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In vitro selection technology has transformed the development of therapeutic monoclo-
nal antibodies. Using methods such as phage, ribosome, and yeast display, high affinity 
binders can be selected from diverse repertoires. Here, we review strategies for the 
next-generation sequencing (NGS) of phage- and other antibody-display libraries, as 
well as NGS platforms and analysis tools. Moreover, we discuss recent examples relating 
to the use of NGS to assess library diversity, clonal enrichment, and affinity maturation.
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inTRODUCTiOn

The development of antibody display technology such as phage (1), ribosome (2), yeast (3), and 
mammalian display (4) has enabled the rapid selection of binders from diverse libraries. These tech-
nologies bypass the use of animals and allow for the enrichment of binders within days to weeks. The 
power of in vitro selection technologies relies on a direct physical link between phenotype (displayed 
antibody construct) and genotype (antibody variable domain genes), allowing for the identification 
of binders through sequencing of their encoding genes. Multiple rounds of selection are generally 
required to identify antigen-specific binders, either by binding to a solid support or through cellular 
sorting (5). In many cases, later rounds of selections tend to be dominated by a handful of clones, 
which are then further characterized for affinity. Such clonal dominance can reflect genuine selection 
for high antigen affinity but might also reflect other properties such as superior expression or display. 
Consequently, clones with superior affinity may be present at low frequency and may not be readily 
detectable using traditional screening methods such as ELISA (6).

Recent advances in DNA sequencing technologies and computing power over the last decade has 
led to a dramatic reduction in the cost of sequencing and has simplified data analyses (7). Although 
initially developed for genomics applications, such as whole-genome sequencing, transcriptome 
sequencing, and epigenetics, next-generation sequencing (NGS) technology is now increasingly 
being applied other fields, including to basic and applied immunology. This includes the sequencing 
of the paired human heavy and light chain repertoire from isolated naïve (8, 9) and antigen-specific 
B-cells (10, 11), as well as T-cell receptor (12) and antibody display repertoires (13). While most NGS 
platforms were originally designed for short reads, technology is evolving rapidly, extending both 
read length and depth. Here, we review recent advances in NGS technology and key applications to 
phage display and other in vitro selection technologies.

Strategies for nGS of Antibody Repertoires
Traditionally, antibody display libraries are analyzed by isolation of 102–103 clones in combination 
with Sanger sequencing (5). Although this approach is sufficient to identify dominant clones after 
selection, or to broadly validate design objectives, the data obtained represent only a limited snapshot 
of actual library diversity. By contrast, NGS approaches allow for far-greater insights into library 
diversity by providing up to 107 sequences (approximately 10,000-fold more sequences than Sanger 
sequencing).
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TABLe 1 | Next-generation sequencing platforms for the analysis of display libraries.

Platform Read length Max. depth error type (percentage) Reference

Illumina Miseq 300 bp PE 40 × 106 reads Substitutions (~0.1) (15, 17)
Illumina Hiseq 2500 250 bp PE 600 × 106 reads Substitutions (~0.1) (18, 19)
Ion Torrent PMG 400 bp 5.5 × 106 reads Indels (~1) (14, 20)
454 GS FLX Up to 1 kb 1 × 106 reads Indels (~1) (13, 21)
PacBio 250 bp–40 kb 0.4 × 106 reads Indels (~1) (22)
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One of the main challenges in the use of NGS for the analysis 
of antibody selection systems relates to the size of the encoded 
genes: the smallest antibody fragments (variable domains) range 
between 300 and 400 bp in length, while the commonly used scFv 
and Fab antibody fragment formats range from 700 to 800 bp to 
over 1,500 bp, respectively. While NGS technologies are particu-
larly well suited for high throughput sequencing of short reads 
(less than 100 bp), many platforms can nevertheless sequence up 
to 300–400 bp with reasonable throughput. In particular, Illumina 
Miseq and Hiseq, 454 GS FLX (instrument discontinued), and 
Ion Torrent PMG are suited for this task (8, 14, 15); in addition, 
PacBio sequencing generates particularly long reads at the cost of 
reduced read numbers (Table 1) (16). Long sequences can also be 
generated by using paired-end reads: this method is particularly 
useful for scFv formats, enabling the sequencing of multiple 
CDR regions of VH and VL domains. In addition to analysis of 
longer antibody fragment sequences, some studies have focused 
on sequencing the relatively short VH CDR3 repertoire only (23) 
[which forms the center of the antigen binding site and is a major 
determinant of antigen binding (24)].

The use of NGS requires particular attention be paid to sequencing 
errors (25). DNA amplification inevitably results in polymerase 
errors, which can be context dependent. Although the error rates 
of polymerases are generally low (10−5–10−6 per base), errors 
will inevitably be present in large NGS datasets that encompass 
billions of bases. In addition, the NGS technologies themselves 
can be susceptible to the introduction of errors, such as cluster 
misamplification and base misincorporation, with frequencies 
ranging from 10−2 (PacBio, Ion Torrent) to 10−3 (Illumina). To 
help identify PCR and sequencing errors, unique molecular 
identifiers (UMIs; stretches of 8–10 degenerate DNA bases) can 
be added to primers during the first two cycles of PCR amplifica-
tion. Reads that share the same UMI have a high probability of 
being derived from the same original template. Such reads can 
then grouped after sequencing and used for error correction (26).

Bioinformatic Tools to Analyze nGS Data
While the analysis of the limited number of clones obtained by 
Sanger sequencing can be carried out manually, the larger sample 
size of NGS approaches necessitates the use bioinformatics tools. 
Following confirmation of the quality of the NGS read data by 
a tool such as FastQC (27), the data are further processed to 
clean up reads before analysis of antibody or antibody fragment 
sequences. The steps undertaken will be highly dependent on 
the NGS platform utilized and the format of the amplicons but 
generally will focus on the: removal of adapter sequences [e.g., 
PRINSEQ (28)], de-multiplexing (if barcodes were used), UMI 

identification and consensus building, and error correction (26), 
read quality trimming and filtering [e.g., Trimmomatic (29)] and, 
if paired-end sequencing was performed, the merging of the read 
pairs with a program such as PEAR (30). Separate analysis of 
heavy and light chains may be required for antibody formats such 
as scFv, where the presence of synthetic linkers can complicate 
analyses.

Programs such as IMPre (31), IgBLAST (32), IMGT/High 
V-QUEST (33, 34), and ImmundiveRsity (35), which were 
originally developed for the analysis of B and T cell receptor rep-
ertoires, identify VH and VL germlines as well as VH and VL CDRs. 
The selection of a tool will depend on the number of NGS reads 
being analyzed and the computational skill level of the researcher. 
IgBLAST and IMGT/High V-QUEST are both available as 
web-based submission systems, with IMGT/High V-QUEST 
permitting a larger number of reads to be analysis per submission. 
IMGT/High V-QUEST returns an output format compatible 
with programs such as Microsoft Excel or OpenOffice, whereas 
IgBLAST output is text based. The tools use different alignment 
algorithms, BLAST (IgBLAST) and modified Smith–Waterman 
(V-QUEST), but both restrict the germline gene repertoires to 
those defined by the tool’s creators. A stand-alone version of 
IgBLAST is available, and it has no restriction on the number of 
input reads, permits the user-defined germline gene databases, 
provides additional output formats, and can be parallelized on 
a cluster for processing of large datasets; however, its use does 
require some command line basics.

Postprocessing of the output of tools such as IgBLAST and 
IMGT/High V-QUEST is required to generate information about 
the clone structure within the dataset, and to pair VH and VL 
domain sequences. Clone structures can be inferred by applying 
sequence clustering tools, such as CD-hit (36) or UCLUST (37) 
to CDR3s alone, at either the amino acid or nucleotide sequence 
level, or to the full-length sequence, to group closely related 
sequences into “clonal” groups. The choice of parameters will 
depend on the diversity of the library. Finally, scripts can be used 
to analyze and summarize the diversity and other compositional 
characteristics of the library.

A custom pipeline as described earlier requires a level of 
informatics skills not always available to researchers, therefore, 
specialized pipelines for the analysis of recombinant antibody 
libraries, either naïve or in vitro selected against particular anti-
gens, have been developed. The AbMining Toolbox is particularly 
suited for identifying VH CDR3, which is determined by using 
a hidden Markov model (HMM) that captures the conserved 
sequences upstream and downstream of the CDR3 (38). N2GSAb 
can rapidly identify germline and VH CDR3 and provides a tool 
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TABLe 2 | Software for next-generation sequencing analysis.

Software 
package

Strengths Reference

IMGT/High 
V-Quest

Fast germline identification, CDR determination,  
and batch submission

(34)

ImmunediveRsity Quality filtering and noise correction (35)

VDJFasta Hidden Markov model to determine all CDRs  
and frequency analysis, very rapid analysis

(13)

N2GSAb Rapid germline and VH CDR3 determination  
and sequence clustering

(39)

ImmuneDB Alignment based on sequence query to  
determine CDRs and frequency

(40)

DEAL Sequencing error correction before analysis (17)
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for clustering unique sequences (39). VDJFasta uses an HMM to 
accurately predict all VH and VL CDRs, as well as the GS linker 
sequence for scFv fragments, and can generate library diversity 
plots (13). The ImmuneDB package aligns sequences based on a 
query sequence, such as a framework region, to delineate CDR 
regions (40). ImmuneDB also performs mutational and statisti-
cal analysis on the sequence library and can construct lineage 
trees to aid in the interpretation of antigen-selected libraries. 
More recently, DEAL was developed to better predict library 
diversity by identifying and correcting sequencing errors (17). 
In the published example, the library was not generated by PCR 
but rather by ligation of adapters to avoid any amplification bias 
and focus on sequencing errors. Reads are clustered using seed 
sequences of 10–20 bp and analyzed by binary comparison. The 
clusters are then compared with each read, taking into account 
the Phred quality score for each base and the error rate of the 
Phi-X control to identify sequencing errors. A list of software is 
outlined in Table 2.

It is also possible to outsource the sequencing and/or analysis 
of antibody libraries to commercial suppliers. Examples include 
(but are not limited to) CD Genomics and Molecular Cloning 
Laboratories. Such companies offer a range of options from basic 
consulting on designing primers for multiplexing and sequenc-
ing, to complete analysis from purified DNA or phages.

Application to Design validation and the 
Analyses of naïve Antibody Libraries
When generating antibody display repertoires, either synthetic 
or derived from immunized animals, it is important to assess 
the clonal diversity of the library before selection. Several stud-
ies have demonstrated the use of NGS to measure diversity to 
validate the design of displayed libraries. In an early example, 
Novimmune designed scFv libraries with both synthetic diver-
sity, using degenerated oligonucleotides, and semi-synthetic 
diversity, from human or rabbit donors (39). Sequencing 
of VH CDR3 using the Illumina platform revealed that the 
synthetic libraries had many more unique clones compared 
with donor-derived libraries, with between 1–16 and 31–69% 
clonal redundancy, respectively (39). Intriguingly, the extent of 
clonal redundancy in the donor-derived libraries suggested an 
upper limit of human VH diversity of around 2–3 × 106 unique 
clones. This figure correlates with other NGS studies aimed at 

determining human B-cell diversity (3–9 × 106) (41). In addi-
tion, the Novimmune sequencing results also validated the VH 
CDR3 length distribution in human antibodies, which closely 
matched that of the IMGT repertoire (39).

A second example, relates to the Ylanthia synthetic antibody 
library developed by MorphoSys (21). The library was designed to 
encode a range of VH CDR3 lengths to closely match the natural 
human antibody repertoire and was analyzed by the Roche 454 
sequencing platform (21). The library was found to be composed 
of about 95% unique clones, and there was no indication of ampli-
fication biases during antibody library construction. In addition, 
the authors used NGS data to validate VH CDR3 diversity and 
length, as well as VH and VL germline frequencies.

High throughput sequencing approaches are not limited to 
human sequences, with a recent study assessing the diversity 
of rabbit (VH and VL) Fab libraries by NGS (Ion PGM) (20). 
Surprisingly, and unlike human libraries derived from donors, 
these studies detected very low levels of redundancy within the 
rabbit libraries, with over 98% of VH clones being of a unique 
nature (~3 × 109 sequence reads were analyzed).

Next-generation sequencing has also been used to accurately 
determine library size. A recent study generated a donor-derived 
VH library for this purpose, which was then sequenced using 
Illumina adapter ligation (circumventing the need for PCR 
amplification) (17). Sequencing depth for the VH library exceeded 
the library size by three-fold suggesting that the diversity was 
well represented in the NGS output. The authors estimated the 
minimal functional diversity to be 1.2 × 106 individual unique 
clones representing just one-fifth of the original number of bacte-
rial clones.

Application to Affinity Maturation and 
epitope Mapping
Next-generation sequencing can also be used to guide selection 
toward high affinity clones. For example, one seminal study 
employed NGS to guide maturation of an scFv fragment directed 
against ErbB2 to a final affinity of 25 pM (resulting in a 158-fold 
improvement over wild type) (18). Guided by structure-based 
design, individual CDR regions (excluding VL CDR2) were 
randomized, selected against ErbB2 antigen, and analyzed by 
NGS before and after panning. This revealed enrichment of 
novel sequence motifs at diversified CDR positions, with the 
exception of VH CDR3, which was enriched toward the wild-type 
motif (suggesting an already optimal sequence). Next, the most 
frequent CDR substitutions were combined to generate a second-
ary library (VH CDR3 being reverted to wild type), which was 
selected against the target. This resulted in improved affinities of 
between 300 and 25  pM, compared with the wild-type affinity 
of 4  nM, highlighting the power of this stepwise approach for 
affinity maturation.

In a further study, deep mutational scanning analysis using 
NGS was performed on a humanized version of the anti-EGFR 
monoclonal cetuximab (42). More specifically, independent 
VH and VL libraries (encoding over 1,000 single amino acid 
substitutions at 59 different positions—32 in VH and 27 in VL) 
were selected by mammalian cell display and flow cytometry. 
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Gated populations were analyzed by NGS to identify permissive 
mutations and to generate a heat map of the antigen binding site. 
Overall, this strategy identified 67 substitutions that increased 
affinity, including one mutation with a five-fold KD improvement. 
Similar strategies can also be used to map epitope surfaces, as 
exemplified by the interaction of S. aureus toxin with neutralizing 
antibodies (43).

COnCLUSiOn

Next-generation sequencing holds great promise for the develop-
ment of therapeutic monoclonal antibodies, by allowing unprec-
edented insights into library diversity and clonal enrichment. 
Although current NGS platforms were not designed with anti-
body libraries in mind, the technologies are now at a stage where 
unique sequence insights into all stages of the selection process 
can be obtained. Moreover, with ongoing advances in sequencing 
technology, depth and read length is improving continuously: 
for instance, the PacBio Sequel system generates approximately 

seven times more sequences than the previous RS II system but 
maintains its long-read capability (Pacific Biosciences), while 
nanopore systems such as the MinIOn (Oxford Nanopore) offer 
the promise of real-time DNA sequencing in combination with 
ultra-long reads. We conclude that, with NGS technology evolv-
ing at a rapid pace, its importance in the sequence analyses of 
phage- and other antibody-display libraries is likely to continue 
to increase.
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