diffusion in a
polymermatrix, which is closely related to theMFPT problem in
a double-well potential, one observes significant deviations from
Markovian DPDmodels. A potential enhancement of the barrier
crossing rate resulting from the Markovian approximation can
accumulate over time and effectively translate into an enhanced
diffusion coefficient.37

Memory effects can also be prominent in driven and active
systems. Russo et al.114 derived a generalized dynamic density
functional framework for reactive multicomponent fluids with
memory and showed that reaction-diffusion equations for
components with dissimilar memory kernels exhibit novel
Turing patterns. Two examples of memory effects in systems of
microswimmers were recently discovered by Nagai and co-
workers157 and by Narinder and co-workers.158 Nagai et al.157

investigated the effect of memory (colored noise) on the pattern
formation in fluids of microswimmers and showed that memory
can induce a whole spectrum of novel patterns in such systems,
including vortex lattices and laning. Narinder et al.158 studied the
motion of colloidal microswimmers in a viscoelastic fluid both
experimentally and theoretically and showed that memory can
induce spontaneous circular motion.

These examples show how memory can fundamentally
influence the dynamical behavior of systems. In many cases,
properly accounting for memory effects in coarse-grained
simulations is not just necessary to establish a proper
quantitative link between the fine-grained and coarse-grained
systems. It may also be crucial to capture the essential
characteristics of the dynamics at the coarse-grained level.

8. OUTLOOK
Over the past decade, a lot of progress has been made toward
improving dynamical consistency in CG simulations based on
the Mori−Zwanzig theory. While the Markovian approach has
been exploited with varying success, in most cases, the systems
under study were chosen such that the approximation is
evidently valid. In such cases, even though the methodology
could be validated, its applicability to real physical systems
remains questionable. In general, for a moderate level of coarse-
graining at a high density, the Markovian approximation is not
valid. Interestingly, the approximation could still capture the
long-time dynamics of simple liquids where the time scales are
not well separated.37 For multibead mapping schemes in
polymer systems at high densities, the approximation introduces
errors in the long-time dynamics, probably due to the
comparable time scales of memory effects and chain relaxation
processes that govern diffusion. In principle, this could be
circumvented by choosing a higher degree of coarse-graining,
which would enhance the time-scale separation. However, such
models will ultimately lose their predictive capabilities, as the
mapping scheme for a given physical question is chosen based
on the corresponding length and time scales of interest.
On the other hand, non-Markovian CG models are more

flexible and can be applied to a broad range of physical problems,
with an obvious increase in computational overhead. Among the
existing methods, the generalized Langevin dynamics method57

proposed by Jung et al. is rather general and can be applied to
any physical system with arbitrary mapping schemes, however,
at a relatively high computational cost. The assumption of
pairwise-additivity of the frictional forces as proposed by Li et al.
allows one to formulate non-Markovian DPD-type models,
which can be integrated more efficiently using auxiliary variable
approaches.29 While this circumvents the computational
overhead of explicit memory evaluation to a large extent, the
non-Markovian DPD models with a moderate degree of coarse-
graining can still be less efficient compared to fine-grained MD
simulations, again limiting their applicability to coarser models.
Unfortunately, there are no studies yet in which the predictive

capabilities of non-Markovian DPD models are demonstrated
conclusively. If the corresponding memory kernels (which only
depend on the direct interactions and, thus, local correlations)
can be assumed to be short-lived compared to the diffusive time
scales and the dynamics on longer time scales are partially
encoded in the conservative interactions, it is reasonable to
assume that non-Markovian DPD models can be parametrized
with relatively short fine-grained MD simulations, while the
dynamics on long time scales can be sampled with the CG
models. One possible application of this kind would be the
penetrant diffusion in polymer melts or polymer networks, for
which it was shown that Markovian DPD approaches do not
correctly reproduce diffusion.37 However, to the best of our
knowledge, no study has applied any of the discussed non-
Markovian CG approaches to predict dynamical properties of
such materials or related molecular processes. One possible
reason is the nontrivial derivation of the memory kernels and the

Figure 4. Effect of memory on the barrier crossing dynamics of a single
particle.47 (a) Illustration of the simulation setup. (b) The important
regimes for themean first passage time, τMFP: theMarkovian regimes for
overdamped and underdamped dynamics in which the memory has no
effect, as well as the regimes in which the memory introduces a speedup
or a slowdown compared to the Markovian results. τm and τD, inertial
and diffusive time scales; τΓ, time scale of the memory kernel. Reprinted
with permission from ref 47. Copyright 2018 AIP Publishing.
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rather complicated and computationally expensive implementa-
tion of the CG model.
Transferability of CG models is another important issue that

requires future attention, in particular with respect to dynamical
properties. In the field of systematic polymer coarse-graining,
transferable pair potentials have been developed based on
approaches that minimize the contributions of average, and
strongly state-dependent, multibody effects. The CRW pair
potential45,46 and the EF-CG pair potential48 represent the free
energy associated with the interactions among the internal DoF
of two beads at a fixed distance, excluding contributions of the
nonbonded environment of the two beads. CRW models for
linear alkanes are shown to be transferable between the melting
and boiling points of the materials,46 reproduce the liquid
surface tension, have been used to study wetting problems,159

and, applied to syndiotactic polystyrene,160 have been
successfully used to study crystallization in the bulk161 and at
the surface of a thin polymer film.162 These studies rely on the
transferability of the potential and have been applied to static
aspects of problems whose dynamics is of significant interest too.
The Markovian MZ-DPD approach has, with an eye to
transferability, been derived based on EF-CG interactions,
while neglecting (state-dependent) multibody contributions to
the DPD pair frictions.37 This approach, in principle, requires
time-scale separation, i.e., distances between beads are fixed on
the time scale of the memory kernel, and is expected to work for
polymer-based systems such as polystyrene in which rotations of
side groups occur on time scales where the monomeric units
hardly move. This system is also a good example for testing the
temperature transferability of memory kernels employed in a
non-Markovian extension of the work in ref 37, e.g., with respect
to reproducing temperature-dependent segmental and chain
dynamics of polystyrene.163

While the parametrization of the original DPD model, which
is often applied to simple bead−spring polymer systems, is
generic (not chemistry specific), it can still capture some
fundamental dynamical properties of well-known theoretical
models in polymer physics, even though it fails to capture
reptation dynamics for long polymer chains in melts.164 In this
line, it is conceivable that an in-depth understanding of friction
and memory kernels and its coupling to the conservative
interactions can be utilized to establish a similar top-down
procedure to derive CG models with realistic dynamics. The
realm of non-Markovian simulations, in principle, allows one to
tune the dynamical properties of generic CG models with a
greater flexibility, opening new possibilities in the development
of empirical models with a broader range of possible
applications.
Beyond the realm of equilibrium systems, the MZ theory and

the application of GLEs has been extended to nonequilibrium
and nonstationary processes.54,55 For example, non-Markovian
dynamics emerges naturally when looking at “hot Brownian
motion”, i.e., the motion of heated colloids in a fluctuating
thermodynamic environment.165,166 Non-Markovian interac-
tions with time delay offer interesting opportunities for a
feedback control of Brownian motion and create intriguing
novel equilibrium states.167,168 These examples illustrate that a
modification of dissipative and stochastic interactions in
nonequilibrium can have a qualitative impact on the structural
properties of the system (see, e.g., ref 157). One problem along
this line will be that, in nonequilibrium, a clear distinction
between systematic and random forces is missing,169,170 which

makes it challenging to establish a meaningful, systematic
dynamic coarse-graining procedure.
In the following, an (incomplete) list of open questions and

problems is given, that could potentially guide future research
toward practical applications of non-Markovian models.

• Understanding the transferability and predictive power of
(equilibrium) non-Markovian models.

• Implementation of (distance-dependent) pairwise fric-
tion kernels could be essential to achieve a high level of
transferability. Potential issues of currently proposed
(particle-based) techniques that should be addressed are

• the assumption of a time-scale separation between
the decay of the memory kernel and the character-
istic diffusion time of the particles,

• the usage of auxiliary variable approaches for
models with self- and pair-memory kernels,

• and the handling of long-range and long-time
interactions.

• The practical application of the coarse-graining techni-
ques in nonstationary and nonequilibrium systems. This
will include

• analysis of the FDT for nonequilibrium processes
and in nonstationary situations,

• the development of practical computational tools
for the time-integration of nonequilibrium coarse-
grained models,

• and further development of reconstruction techni-
ques for nonstationary memory kernels.

• The application of state-of-the-art techniques to the
problem of non-Markovian coarse-graining. This mainly
includes the usage of machine-learning tools,74 which
have the potential to be a powerful methodology to
approach some of the above listed open problems.

A multidisciplinary, collaborative effort will be needed to
standardize the methodologies and exploit their potential while
reaching a broader community of researchers. Concrete
application to relevant physical questions would help drive
continuous improvements on the methodological front and
broaden their capabilities.

■ AUTHOR INFORMATION
Corresponding Authors

Friederike Schmid − Institut für Physik, Johannes Gutenberg-
Universität Mainz, 55128 Mainz, Germany; orcid.org/
0000-0002-5536-6718; Email: friederike.schmid@uni-
mainz.de

Nico F. A. van der Vegt − Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Technische
Universität Darmstadt, 64287 Darmstadt, Germany;
orcid.org/0000-0003-2880-6383; Email: vandervegt@

cpc.tu-darmstadt.de

Authors
Viktor Klippenstein − Eduard-Zintl-Institut für Anorganische
und Physikalische Chemie, Technische Universität Darmstadt,
64287 Darmstadt, Germany

Madhusmita Tripathy − Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Technische
Universität Darmstadt, 64287 Darmstadt, Germany

Gerhard Jung − Institut für Theoretische Physik, Universität
Innsbruck, A-6020 Innsbruck, Austria

Complete contact information is available at:

The Journal of Physical Chemistry B pubs.acs.org/JPCB Review Article

https://doi.org/10.1021/acs.jpcb.1c01120
J. Phys. Chem. B 2021, 125, 4931−4954

4948

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Friederike+Schmid"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-5536-6718
http://orcid.org/0000-0002-5536-6718
mailto:friederike.schmid@uni-mainz.de
mailto:friederike.schmid@uni-mainz.de
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nico+F.+A.+van+der+Vegt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-2880-6383
http://orcid.org/0000-0003-2880-6383
mailto:vandervegt@cpc.tu-darmstadt.de
mailto:vandervegt@cpc.tu-darmstadt.de
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Viktor+Klippenstein"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Madhusmita+Tripathy"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gerhard+Jung"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01120?rel=cite-as&ref=PDF&jav=VoR


https://pubs.acs.org/10.1021/acs.jpcb.1c01120

Author Contributions
∥V.K., M.T., G.J.: These authors contributed equally to this

work.

Notes

The authors declare no competing financial interest.

Biographies

Viktor Klippenstein received his M.Sc. degree in Chemistry from the
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■ LIST OF ACRONYMS

ACF: Auto-correlation function
CG: Coarse-grained
CRW: Conditional reversible work
DoF: Degrees of freedom
DPD: Dissipative particle dynamics
EF-CG: Effective force-coarse-graining
EoM: Equation of motion
FACF: Force auto-correlation function
FDT: Fluctuation−dissipation theorem
FG: Fine-grained
GJ/F: Grønbech-Jensen/Farago integrator
GLE: Generalized Langevin equation
IBI: Iterative Boltzmann inversion
IMR: Iterative memory reconstruction
IMRF: IMR based on FACV
IMRV: IMR based on VACF
ISF: Intermediate scattering function
LE: Langevin equation
LJ: Lennard-Jones
MD: Molecular dynamics
MFPT: Mean first passage time
MSD: Mean-square displacement
MZ: Mori−Zwanzig
NM-DDFT: Non-Markovian dynamic density functional

theory
RDF: Radial distribution function
VACF: Velocity auto-correlation function

■ REFERENCES
(1) Peter, C.; Kremer, K. Multiscale simulation of soft matter systems.
Faraday Discuss. 2010, 144, 9−24.
(2) Brini, E.; Algaer, E. A.; Ganguly, P.; Li, C.; Rodríguez-Ropero, F.;
van der Vegt, N. F. A. Systematic coarse-graining methods for soft
matter simulations − a review. Soft Matter 2013, 9, 2108−2119.
(3) Noid, W. G. Perspective: Coarse-grained models for biomolecular
systems. J. Chem. Phys. 2013, 139, 090901.
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(58) Reith, D.; Pütz, M.; Müller-Plathe, F. Deriving effective
mesoscale potentials from atomistic simulations. J. Comput. Chem.
2003, 24, 1624−1636.
(59) Goychuk, I. Viscoelastic subdiffusion: generalized Langevin
equation approach. Advances in Chemical Physics 2012, 150, 187−253.
(60) Carof, A.; Vuilleumier, R.; Rotenberg, B. Two algorithms to
compute projected correlation functions in molecular dynamics
simulations. J. Chem. Phys. 2014, 140, 124103.
(61) Lesnicki, D.; Vuilleumier, R.; Carof, A.; Rotenberg, B. Molecular
Hydrodynamics from Memory Kernels. Phys. Rev. Lett. 2016, 116,
147804.
(62) Lei, H.; Baker, N. A.; Li, X. Data-driven parameterization of the
generalized Langevin equation. Proc. Natl. Acad. Sci. U. S. A. 2016, 113,
14183−14188.
(63) Schnurr, B.; Gittes, F.; MacKintosh, F. C.; Schmidt, C. F.
Determining Microscopic Viscoelasticity in Flexible and Semiflexible
Polymer Networks from Thermal Fluctuations. Macromolecules 1997,
30, 7781−7792.
(64) Fricks, J.; Yao, L.; Elston, T. C.; Forest, M. G. Time-Domain
Methods for Diffusive Transport in Soft Matter. SIAM J. Appl. Math.
2009, 69, 1277−1308.
(65) Straub, J. E.; Borkovec, M.; Berne, B. J. Calculation of dynamic
friction on intramolecular degrees of freedom. J. Phys. Chem. 1987, 91,
4995−4998.
(66) Berne, B. J.; Harp, G. D. Advances in Chemical Physics; JohnWiley
& Sons, Ltd: 1970; pp 63−227.
(67) Wang, S.; Li, Z.; Pan, W. Implicit-solvent coarse-grained
modeling for polymer solutions via Mori-Zwanzig formalism. Soft
Matter 2019, 15, 7567−7582.
(68) Fricks, J.; Yao, L.; Elston, T. C.; Forest, M. G. Time-Domain
Methods for Diffusive Transport in Soft Matter. SIAM J. Appl. Math.
2009, 69, 1277−1308.
(69) Córdoba, A.; Indei, T. Elimination of inertia from a Generalized
Langevin Equation: Applications to microbead rheology modeling and
data analysis. J. Rheol. 2012, 56, 185−212.
(70) Córdoba, A.; Schieber, J. D.; Indei, T. The effects of
hydrodynamic interaction and inertia in determining the high-
frequency dynamic modulus of a viscoelastic fluid with two-point
passive microrheology. Phys. Fluids 2012, 24, 073103.
(71) Straube, A.; Kowalik, B.; Netz, R.; Höfling, F. Rapid onset of
molecular friction in liquids bridging between the atomistic and
hydrodynamic pictures. Communications Physics 2020, 3, 126.
(72) Daldrop, J. O.; Kowalik, B. G.; Netz, R. R. External Potential
Modifies Friction of Molecular Solutes in Water. Phys. Rev. X 2017, 7,
041065.
(73) Baity-Jesi, M.; Reichman, D. R. On mean-field theories of
dynamics in supercooled liquids. J. Chem. Phys. 2019, 151, 084503.
(74) Wang, S.; Ma, Z.; Pan, W. Data-driven coarse-grained modeling
of polymers in solution with structural and dynamic properties
conserved. Soft Matter 2020, 16, 8330−8344.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Review Article

https://doi.org/10.1021/acs.jpcb.1c01120
J. Phys. Chem. B 2021, 125, 4931−4954

4951

https://doi.org/10.1063/1.4973347
https://doi.org/10.1063/1.4973347
https://doi.org/10.1063/1.4973347
https://doi.org/10.1063/1.474784
https://doi.org/10.1063/1.474784
https://doi.org/10.1039/B902479B
https://doi.org/10.1103/PhysRevE.81.026704
https://doi.org/10.1103/PhysRevE.81.026704
https://doi.org/10.1039/C4SM01387E
https://doi.org/10.1039/C4SM01387E
https://doi.org/10.1039/C4SM01387E
https://doi.org/10.1063/1.4870394
https://doi.org/10.1063/1.4870394
https://doi.org/10.1063/1.4903454
https://doi.org/10.1063/1.4903454
https://doi.org/10.1063/1.4903454
https://doi.org/10.1063/1.4975652
https://doi.org/10.1063/1.4975652
https://doi.org/10.1063/1.5064369
https://doi.org/10.1063/1.5064369
https://doi.org/10.1063/1.1724117
https://doi.org/10.1063/1.1724117
https://doi.org/10.1063/1.1481859
https://doi.org/10.1063/1.1481859
https://doi.org/10.1063/1.4978572
https://doi.org/10.1063/1.4978572
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1063/1.4964287
https://doi.org/10.1063/1.4964287
https://doi.org/10.1063/1.3554395
https://doi.org/10.1063/1.3554395
https://doi.org/10.1039/B713568H
https://doi.org/10.1039/B713568H
https://doi.org/10.1039/B713568H
https://doi.org/10.1039/c0cp02888f
https://doi.org/10.1039/c0cp02888f
https://doi.org/10.1063/1.4758936
https://doi.org/10.1063/1.4758936
https://doi.org/10.1063/1.4998239
https://doi.org/10.1039/b819182d
https://doi.org/10.1039/b819182d
https://doi.org/10.1063/1.466198
https://doi.org/10.1063/1.466198
https://doi.org/10.1002/actp.1994.010450401
https://doi.org/10.1002/actp.1994.010450401
https://doi.org/10.1103/PhysRevE.99.022126
https://doi.org/10.1103/PhysRevE.99.022126
https://doi.org/10.1016/j.chemphys.2010.05.019
https://doi.org/10.1016/j.chemphys.2010.05.019
https://doi.org/10.1103/PhysRevE.100.012126
https://doi.org/10.1103/PhysRevE.100.012126
https://doi.org/10.1209/0295-5075/128/40001
https://doi.org/10.1209/0295-5075/128/40001
https://doi.org/10.1209/0295-5075/128/40001
https://doi.org/10.1002/adts.202000197
https://doi.org/10.1002/adts.202000197
https://doi.org/10.1002/adts.202000197
https://doi.org/10.1021/acs.jctc.7b00274
https://doi.org/10.1021/acs.jctc.7b00274
https://doi.org/10.1039/C8SM01817K
https://doi.org/10.1039/C8SM01817K
https://doi.org/10.1039/C8SM01817K
https://doi.org/10.1002/jcc.10307
https://doi.org/10.1002/jcc.10307
https://doi.org/10.1002/9781118197714.ch5
https://doi.org/10.1002/9781118197714.ch5
https://doi.org/10.1063/1.4868653
https://doi.org/10.1063/1.4868653
https://doi.org/10.1063/1.4868653
https://doi.org/10.1103/PhysRevLett.116.147804
https://doi.org/10.1103/PhysRevLett.116.147804
https://doi.org/10.1073/pnas.1609587113
https://doi.org/10.1073/pnas.1609587113
https://doi.org/10.1021/ma970555n
https://doi.org/10.1021/ma970555n
https://doi.org/10.1137/070695186
https://doi.org/10.1137/070695186
https://doi.org/10.1021/j100303a019
https://doi.org/10.1021/j100303a019
https://doi.org/10.1039/C9SM01211G
https://doi.org/10.1039/C9SM01211G
https://doi.org/10.1137/070695186
https://doi.org/10.1137/070695186
https://doi.org/10.1122/1.3675625
https://doi.org/10.1122/1.3675625
https://doi.org/10.1122/1.3675625
https://doi.org/10.1063/1.4734388
https://doi.org/10.1063/1.4734388
https://doi.org/10.1063/1.4734388
https://doi.org/10.1063/1.4734388
https://doi.org/10.1038/s42005-020-0389-0
https://doi.org/10.1038/s42005-020-0389-0
https://doi.org/10.1038/s42005-020-0389-0
https://doi.org/10.1103/PhysRevX.7.041065
https://doi.org/10.1103/PhysRevX.7.041065
https://doi.org/10.1063/1.5115042
https://doi.org/10.1063/1.5115042
https://doi.org/10.1039/D0SM01019G
https://doi.org/10.1039/D0SM01019G
https://doi.org/10.1039/D0SM01019G
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01120?rel=cite-as&ref=PDF&jav=VoR


(75) Bockius, N.; Shea, J.; Jung, G.; Schmid, F.; Hanke, M. Model
reduction techniques for the computation of extended Markov
parameterizations for generalized Langevin equations. J. Phys.: Condens.
Matter 2021, 33, 214003.
(76) Neuman, K. C.; Nagy, A. Single-molecule force spectroscopy:
optical tweezers, magnetic tweezers and atomic force microscopy. Nat.
Methods 2008, 5, 491−505.
(77) Tassieri, M.; Gibson, G. M.; Evans, R. M. L.; Yao, A. M.; Warren,
R.; Padgett, M. J.; Cooper, J. M. Measuring storage and loss moduli
using optical tweezers: Broadband microrheology. Phys. Rev. E 2010,
81, 026308.
(78) Daldrop, J. O.; Netz, R. R. Mass-Dependent Solvent Friction of a
Hydrophobic Molecule. J. Phys. Chem. B 2019, 123, 8123−8130.
(79) Forster, D. Hydrodynamic Fluctuations, Broken Symmetry, and
Correlation Functions; Westview Press: 1975.
(80) Boon, J. P.; Yip, S.Molecular hydrodynamics; McGraw-Hill: New
York, London, 1980.
(81) Tsekov, R.; Radoev, B. Velocity autocorrelation function in
fluctuating hydrodynamics: Frequency dependence of the kinematic
viscosity. J. Phys.: Condens. Matter 1992, 4, L303−L305.
(82) Franosch, T.; Fuchs, M.; Latz, A. Light-scattering spectra of
supercooled molecular liquids. Phys. Rev. E: Stat. Phys., Plasmas, Fluids,
Relat. Interdiscip. Top. 2001, 63, 061209.
(83) Alder, B. J.; Wainwright, T. E. Decay of the Velocity
Autocorrelation Function. Phys. Rev. A: At., Mol., Opt. Phys. 1970, 1,
18−21.
(84) Kadanoff, L. P.; Swift, J. Transport Coefficients near the Liquid-
Gas Critical Point. Phys. Rev. 1968, 166, 89−101.
(85) Götze, W. Complex Dynamics of Glass-Forming Liquids - A Mode-
Coupling Theory; Oxford University Press: Oxford, U.K., 2009.
(86) Höfling, F.; Franosch, T. Anomalous transport in the crowded
world of biological cells. Rep. Prog. Phys. 2013, 76, 046602.
(87) Janssen, L. M. C. Mode-Coupling Theory of the Glass
Transition: A Primer. Front. Phys. 2018, 6, 97.
(88) Zaccone, A. Relaxation and vibrational properties in metal alloys
and other disordered systems. J. Phys.: Condens. Matter 2020, 32,
203001.
(89) Amati, G.; Meyer, H.; Schilling, T. Memory Effects in the
FermiPastaUlam Model. J. Stat. Phys. 2019, 174, 219.
(90) Amati, G.; Schilling, T. Structural localization in the classical and
quantum FermiPastaUlam model. Chaos 2020, 30, 033116.
(91) Chen, M.; Li, X.; Liu, C. Computation of the memory functions
in the generalized Langevin models for collective dynamics of
macromolecules. J. Chem. Phys. 2014, 141, 064112.
(92) Ma, L.; Li, X.; Liu, C. The derivation and approximation of
coarse-grained dynamics from Langevin simulations. J. Chem. Phys.
2016, 145, 204117.
(93) Lee, H. S.; Ahn, S.-H.; Darve, E. F. The multi-dimensional
generalized Langevin equation for conformational motion of proteins. J.
Chem. Phys. 2019, 150, 174113.
(94) Kuhnhold, A.; Meyer, H.; Amati, G.; Pelagejcev, P.; Schilling, T.
Derivation of an exact, nonequilibrium framework for nucleation:
Nucleation is a priori neither diffusive norMarkovian. Phys. Rev. E: Stat.
Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2019, 100, 052140.
(95) Smith, D. E.; Harris, C. B. Generalized Brownian dynamics. I.
Numerical integration of the generalized Langevin equation through
autoregressive modeling of the memory function. J. Chem. Phys. 1990,
92, 1304−1311.
(96) Smith, D. E.; Harris, C. B. Generalized Brownian dynamics. II.
Vibrational relaxation of diatomic molecules in solution. J. Chem. Phys.
1990, 92, 1312−1319.
(97) Tuckerman, M. E.; Berne, B. J. Stochastic molecular dynamics in
systems with multiple time scales and memory friction. J. Chem. Phys.
1991, 95, 4389−4396.
(98) Li, Z.; Bian, X.; Li, X.; Karniadakis, G. E. Incorporation of
memory effects in coarse-grained modeling via the Mori-Zwanzig
formalism. J. Chem. Phys. 2015, 143, 243128.
(99) Li, Z.; Bian, X.; Yang, X.; Karniadakis, G. E. A comparative study
of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs.

iterative Boltzmann inversion vs. stochastic parametric optimization. J.
Chem. Phys. 2016, 145, 044102.
(100) Hohenegger, C.; McKinley, S. A. Fluid−particle dynamics for
passive tracers advected by a thermally fluctuating viscoelastic medium.
J. Comput. Phys. 2017, 340, 688−711.
(101) Hohenegger, C.; Durr, R.; Senter, D. Mean first passage time in
a thermally fluctuating viscoelastic fluid. J. Non-Newtonian Fluid Mech.
2017, 242, 48−56.
(102) Ermak, D. L.; Buckholz, H. Numerical integration of the
Langevin equation: Monte Carlo simulation. J. Comput. Phys. 1980, 35,
169−182.
(103) Ciccotti, G.; Ryckaert, J.-P. Computer simulation of the
generalized brownian motion. Mol. Phys. 1980, 40, 141−159.
(104) Tuckerman, M.; Berne, B. J. Vibrational relaxation in simple
fluids: Comparison of theory and simulation. J. Chem. Phys. 1993, 98,
7301−7318.
(105) Han, Y.; Dama, J. F.; Voth, G. A. Mesoscopic coarse-grained
representations of fluids rigorously derived from atomistic models. J.
Chem. Phys. 2018, 149, 044104.
(106) Snoek, J.; Larochelle, H.; Adams, R. P. Practical Bayesian
optimization of machine learning algorithms. Advances in neural
information processing systems. 2012; pp 2951−2959.
(107) Dequidt, A.; Solano Canchaya, J. G. Bayesian parametrization of
coarse-grain dissipative dynamics models. J. Chem. Phys. 2015, 143,
084122.
(108) Straub, J. E.; Berne, B. J.; Roux, B. Spatial dependence of time-
dependent friction for pair diffusion in a simple fluid. J. Chem. Phys.
1990, 93, 6804−6812.
(109) Yoshimoto, Y.; Li, Z.; Kinefuchi, I.; Karniadakis, G. E.
Construction of non-Markovian coarse-grained models employing
the Mori−Zwanzig formalism and iterative Boltzmann inversion. J.
Chem. Phys. 2017, 147, 244110.
(110) van den Noort, A.; den Otter, W. K.; Briels, W. J. Coarse
graining of slow variables in dynamic simulations of soft matter.
Europhysics Letters (EPL) 2007, 80, 28003.
(111) Liu, L.; den Otter, W. K.; Briels, W. J. Coarse grain forces in star
polymer melts. Soft Matter 2014, 10, 7874−7886.
(112) Ahuja, V. R.; van der Gucht, J.; Briels, W. J. Hydrodynamically
Coupled Brownian Dynamics: A coarse-grain particle-based Brownian
dynamics technique with hydrodynamic interactions for modeling self-
developing flow of polymer solutions. J. Chem. Phys. 2018, 148, 034902.
(113) Jung, G.; Schmid, F. Frequency-dependent hydrodynamic
interaction between two solid spheres. Phys. Fluids 2017, 29, 126101.
(114) Russo, A.; Duran-Olivencia, M. A.; Yatsyshin, P.; Kalliadasis, S.
Memory effects in fluctuating dynamic density functional theory:
theory and simulations. J. Phys. A: Math. Theor. 2020, 53, 445007.
(115) Semenov, A. Relaxation of long-wavelength density fluctuations
in a concentrated polymer solution. J. Exp. Theor. Phys. 1986, 63, 717−
720.
(116) Guenza, M. Many chain correlated dynamics in polymer fluids.
J. Chem. Phys. 1999, 110, 7574−7588.
(117) Panja, D. Anomalous polymer dynamics is non-Markovian:
memory effects and the generalized Langevin equation formulation. J.
Stat. Mech.: Theory Exp. 2010, 2010, P06011.
(118)Wang, G.; Ren, Y.;Müller, M. Collective short-time dynamics in
multicomponent polymer melts.Macromolecules 2019, 52, 7704−7720.
(119) Rottler, J.; Müller, M. Efficient pathways of block copolymer
directed self-assembly: Insights from efficient continuum modeling.
ACS Nano 2020, 14, 13986−13994.
(120) Vázquez-Quesada, A.; Ellero, M.; Espanõl, P. A SPH-based
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