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Abstract Skeletal muscles undergo structural and functional decline with ageing, culminating
in sarcopenia. The underlying neuromuscular mechanisms have been the subject of intense
investigation, revealing mitochondrial abnormalities as potential culprits within both nerve
and muscle cells. Implicated mechanisms involve impaired mitochondrial dynamics, reduced
organelle biogenesis and quality control via mitophagy, accumulation of mitochondrial DNA
(mtDNA) damage and respiratory chain defect, metabolic disturbance, pro-apoptotic signalling,
and oxidative stress. This article provides an overview of the cellular mechanisms whereby
mitochondria may promote maladaptive changes within motor neurons, the neuromuscular
junction (NMJ) and muscle fibres. Lifelong physical activity, which promotes mitochondrial
health across tissues, is emerging as an effective countermeasure for sarcopenia.
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Abstract figure legend Role of mitochondria in sarcopenia.

Introduction

Life expectancy in the modern world is rapidly increasing
but the quality of life is often compromised towards the
end of the mature years. A determinant of functional
capacity and autonomy is the integrity of the neuro-
muscular system, which wires the brain and skeletal
muscles via motor neurons and the neuromuscular
junction. With age, different components of this system
may fail, leading to loss of muscle mass and function,
and decreased ability to remain physically active. This
review will focus on structural and functional features
of muscle ageing and, more specifically, on the role
of mitochondria in relation to various maladaptive
mechanisms contributing to age-related neuronal and
muscular decline. We also discuss the role of exercise
as currently the most successful intervention against
age-related neuromuscular degeneration.

Sarcopenia

It has been known for a few decades that skeletal muscle
structure and function deteriorate with age. Muscle mass
decreases, reflected in both the reduced cross-sectional
area of individual myofibres and of the total number
of fibres (Lexell & Taylor, 1991). This is associated with
reduced strength and physical performance, culminating
in the frailty syndrome and falls that lead, in extreme
cases, to immobility and loss of autonomy (Visser &
Schaap, 2011; Landi et al. 2012). Sarcopenia is defined as
a measurable level of muscle wasting based on lean mass,
grip strength and gate speed (Cruz-Jentoft et al. 2010).
Although sarcopenia eventually affects everyone, the time
point at which it begins shows substantial inter-individual
variability – some experience only modest changes in old
age, while others become severely disabled as early as in
their seventh decade of life.

The causes of sarcopenia are still debated but it has
become apparent that involvement of both the muscle

itself and the innervating nerve play a role. Voluntary
movement is a highly specialized and orchestrated
function of the body that requires efficient communication
between the nervous and muscular systems. A decision
to move triggers excitation of the upper motor neurons
residing in the motor cortex of the brain. These cells
transmit an action potential to the lower motor neurons
within the posterior area of the spinal cord. The electrical
impulse then spreads from the cell body of a motor
neuron through its axon to the neuromuscular junction
(NMJ), a specialized synapse between the neuron and the
muscle. There, the incoming neuronal action potential is
transmitted by the neurotransmitter acetylcholine to the
sarcolemma where it triggers depolarization of the myo-
fibre and initiates muscle contraction.

Because the maintenance of muscle mass requires
normal innervation and regular activation, malfunction of
any of these elements can lead to the muscle deterioration.
The exact causes underlying the age-related changes in
the neuromuscular system are still unknown but there
is evidence that mitochondria, a critical cellular organelle
involved in energy production and cellular signalling, may
be either a primary trigger or at least an important player
in this process. Here we will discuss known mitochondrial
changes and their potential role in the development of
sarcopenic phenotype.

Mitochondrial structure and functions

Mitochondrial DNA and the respiratory chain.
Mitochondria contain their own genetic material, the
mitochondrial DNA (mtDNA). The mtDNA differs from
the nuclear DNA (nDNA) in multiple aspects: it is short
(�16.6 kb) and circular, uniparentally inherited from the
mother, contains little (<2%) non-coding regions, and is
unprotected by histones. In addition, multiple mtDNA
copies exist within a single mitochondrion, and multiple
mitochondria reside in the cytoplasm of each cell, creating
the possibility of heteroplasmy where different mtDNAs
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(e.g. mutant and normal) can coexist in a single cell
(Li, Schroder et al. 2015). Despite its small size, mtDNA
is essential for cellular function. It contains 37 genes
encoding two ribosomal RNA (rRNA) and 22 transfer
RNA (tRNA), which are essential to the translation of
its 13 messenger RNA (mRNA)-coding genes (Taylor
& Turnbull, 2005). The resulting polypeptides combine
with a number of nuclear-encoded subunits to make
up the multiprotein complexes I, III, IV and V of the
mitochondrial respiratory chain. Only complex II is
entirely encoded by the nuclear genome.

Attesting to the significance of mtDNA gene products,
maternally inherited mtDNA mutations result in
mitochondrial disease that is often lethal or severely
debilitating, affecting primarily high energy demanding
tissues such as the central nervous system and the muscle
(Taylor & Turnbull, 2005). In addition, the mtDNA
can accumulate defects (point mutations, deletions,
duplications) with ageing, which are proposed to cause
of age-related functional decline systemically (Wallace,
2013). This includes the neuromuscular system, as
discussed later in this article.

Mitochondrial dynamics. Mitochondria are highly
dynamic organelles. Not only do they change shape
and travel significant distances but they also fuse with
or fragment from the neighbouring mitochondria
(Westermann, 2010; Archer, 2013). A few proteins are
required for mitochondrial dynamics: mitofusin 1 and
2 (Mnf1, Mnf2) and optic atrophy 1 (OPA1) for fusion;
and dynamin-related protein 1 (Drp1), mitochondrial
fission factor (Mff) and fission protein 1 (Fis1) for fission
(Detmer & Chan, 2007). These processes of fusion and
fission allow communication and exchange of matrix
content between individual mitochondria, including
proteins (Chen et al. 2010) and mtDNA (Ono et al. 2001).

Normal mitochondrial dynamics is crucial for the health
of the mitochondrial population as well as for that of the
entire cell and organism (Archer, 2013). Alterations of
both fusion and fission processes have pervasive effects
on several aspects of mitochondrial function including
respiratory capacity, coupling, reactive oxygen species
production and apoptotic sensitivity (Picard et al. 2013).
Overall, excessively fragmented mitochondria tend to
exhibit reduced respiratory chain capacity, increased ROS
production, and increased susceptibility to the release
of mitochondria-derived activators of caspases. Notably,
inhibition of mitochondrial fusion by the removal of
Mfn 1/2 in skeletal muscle promotes the accumulation of
mtDNA defects and small muscle size (Chen et al. 2010).

Quality control. One of the most efficient methods
of recycling of damaged/dysfunctional mitochondria
is a specialized type of autophagy called mitophagy.
Mitophagy is a process closely linked to mitochondrial

dynamics (Youle & van der Bliek, 2012), by which a
fragmented (small) mitochondrion becomes encapsulated
with a double membrane (isolation membrane, see Fig. 2)
to form an autophagosome delivered to a proximal
lysosome. Upon fusion with the lysosome, the auto-
phagosome cargo undergoes hydrolytic lysis (Kim et al.
2007). Mitophagy is designed to remove entire organelles
whereas selected mitochondrial proteins are degraded
via one of three systems: the ubiquitin–proteasome
pathway (Hershko & Ciechanover, 1992), Lon protease
(Bota & Davies, 2002), and mitochondria-derived vesicles
(MDVs) (McLelland et al. 2014). Removal of dysfunctional
mitochondria by mitophagy is essential for maintaining
muscle mass (Masiero et al. 2009). Several overlapping
pathways thus exist to ensure the maintenance of a healthy
pool of mitochondria in different cell types as alterations
of these pathways may adversely affect muscle health in
ageing.

Role of the lower motor neuron and the
neuromuscular junction in sarcopenia

Lower motor neuron. Neuronal stimulation of the muscle
via the NMJ is an essential step for muscle contraction and
human movement. Without it the muscle atrophies, losing
strength and power (Scelsi et al. 1980). It has been reported
that the spinal motor neuron population becomes
depleted with advancing age (Fig. 1). Stereological analysis
of lumbar spinal cords from a rat model of sarcopenia
demonstrated 27% reduction in motor neuron pool
between young adults and senescent animals (Rowan et al.
2012). A similar rate of motor neuron depletion was noted
for human post-mortem samples where 25% loss of these
cells occurred between the second and tenth decade of life
(Tomlinson & Irving, 1977).

Because muscle fibres cannot remain denervated
(Carlson, 2014), the loss of motor neurons promotes
lateral sprouting of the neighbouring ones, which
reinnervate ‘orphelin’ denervated muscle fibres. This
increases the size of the individual motor units, thus
elevating the metabolic and biosynthetic burden on
a single nerve cell, possibly making it prone to
overload-driven degeneration (Stalberg & Fawcett, 1982;
Brown et al. 1988). This results in fibre type grouping in
the muscle (i.e. the physical clustering of myofibres with
the same myosin heavy chain isoform) as multiple muscle
fibres are innervated, and fibre-type dictated by a single
motor neuron (Lexell & Downham, 1991; Lexell, 1997).

Neuromuscular junction. The NMJs have also shown
age-related changes. Data obtained from animal models
and humans, and across different muscle groups, are
sometimes conflicting. The general consensus, however,
is that with ageing the complexity and morphology of
the pre- and postsynaptic regions become altered, the
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number of neurotransmitter-containing synaptic vesicles
decreases, and the axonal transport is slower (Jang & Van
Remmen, 2011). We now discuss the potential role of
mitochondrial defects in NMJ maintenance.

Mitochondrial deficiency in the ageing neuron.
Mitochondria have been implicated in the age-related
alterations of the motor neuron soma as well as the
pre- and postsynaptic regions of the NMJ. Our recent
study in elderly (68–99 years old) post-mortem spinal
cord samples showed a pronounced mitochondrial
dysfunction in the lumbar motor neurons (Rygiel et al.
2014) (Fig. 1). Around 10% of these cells demonstrated a
complete loss of mitochondrial respiratory chain complex
I and a further 25% had markedly reduced levels of
complex I proteins. Mitochondrial DNA analysis carried
out on individual complex I-deficient motor neurons
revealed significantly reduced copy numbers (Fig. 1).
Interestingly, the respiratory-deficient cell bodies were
smaller than their unaffected counterparts suggesting
mitochondrial deficiency-driven atrophy (Rygiel et al.
2014), not unlike cell atrophy observed in a cytoplasmic
hybrid cell of mtDNA heteroplasmy (Picard et al. 2014).
This acquired mitochondrial dysfunction could originate
within the soma of a motor neuron itself, or in the
peripheral axonal/dendritic mitochondria, and then
be retrograde-transported back to the soma where it
can impact central cellular functions including gene
expression.

Mitochondrial abnormalities in the neuromuscular
junction. Mitochondrial abnormalities within the NMJ
may also contribute to impaired signal transduction

between the motor neuron and muscle. Indeed,
mitochondria exist in presynaptic terminals where they
modulate neurotransmitter release (Vos et al. 2010).
A recent study in aged rats demonstrated substantial
changes in the majority of axonal mitochondria residing
within the terminal boutons of the tibial nerve (Garcia
et al. 2013). Electron microscopy analysis revealed
unusual features among presynaptic mitochondria:
they were swollen, up to 3-fold larger than their
normal counterparts, with ‘hollow’ matrix, virtually
devoid of cristae, and with ruptured membranes. A
marked proportion of these mitochondria appeared
hyperfused, forming gigantic ‘megamitochondria’ with
multiple surrounding membrane layers. None of these
morphological alterations were observed in the neuro-
nal cell bodies, suggesting specific alterations of NMJ
mitochondria (Fig. 2). Indeed, several differences exist
between synaptic and non-synaptic mitochondria, notably
in protein composition, which is skewed towards a
pro-fission phenotype (more Drp1, less OPA1 and
Mfn1/2) in the mouse brain (Stauch et al. 2014). Synaptic
mitochondria may also be more prone to mtDNA
deletions (Stauch et al. 2014). Moreover, calcium-dense
inclusions were reported to be abundant in the aged
presynaptic mitochondria, potentially indicating calcium
overload (Garcia et al. 2013).

A consequence of mitochondrial calcium overload is
the release of mitochondria-derived apoptotic activators
such as cytochrome c (Brookes et al. 2004). Cytochrome
c was indeed found in the cytosol in the distal portion
of motor neurons, suggesting mitochondrial permeability
transition and possibly downstream activation of the
apoptosome. Caspase 3 was detected in the soma and
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Figure 1. Lower motor neuron changes with advancing age
A, spinal motor neuron population undergoes a similar rate of depletion in ageing in both rats and humans. B, some
of the remaining motor neurons accumulate somatic mitochondrial damage including severe down-regulation of
mitochondrial respiratory chain complex I, shown here by the absence of labelling for NDUFB8. C, it is likely that
complex I deficiency is a result of mtDNA depletion in ageing spinal motor neurons.
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nuclei of the aged motor neurons as well as the
proximal and distal axons, but the activated caspase 3
was clearly associated with vesicles along the microtubule
system and colocalized with dynein, implying retrograde
transport (Garcia et al. 2013) (Fig. 2). The under-
lying causes of the described mitochondrial pathology
and activation of the apoptotic machinery in ageing
nerve terminals are unclear but they could be at least
partially associated with up-regulation of the oxidative
damage and down-regulation of the natural cellular
anti-oxidant defences. Studies on superoxide dysmutase
1 (Sod 1) knockout mice revealed a sarcopenic phenotype
with the accumulation of abnormal giant mitochondria,

higher susceptibility to calcium-induced mitochondrial
permeability transition pore opening and apoptosis,
linking oxidative damage with mitochondrial dysfunction
and neuromuscular junction denervation (Jang et al.
2010).

All of these findings are consistent with the ‘dying back’
phenomenon, where the neuronal damage is inflicted on
the axon terminal, causing degeneration of the entire
cell. A number of neurodegenerative disorders including
motor neuron disease, Alzheimer’s disease, Parkinson’s
disease and glaucoma share this pattern of neuronal
degeneration, and therefore it is not surprising that
a similar mechanism could be engaged in sarcopenia

Normal mitophagy (synaptic bouton)

Isolation membrane
Mitochondrion

mtDNA

Mutated mtDNA

Reduced 
mtDNA

Normal 
mtDNAApoptotic signals

Impaired axonal 
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reduced fusion

Terminal
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to overload)

Muscle fibre

‘Megamitochondrion’
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Schwann cell

Nerve terminal (bouton)
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Figure 2. Proposed mechanism of neuronal mitochondria involvement in sarcopenia
Age-related increase in oxidative damage or down-regulation of anti-oxidant defences leads to mitochondrial
damage (swelling, diminished cristae and elevated fusion) in terminal boutons of the neuromuscular junction
(NMJ). Reduced fission may prevent mitophagy-driven clearance of the damaged mitochondria, which accumulate
abnormal proteins and mutated mtDNA. These mitochondria become respiratory-deficient, which leads to
inefficient neuromuscular transmission, reduced membrane potential and release of pro-apoptotic factors (e.g.
cytochrome c). Apoptotic signals are transduced via retrograde transport to the neuronal cell body where they
induce apoptosis. Impaired mitochondrial dynamics in the terminal bouton affects axonal transport, and hence
distal mitochondria do not mix with their counterparts located in the soma. This potentially results in reduced
mtDNA content and down-regulation of mitochondrial respiratory chain proteins with complex I being affected
the earliest. Image at bottom right shows an NMJ from a mouse skeletal muscle (diaphragm) fibre visualized
by transmission electron microscopy (TEM). Electron micrograph in the top left corner shows a mitochondrion
undergoing mitophagy. Scale bar: 2 μm (NMJ, bottom right); 200 nm (mitophagosome, top left). Images kindly
provided by the Basil Petrof Laboratory and the Newcastle University EM Research Services.
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(Adalbert & Coleman, 2013). Accumulation of abnormal
mitochondria primarily in the terminal boutons rather
than the neuronal cell bodies can also be explained by
the impaired mitochondrial dynamics. A balance between
mitochondrial fusion and fission has to be maintained
in order to support mitochondrial function and motility.
Neurodegenerative diseases such as Charcot–Marie–Tooth
2A (CMT2A) and dominant optic atrophy (DOA)
manifest with degeneration of sensory and motor nerves
and optic nerve as a direct consequence of mutations in
genes encoding mitochondrial fusion proteins Mfn2 and
OPA1, respectively (Chan, 2012). It has been proposed
that impaired fusion not only leads to reduced function
of the fragmented mitochondria but also to accumulation
of them in various areas within the neuron resulting in
ineffective distribution (Chen & Chan, 2006). Given their
potentially skewed protein profile towards fission (Stauch
et al. 2014), synaptic mitochondria may be particularly
vulnerable to factors that impair normal mitochondrial
fusion.

It is possible that due to some environmental insult
(e.g. oxidative stress) impaired mitochondrial dynamics
in the ageing motor neuron leads to dysmorphic and
abnormally large mitochondria in terminal NMJ boutons.
Because of physical and possibly other constraints, these
mitochondria may be unable to move via axonal transport
and communicate with other mitochondria, and would
escape mitotophagy, failing to be degraded or removed,
and thus accumulate protein and mtDNA damage and
become dysfunctional. Because of the mitochondria’s
dynamic role in regulating synaptic function (Sun et al.
2013), this would promote dysregulation of neuro-
muscular transmission, NMJ alteration and ultimately
denervation of the associated myofibre (Fig. 2).

Skeletal muscle

Neuronal dysfunction undoubtedly contributes to
age-related muscle wasting, but the muscle itself also
undergoes complex remodelling that exacerbates the
sarcopenic phenotype observed in the elderly. The most
commonly reported muscle-specific changes include
lower rate of anabolism, reduced regenerative capacity due
to the senescence or depletion of the satellite cell pool and
higher rate of cell death. The following sections discuss
the role of mitochondria in relation to these aspects of
age-related muscle tissue deterioration.

Skeletal muscle anabolism and catabolism. The major
hallmark of the sarcopenic muscle is its reduced size,
which can only be explained by a dysregulated protein
‘economy’, namely an imbalance between the rates of
protein synthesis (i.e. anabolism) and degradation (i.e.
catabolism). These processes are tightly controlled, among
other pathways, by insulin signalling via the mammalian

target of rapamycin (mTOR) serine/threonine kinase
pathway (Bonaldo & Sandri, 2013). Lack of insulin in type
I diabetes patients promotes loss of muscle protein content
and consequent wasting (Tessari et al. 1990). Furthermore,
insulin signalling in conjunction with amino acids not only
stimulates protein synthesis but also inhibits proteolysis.

As protein synthesis requires energy input, it is not
surprising that mTOR also augments mitochondrial
function, mitochondrial respiratory chain protein levels
and ATP production (Albert & Hall, 2015). Although
experimental muscle insulin infusion in both animals
and humans resulted in an increased rate of synthesis
of mitochondrial proteins including citrate synthase and
cytochrome c oxidase, it had no effect on structural
muscle proteins, including contractile myosin heavy chain,
(Boirie et al. 2001; Stump et al. 2003), indicating that
mitochondrial biogenesis and muscle anabolism may be
independently regulated.

Skeletal muscle lipids and metabolism. Insulin resistance
is thought to be connected with the intramyocellular lipid
accumulation and excess mitochondrial reactive oxygen
species in ageing muscle (Anderson et al. 2009). Muscle
of older people (�70 year old) has higher lipid content
(individual lipid droplets are larger) than muscle of
younger people (�20 year old), and the lipid stores are
rarely associated with mitochondria. Physical association
of mitochondria with lipid droplets is increased in myo-
fibres after exercise (Tarnopolsky et al. 2007), which
implies an optimal position for oxidation. Mitochondrial
mass is reduced in the old, as a result of fewer individual
mitochondria rather than their size, which agrees with
reduction in the mitochondrial enzymes (Crane et al.
2010). In middle-aged primates accumulation of larger
lipid droplets was also observed together with a shift in
fibre type distribution, reduced oxidative phosphorylation
capacity and a metabolic shift (increased FAD and NADH
levels in situ) (Pugh et al. 2013). This suggests reduced
activity of mitochondrial respiratory chain dehydrogenase
enzymes, which may become a limiting factor in aged
muscle mitochondria.

The difficulty with interpreting the age-related lipid
accumulation in muscle is that physical inactivity also
results in a similar phenomenon. In human diaphragm,
compared with normally contracting diaphragm muscle,
inactivity during mechanical ventilation exhibited
reduced respiratory chain complex IV activity, which
was associated with significantly higher intramuscular
lipid content manifesting as an increased lipid density
as well as droplet volume (Picard et al. 2012). Inter-
estingly, lipid accumulation in muscle fibres colocalized
with mitochondrial respiratory deficiency measured using
histochemical detection of enzymatic activity, indicating
a potential causative link between mitochondrial
dysfunction and dysregulated lipid metabolism.

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Mitochondrial DNA – genetics and maintenance.
Changes in the mitochondrial genome have been
implicated in physiological ageing of the majority of
organs. In muscle, mtDNA content is inversely related
to age (Short et al. 2005) and the remaining mtDNA
copies acquire rearrangements in an age-related manner
(Meissner et al. 2006). Large-scale mtDNA deletions are
most frequently found (Kraytsberg & Khrapko, 2005;
Bua et al. 2006; Meissner et al. 2006), but there have
been reports of duplications and triplications detected
in muscle from elderly individuals (Tengan & Moraes,
1998).

The origin of mtDNA deletions is still unclear, but it is
likely that they are either inherited at low levels from the
maternal germline, or acquired somatically early in life.
Somatic mutations are formed as a consequence of either
replication errors or defective repair of double-strand
breaks (Bua et al. 2006; Krishnan et al. 2008). At the
beginning of this process there are very few mutated
molecules present amongst masses of healthy mtDNA
counterparts in the cell, but with time, the mutated
copies replicate and begin to outnumber normal ones.
This process, termed clonal expansion, manifests only in

a limited number of single muscle fibres. As a result, the
ageing muscle becomes a mosaic of deletion-loaded and
deletion-free cells (Murphy et al. 2012). Interestingly, due
to the multiple-copy nature of mtDNA, the cells are fully
respiratory-functional until they cross a certain threshold
of mutated-to-healthy molecules. This threshold is tissue
and cell type dependent but often only 10% of healthy
mtDNA molecules is enough for the cells to maintain
normal respiratory functions (Stewart & Chinnery, 2015)
(Fig. 3).

Mechanisms behind clonal expansion are still unclear.
What is certain is that mitochondrial deletions accumulate
in longitudinal segments of individual muscle fibres.
Studies on ageing rats have elegantly demonstrated that
there is a functional relationship between mitochondrial
dysfunction and muscle phenotype. Muscle fibre segments
of complete respiratory deficiency due to a high mutation
load showed atrophy, splitting and, in some cases,
rupturing (Bua et al. 2002). However, this phenomenon
is relatively rare in other species and certainly does not
extend to humans, where mutation load does not correlate
with muscle fibre size (Bua et al. 2006; Picard et al. 2012).
Interestingly, in inclusion body myositis, an age-related
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Figure 3. Proposed mechanism of skeletal muscle mitochondria involvement in sarcopenia
Mitochondrial biogenesis declines with age, dependent and independent of PGC-1α. Proteins essential for PGC-1α

post-translational modification, namely SIRT1 and AMPK, are either down-regulated (SIRT1) or less responsive to
activation (AMPK), resulting in depletion of active PGC-1α pool. Consequently, the downstream nuclear factors
NRF-1 and NRF-2 are down-regulated, leading to a reduction in TFAM transcription, and transport of TFAM protein
into mitochondria. TFAM and PGC-1α form a complex, localised to the D-loop region of mtDNA, which regulates
replication and transcription of the mitochondrial genome. Age-related depletion of both causes reduced nucleic
acid and protein turnover, which leads to not only reduced mitochondrial mass but also accumulation of mtDNA
mutations and damaged proteins. This induces fusion as a compensatory mechanism to reduce the detrimental
consequences of the accumulated defects. Fused mitochondria escape mitophagy and continue accumulating
mtDNA (clonal expansion) and protein damage, which ultimately leads to respiratory deficiency.
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inflammatory myopathy, respiratory-deficient myofibres
are more prone to atrophy than their unaffected counter-
parts (Rygiel et al. 2014). It is therefore difficult to conclude
what the true relationship between respiratory chain
dysfunction and muscle fibre atrophy is.

How prevalent are respiratory-deficient myofibres in
ageing muscle? The most comprehensive study that
quantified the level of the respiratory deficiency in
ageing human muscle reported up to 5% deficient
fibres in 60- to 90-year-old participants (Brierley et al.
1996). Preliminary data obtained in our laboratory
for a large cohort of 70-year-old participants showed
6–14% of respiratory-deficient fibres in the most
affected cases (unpublished data). The proportion of the
respiratory-deficient fibres may not appear high and their
significance is questionable. It is worth stressing, however,
that the deficiency is segmental and can affect any fragment
of the muscle fibre along its length. The proportion
of respiratory-deficient cells is typically derived from
assessment of a single or a small number of muscle
sections, which may significantly underestimate the true
deficiency in the entire muscle.

The next fundamental question is whether
mitochondrial dysfunction has a functional consequence
for muscle wasting in sarcopenia. Patients with
mitochondrial disease tend to develop myopathy,
involving selected muscle groups, which is mostly
associated with weakness (McFarland & Turnbull, 2009).
Data from animals are somewhat puzzling. A mouse
model with a skeletal muscle conditional knock-out of
the COX10 gene (encoding a subunit of mitochondrial
respiratory chain complex IV) showed virtually no
reduction in maximal contractile force for the first
2.5 months of age despite complex IV activity being
reduced by over 95% (Diaz et al. 2005). Additionally, there
was only a 10% increase in fatigability and no signs of
oxidative damage or apoptosis in young mice, suggesting
that the relationship between mitochondrial respiratory
chain function and muscle phenotype is not direct (Diaz
et al. 2005). However, the COX10-induced myopathy
worsened with time, consistent with progressive muscle
degeneration in humans.

Mitochondrial dynamics and degradation. In the
ageing muscle, abnormal mitochondrial dynamics of
fusion/fission could contribute to muscle dysfunction
via two major mechanisms. The first relates to the fact
that mitochondrial dynamics is essential to mitophagy
and quality control processes. Fission is necessary for
subsequent mitophagy to remove defective proteins or
mtDNA molecules from the mitochondrial network. In
this case, inhibition of fission and thus mitophagy may
promote accumulation of dysfunctional mitochondria
within skeletal muscle fibres (Masiero et al. 2009;
Grumati et al. 2010). The down-regulation of specific

Parkin machinery responsible for culling and degrading
dysfunctional mitochondria may also be down-regulated
in aged skeletal muscle (Gouspillou et al. 2014). Secondly,
dysfunctional mitochondria may promote atrophy via
multiple different pathways discussed above, including
pro-apoptotic signalling (Gouspillou et al. 2014), energy
deficiency and impacting nuclear gene expression.

With ageing, mitochondrial dynamics is altered and
mitochondria undergo structural remodelling. Electron
microscopy performed on muscle samples from old mice
revealed changes in both subsarcolemmal and inter-
myofibrillar mitochondria: in aged muscle exhibiting
a 30% reduction in myofibre size, subsarcolemmal
mitochondria were larger and more elongated whereas
intermyofibrillar mitochondria were longer and more
branched than in young muscle (Leduc-Gaudet et al.
2015). Together with the up-regulated protein ratio
of Mfn2/Drp1 and larger mitochondrial volumes, this
strongly suggested increased fusion in both mitochondrial
subpopulations (Leduc-Gaudet et al. 2015) (Fig. 3).
In support of these findings, a different mouse study
found up-regulated Mfn1 and Mfn2 and down-regulated
Fis1 (Joseph et al. 2013), and mitochondrial elongation
was observed in fibroblasts of aged individuals (Allen
et al. 2015). Apparently in contrast to these findings,
mRNA levels for Mfn2 were found to be down-regulated
in elderly human skeletal muscle (Crane et al.
2010). Keeping in mind that mRNA levels do not
directly translate into corresponding protein levels,
and that mitochondrial dynamics proteins are heavily
post-translationally regulated (Shutt et al. 2012), this
discrepancy could be attributable to different factors
and be without relevance to mitochondrial dynamics.
Overall, atrophying skeletal muscles may exhibit excess
mitochondrial fusion, which consists in a normal response
to mild stress (Shutt & McBride, 2013), and may
thus represent a compensatory response to an intrinsic
functional defect within aged organelles.

Because mitochondria have to undergo fragmentation
in order to allow autophagosome formation and
engulfment, mitochondrial elongation via increased
fusion in aged muscle could prevent degradation via
autophagy (Rambold et al. 2011). In line with this, a
general decrease in proteolysis pathways has been reported
in various ageing tissues from senescent mice, rats and
humans (Cuervo & Dice, 2000; Ferrington et al. 2005;
Wohlgemuth et al. 2010). Data from the skeletal muscle,
however, is limited and not conclusive, particularly with
regard to the proteasome and mitophagy pathways. Lon
protease-associated degradation is the only system that
has been clearly shown to be affected in ageing skeletal
muscle (Bota & Davies, 2002). Lon protein levels are
significantly down-regulated in the muscle of old mice
and cabonylated proteins accumulate within the muscle
mitochondria (Bota et al. 2002).
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Mitochondrial biogenesis. Skeletal muscle mitochondrial
mass tends to decrease with age (e.g. Short et al. 2005),
although this may be specific to certain muscles and species
(Picard et al. 2011). This is believed to be primarily due to
reduced mitochondrial biogenesis, i.e. the production of
new mitochondria. As mitochondrial proteins are encoded
in both mitochondrial and nuclear genomes, biosynthesis
of new organelles requires transcription factors and
molecular regulators that act on them both. Peroxisome
proliferator-activated receptor γ coactivator (PGC) 1α is
considered a master regulator of mitochondrial biogenesis
and has been shown to be decreased at both mRNA
and protein level in aged skeletal muscle (Ling et al.
2004; Rossi et al. 2009). PGC-1α lies downstream
from metabolic sensors AMP-activated protein kinase
(AMPK), sirtuin 1 (SIRT1), and mitogen-associated
protein kinase (p38MAPK), which synergize to activate
PGC-1α in the cytoplasm. This causes its nuclear and
mitochondrial translocation, where it initiates expression
of mitochondrial proteins by binding to the nDNA and
mtDNA (Safdar et al. 2011). Because PGC-1α co-regulates
several genes and its expression alone is sufficient to
increase mitochondrial mass (Wu et al. 1999), it is
considered to play an important role in skeletal muscle
mitochondrial biogenesis.

However, this remains controversial since
mitochondrial biogenesis can still happen in the absence
of PGC-1α. A mouse model of skeletal muscle-specific
knock-out of PGC-1α does not prevent exercise-induced
mitochondrial biogenesis (Rowe et al. 2012). Similarly,
removal of PGC-1α from cultured myoblasts using siRNA
technology fails to inactivate genes involved in oxidative
metabolism and mitochondrial biogenesis following
forced contractile activity (Uguccioni & Hood, 2011).
Currently, pathways other than PGC-1α-dependent are
under investigation. PGC-1β, a close homologue of
PGC-1α, has been shown to stimulate mitochondrial
biogenesis in an equally robust manner, and deletion of
both PGC-1α and PGC-1β from muscle down-regulates
mitochondrial function much more dramatically than
deletion of either alone (Arany et al. 2007; Zechner
et al. 2010). Another pathway reported to be critical for
exercise-induced biogenesis is mediated by p38MAPK
(Pogozelski et al. 2009). For a more detailed discussion on
this topic, we refer the reader to comprehensive reviews
(Hawley et al. 2014; Drake et al. 2015).

PGC-1α also up-regulates mtDNA replication,
transcription and stability. This is achieved by a
twofold mechanism involving its direct association
with the mitochondrial transcription factor A (TFAM)
at the D-loop region of mtDNA, and activation of
nuclear respiratory factor 1 and 2 (NRF-1 and NRF-2,
respectively), which stimulate expression of TFAM and
its import into mitochondria, thus promoting mtDNA

transcription and replication (Campbell et al. 2012)
(Fig. 3).

Another interesting possibility beyond mitochondrial
biogenesis stipulates that down-regulation of PGC-1α

with ageing may also contribute to skeletal muscle
atrophy by promoting destabilization of the neuro-
muscular junction and ‘denervation’ in aged skeletal
muscle (Gouspillou et al. 2013). In parallel with ageing,
PGC-1α levels are reduced in sedentary persons compared
with physically active individuals (Lanza et al. 2008).
But endurance exercise can counteract the decline in
both PGC-1α expression and mitochondrial biogenesis,
with data indicating that trained elderly individuals may
even maintain the PGC-1α mRNA content at a stable
level exceeding that of their sedentary young counterparts
(Lanza et al. 2008). This suggests a molecular avenue by
which exercise could be an effective countermeasure to
prevent sarcopenia by affecting both skeletal muscle and
the NMJ.

Exercise as a countermeasure for sarcopenia

Exercise has classically been divided into two major
categories, endurance and resistance, representing two
ends of a spectrum. Both exercise modalities offer
benefits in terms of ageing muscle, as discussed elsewhere
in detail (Barbieri et al. 2015). Briefly, to summarize
their major effects, resistance exercise mainly leads to
muscle hypertrophy, and increase in muscle mass and,
in most cases, strength and power output (Cadore et al.
2014), whereas endurance exercise, or aerobic training,
mainly improves cardiorespiratory fitness (maximal
oxygen consumption – V̇o2max), muscle oxidative capacity
and overall physical performance (Cadore et al. 2014).
Another form of physical activity is high-intensity inter-
val training (HIT, or HIIT), which involves intermittent
short bouts of maximum activity interspersed with peri-
ods of low intensity. This type of training provides
similar benefits to endurance training but volume and
time of exercise are markedly reduced (Little et al.
2010). More importantly in the context of exercise
adaptations is that HIT induce molecular adaptations that
trigger mitochondrial biogenesis. For instance, 2 weeks of
HIT was sufficient to increase the amount of PGC-1α

in the nucleus, as well as overall SIRT1 and TFAM
content, resulting in increased muscle mitochondrial
mass and exercise performance, demonstrating that HIT
elicits robust adaptive mitochondrial and physiological
responses opposite to those associated with ageing (Little
et al. 2010).

Exercise-induced adaptations involve proportional
changes in mitochondrial biogenesis and content.
For example, across various exercise modalities
exercise-induced increases in V̇o2max occur in proportion
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to increase in mitochondrial content indexed by citrate
synthase activity (Vigelso et al. 2014). This represents
additional evidence that exercise-induced physiological
adaptations are linked, and could be dependent upon
mitochondrial biogenesis.

Aerobic training can improve mitochondrial function
irrespective of age, although the mechanisms may differ
between young and older, and between male and female
individuals (Vigelso et al. 2014). An acute endurance
exercise programme up-regulated proteins involved in
activation of the electron transport chain components
such as mitochondrial SIRT3, as well as mitochondrial
antioxidant capacity, in older adults (>65 years) (Johnson
et al. 2014). Nevertheless, elevated protein degradation
and reduced oxidative damage were only observed in
the young, suggesting age-specific effects (Johnson et al.
2014). In contrast, 12 weeks of aerobic exercise inter-
vention in 20- and 70-year-old participants resulted
in increased aerobic capacity, skeletal muscle size and
markers of mitochondrial biogenesis and dynamics in
both groups (Konopka et al. 2014). Transcriptome (mRNA
levels) analysis showed down-regulation of mitochondrial
genes and pathways engaged in oxidative phosphorylation
with ageing, whereas redox homeostasis genes were
up-regulated in older sedentary adults. Interestingly,
those differences were not present between chronically
endurance-trained older adults and their young counter-
parts (Johnson et al. 2014), suggesting that exercise is an
effective countermeasure against ageing-associated trans-
criptional remodelling.

Endurance exercise may also impact muscle function
via epigenetic effects, consisting of modifications of
DNA-associated proteins and the DNA itself (i.e. the
chromatin) that promote stable changes in gene expression
(Bird, 2007). One such modification is DNA cytosine
methylation, which was found to be decreased overall in
skeletal muscle samples from sedentary men and women
following acute exercise (Barres et al. 2012). Exercise
induced a dose-dependent expression of key metabolism
regulator genes such as PGC-1α, PDK4 and PPAR-δ,
with corresponding hypomethylation of their respective
promoter regions, consistent with exercise-induced
epigenetic regulation of gene transcription (Barres et al.
2012).

Perhaps the most valuable data on the effects of
life-long endurance training on muscle function come
from a study on over-80-year-old athletes (Trappe et al.
2013). Muscle biopsy analyses revealed a markedly higher
oxidative profile consisting of elevated mitochondrial
markers in athletes compared with their untrained peers.
Moreover, the magnitude of differences in mitochondrial
function between the trained and untrained octogenarians
was comparable to the differences between trained
and untrained young adults (Burgomaster et al. 2008).
Importantly, commencing endurance training after the

age of 80 did not improve the age-related decline in
mitochondrial function, suggesting that only life-long
regular exercise results in the metabolic flexibility
necessary to maintain a healthy muscular system (Trappe
et al. 2013).

In light of the above, it appears difficult to discriminate
between the role of ageing and inactivity on skeletal muscle
deterioration. It is apparent that sedentary behaviour
accelerates age-related decline in muscle structure and
function (Booth et al. 2011). Evidence collected so far
suggests that a life-long regular exercise can significantly
delay the onset of sarcopenia (Barbieri et al. 2015).

Conclusion

The human motor system deteriorates with age, leaving
no one untouched. However, the rate of this deterioration
varies from person to person. The underlying mechanisms
are still unclear, but it has become clear that changes
among both the nervous and the muscular systems
are implicated in this degenerative process. It is likely
that individual factors predispose to sarcopenia, for
malfunction of one or the other, which makes our neuro-
muscular system age differently. There are also important
inter-individual differences in levels of physical activity
and sedentary behaviour, diet and other factors, making
experimental discrimination of various contributing
factors difficult. Most likely, there are different pathways
or ‘trajectories’ of ageing that are impacted by a variety of
personal and environmental factors (Picard, 2011).

Mitochondria, as essential powerhouses and signalling
organelles, are implicated in sarcopenia. Experimentally,
mitochondrial abnormalities have been identified in
both neurons and muscle fibres in elderly and
sedentary subjects, and known mechanisms exist whereby
abnormal mitochondrial functions can promote neuro-
muscular disorders. However, it is still unclear whether
mitochondrial dysfunction, at a level reported for these
two tissues in normal human ageing, is a primary cause of
the phenotypic and functional changes seen in sarcopenia.
Nevertheless, together with other dysregulated processes
involved in sarcopenia, mitochondrial abnormalities are
likely to contribute to loss of skeletal muscle mass and
function with age (Hepple, 2014). Technical advances to
probe mitochondria at a molecular level, longitudinal
studies in humans, and comprehensive hypotheses
involving both nerve and muscle factors should enhance
our ability to understand and prevent sarcopenia.
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