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Abstract

Motivation: The prediction of transcription factor binding sites (TFBSs) is crucial for gene expres-

sion analysis. Supervised learning approaches for TFBS predictions require large amounts of

labeled data. However, many TFs of certain cell types either do not have sufficient labeled data or

do not have any labeled data.

Results: In this paper, a multi-task learning framework (called MTTFsite) is proposed to address the

lack of labeled data problem by leveraging on labeled data available in cross-cell types. The pro-

posed MTTFsite contains a shared CNN to learn common features for all cell types and a private

CNN for each cell type to learn private features. The common features are aimed to help predicting

TFBSs for all cell types especially those cell types that lack labeled data. MTTFsite is evaluated on

241 cell type TF pairs and compared with a baseline method without using any multi-task learning

model and a fully shared multi-task model that uses only a shared CNN and do not use private

CNNs. For cell types with insufficient labeled data, results show that MTTFsite performs better than

the baseline method and the fully shared model on more than 89% pairs. For cell types without any

labeled data, MTTFsite outperforms the baseline method and the fully shared model by more than

80 and 93% pairs, respectively. A novel gene expression prediction method (called TFChrome)

using both MTTFsite and histone modification features is also presented. Results show that TFBSs

predicted by MTTFsite alone can achieve good performance. When MTTFsite is combined with his-

tone modification features, a significant 5.7% performance improvement is obtained.

Availability and implementation: The resource and executable code are freely available at http://

hlt.hitsz.edu.cn/MTTFsite/ and http://www.hitsz-hlt.com: 8080/MTTFsite/.

Contact: xuruifeng@hit.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcription factor (TF)-binding sites (TFBSs) are important for

understanding transcriptional regulatory networks and fundamental

cellular processes, such as growth controls, cell-cycle progressions

and developments, as well as differentiated cellular functions (Dror

et al., 2016; Wasserman and Sandelin, 2004; Zambelli et al., 2013).

TFBSs are short and often degenerate sequence motifs (Bulyk,

2003), which makes them computationally difficult to predict at

genomic scale. TFBSs can be represented by consensus sequences

and position weight matrices (PWMs) (Stormo, 2000, 2013). The

consensus sequence representation provides a convenient way for

visual interpretation of TFBSs. But, nucleotide variations at each

position make the consensus sequence representation unsuited to
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represent TFBSs (Holloway et al., 2005; Lenhard et al., 2003).

To overcome this problem, the PWM representation was proposed

to represent TFBSs (Stormo, 2000, 2013). PWMs are derived from a

set of aligned functionally related sequences and assume that the

positions within each TFBS are independent of each other.

However, some studies have shown that position dependencies do

exist in TFBSs, such as crystal structure analyses (Luscombe et al.,

2001), biochemical studies (Berger et al., 2006; Bulyk et al., 2002;

Man and Stormo, 2001) and statistical analyses of large collections

of TFBSs (Barash et al., 2003; Tomovic and Oakeley, 2007; Zhou

and Liu, 2004). In order to integrate position dependencies in pre-

dictions, a new approach, called dinucleotide weight matrix

(DWM), was proposed recently (Siddharthan, 2010). DWM extends

PWM by taking into account dependencies between any two posi-

tions (Siddharthan, 2010). TFFM proposed by Mathelier and

Wasserman (2013) further captures position dependencies for pre-

dictions. In TFFM, state transition probabilities in a hidden Markov

model (HMM) (Marinescu et al., 2004) were used to model position

dependencies. Although the above four representation methods can

represent TFBSs, they capture only sequence features.

Recent approaches attempted to use histones modification

features to improve the accuracy of TFBS predictions (Kumar and

Bucher, 2016; Tsai et al., 2015; Won et al., 2010). Histone modifi-

cation features refer to the post-translational modification levels of

various histones in chromatin structures, which are closely related to

the formation of TFBSs. Won et al. (2010) proposed an HMM-

based method called Chromia by combined use of histone modifica-

tion features and sequence features. Tsai et al. (2015) examined the

contributions of sequence features, histone modification features

and structure features in TFBS predictions (Breiman, 2001). They

conclude that all these three feature types were significant in TFBS

predictions.

Recent studies suggested that DNA shape features are another

important type of features for TFBS predictions (Mathelier et al.,

2016a). Mathelier et al. (2016a) proposed a method by using DNA

shape features predicted by DNAshape (Zhou et al., 2013) and

achieved a very good prediction performance. Andrabi et al. (2017)

proposed DynaSeq to predict molecular dynamics-derived ensembles

of a more exhaustive set of DNA shape features and then used them

to predict TFBSs. In addition to these DNA shape-based methods,

several deep learning methods were proposed for TFBS predictions.

DeepBind (Alipanahi et al., 2015), DeepSEA (Zhou and

Troyanskaya, 2015) and DanQ (Quang and Xie, 2016) are three

representative methods. DeepBind, proposed by Alipanahi, applies

Convolutional Neural Network (CNN) to DNA sequence features.

DeepSEA, proposed by Zhou and Troyanskaya, combines CNN and

a multi-task learning method to learn representations. DanQ, an

improved model of DeepSEA proposed by Quang and Xie, combines

the use of CNN and recurrent neural network (RNN). All these

three deep learning-based methods achieved very good predicting

performance and are considered the state-of-the art works.

When there exists large amount of labeled data, supervised com-

putational methods can achieve very good performance. However,

TFBSs for most TFs can only be identified by ChIP-Seq (Harbison

et al., 2004; Iyer et al., 2001; Kim et al., 2005) or ChIP-chip (Ren

et al., 2000), which are experimental techniques and are very labor-

intensive and costly to run. TFs of many cell types do not have suffi-

cient labeled data and some do not have any labeled data. It remains

quite challenging to train predictors for TFs of cell types that lack

labeled data. Nevertheless, several studies (Kumar and Bucher,

2016; Tsai et al., 2015; Won et al., 2010) have shown that TFBSs of

a TF in different cell types have some common histone modification

features. A TF may also have common binding motifs in different cell

types (Bryne et al., 2007; Matys et al., 2006). So computational meth-

ods can leverage on the labeled data available in other cell types to

predict TFBSs for cell types lacking labeled data. In this paper, we pro-

pose a multi-task learning framework, called MTTFsite, for TFBS pre-

dictions. MTTFsite contains a shared CNN to learn common features

for all cell types and a private CNN for each cell type to learn private

features. When the target cell type has labeled data, its private features

and the common features are combined to predict TFBSs. Thus, for a

target cell type with labeled data, MTTFsite amounts to a data aug-

mentation method due to the fact that labeled data in the target cell

type is augmented by labeled data available in other cell types. When

a target cell type does not have any labeled data, only the learned com-

mon features are used to predict TFBSs. Thus, for the target cell type

without labeled data, the term cross-cell type refers to the fact that

MTTFsite can use labeled data available in other cell types to learn

common features by the shared CNN.

Gene expression predictions provide a foundation for understand-

ing the transcriptional controls of cell identities, diseases and cell-

based therapies. Many computational methods were proposed for

gene expression predictions. DeepChrome (Singh et al., 2016), TEPIC

(Schmidt et al., 2017) and Zhang’s method (Zhang and Li, 2017) are

three state-of-the-art methods. DeepChrome (Singh et al., 2016) is a

unified end-to-end architecture constructed by using CNN. The main

advantage of DeepChrome is that it can capture both pairwise interac-

tions between neighboring bins and between different histone modifi-

cation features. However, DeepChrome does not use TFBSs of any TF

in predictions. TEPIC is a segmentation-based method that first pre-

dicts TFBSs by applying PWMs to open-chromatin regions (Schmidt

et al., 2017) and then uses predicted TFBSs in gene expression predic-

tions. Although TEPIC can predict TFBSs by applying PWMs, only a

small portion of TFs have known PWMs so far. Also, predicted TFBSs

by PWMs usually have very high false positive rate due to the lack of

position dependencies in PWM. Zhang’s method combines 10 histone

modification features, TFBSs of 15 TFs and one DNase-I hypersensi-

tivity profile for gene expression predictions (Zhang and Li, 2017). As

TFBSs of the 15 TFs are identified by experimental methods, this

method is limited to only a very small number of cell types.

The objective of this work is to predict gene expressions for cell

types without experimentally identified TFBSs for any TF. We propose

a novel gene expression prediction method, referred to as TFChrome,

by combined use of TFBSs predicted by MTTFsite and histone modifi-

cation features. As MTTFsite can predict TFBSs for TFs in most cell

types by leveraging on labeled data available in cross-cell types,

TFChrome is capable of predicting gene expression for most cell types

with or without labeled data.

2 Materials and methods

2.1 Datasets
TFs in five cell types, including GM12878, H1-hESC, HeLa-S3,

HepG2 and K562, are used to evaluate our proposed method. As

MTTFsite needs to be evaluated by TFs with labeled data in at least

two cell types, where one is used for testing and the others for train-

ing, a total of 72 TFs are used to evaluate MTTFsite, where 17, 14,

18 and 23 TFs have labeled data in all the five cell types, four cell

types, three cell types and two cell types, respectively. The available

TFBSs of these TFs in these five cell types are identified by TF ChIP-

seq experiments and their peaks can be downloaded from ENCODE

(ENCODE Project Consortium, 2004) freely. The obtained peaks

are usually provided in one of two formats: narrow peak and broad

peak. Some TFs have well defined binding sites and can be modeled
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by narrow peaks while binding sites of other TFs are less well local-

ized and would better be modeled by broader peaks. So the narrow

peak format is used if available. Otherwise, the broad peak format

is used. Based on works by Alipanahi et al. (2015) and Zeng et al.

(2016), the TFBS at each peak is defined as a 101-bp sequence by

taking the midpoint of the peak as the center. Contrast to TFBSs,

the non-TFBSs of a TF are defined as 101 bp DNA regions that can-

not be bound by the target TF. Many works (Kumar and Bucher,

2016; Won et al., 2010) used a shuffle method to construct

non-TFBSs. In the shuffle method, a non-TFBS is constructed for

each TFBS by shuffling the dinucleotides in the TFBS to keep the di-

nucleotide composition unchanged. In this study, however, as TFBSs

need to be encoded by DNA sequences and histone modification

features which need to be extracted from actual DNA sequences,

we need to extract actual DNA fragments to construct non-TFBSs.

So, we construct a non-TFBS for each TFBS by randomly selecting a

101-bp DNA fragment that has similar dinucleotide composition

with the TFBS and is non-overlapping with all TFBSs. This way, we

can construct the same number of non-TFBSs as TFBSs for each TF.

For each TF in each cell type, the labeled data are divided into three

separate, yet equal size folds: 1-fold for training, 1-fold for valid-

ation and 1-fold for test. The used TFs and its number of TFBSs in

each cell types are listed in Supplementary Table S1, which also can

be accessed freely from our web-sever.

2.2 Feature representation
Two types of features are used to represent TFBSs: sequence features

and histone modification features. Sequence features of a TFBS are

represented by the one-hot vectors of all its 101 nucleotides. For a

TFBS Ti with the middle point at the position i in a genome, the se-

quence features can be represented by a feature matrix of dimension

of 4�101 as follows:

STi
¼ ½OðNi�50Þ; . . . ;OðNiÞ; . . . ;OðNiþ50Þ� (1)

where OðNiÞ denotes the one-hot vector of nucleotide Ni. Seven

types of histone modification features are used: H3K4me2,

H3K4me3, H4K20me1, H3K9ac, H3K27ac, H3K27me3 and

H3K36me3 as they are available for all the five considered cell

types. The ChIP-seq profiles for these histone modification features

can be accessed freely from Kumar’s work (Kumar and Bucher,

2016). Based on Won’s work (Won et al., 2010), we use the follow-

ing scheme to apply histone modification features in MTTFsite: we

first estimate the histone modification features for all non-overlap-

ping 25-bp bins and then estimate the histone modification features

for each 100-bp bin by averaging the four 25-bp bins within it.

Finally, histone modification features of the twenty 100-bp bins

around a putative TFBS are concatenated to represent it. So the his-

tone modification features for a TFBS Ti can be represented as

CTi
¼½HðNi�999; . . . ;Ni�898Þ; . . . ;HðNi�99; . . . ;NiÞ; . . . ;

HðNiþ901; . . . ;Niþ1000Þ�
(2)

where Hð�Þ denotes the histone modification features for a 100-bp

bin. Since we use seven histone modification features, the histone

modification features of a TFBS can be represented by a feature ma-

trix with dimension of 7�20.

2.3 Convolutional neural network
In recent years, CNN has been gradually introduced into bioinfor-

matics to learn representations for protein sequences, DNA frag-

ments and RNA fragments. For example, Alipanahi et al. (2015)

developed DeepBind to predict binding sites for DNA- and

RNA-binding proteins by using CNN to learn representations for

DNA fragments and RNA fragments. Wang et al. (2016) proposed a

CNN-based method to learn representations for proteins in protein

secondary structure predictions. As the actual TFBSs of a TF often

contain specific binding motifs, CNN is suitable to learn representa-

tions for TFBSs.

2.4 Multi-task learning for TFBS prediction (MTTFsite)
Multi-task learning is an effective approach for improving the per-

formance of a single task by leveraging on other related tasks (Liu

et al., 2017). Multi-task learning attempts to divide the features for

multiple tasks into private and common features based on whether

the features should be shared. Thus, in multi-task learning, each

task contains both private features and common features. The pri-

vate features of a task are the properties belonging to only this task

while the common features are the characteristics shared by all the

considered tasks. For TFBS predictions of a TF, the prediction in

each cell type can be defined as a task. Thus, TFBS predictions of a

TF in multiple cell types form a multi-task learning paradigm.

In multi-task learning, there can be two types of learning meth-

ods: the fully shared model and the shared-private model (Liu et al.,

2017). The fully shared model uses a single shared CNN to extract

features for all cell types, whose hypothesis is that features of indi-

vidual cell types are shared by all cell types, as illustrated in

Figure 1A. The feature space learned by the fully shared model con-

tains common features and also private features of each cell type.

Generally speaking, however, TFBSs of a TF in different cell types

may have common features and each cell type may also has its own

private features, not shared by other cell types. Thus, private fea-

tures of each cell type will affect the prediction of other cell types.

A more serious issue is that, if some cell types contain much more

labeled data than others, the feature space learned by the fully

shared model may be dominated by private features of these cell

types, which will adversely affect the prediction of other cell types

with less labeled data, which is counter-productive to the goal of

multi-task learning.

The shared-private model, on the other hand, contains a shared

CNN to learn common features for all cell types as well a private

CNN for each cell type to learn its private features. Features learned

for every cell type are separated into two subspace: the common fea-

ture space and the private feature space. In the prediction for each

cell type, its private features and the common features are integrated

as the input. The separation of private features from common fea-

tures makes sure that the private features of each cell type will not

affect the predictions of other cell types. Thus, the shared-private

A B

Fig. 1. Architecture of multi-task learning for TFBS prediction. (A) Fully shared

method and (B) shared-private method
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model can leverage on labeled data available in other cell types to

learn solid information from common feature space, especially for

cell types with sparse or no labeled data. The shared-private model

is illustrated in Figure 1B. Assuming for a TF in a cell type (task) m,

we have a dataset Dm with Nm instances, each instance is a pair of a

putative TFBS xm
i and its corresponding label ym

i , that is

Dm ¼ fðxm
i ; y

m
i Þg

Nm

i¼1 (3)

As CNN is used to learn representations for all putative TFBSs,

the private features hm and the common features sm of a putative

TFBS xm
i in the cell type m learned by the shared-private model are

formally formulated as:

hm ¼ CNNðxm
i ; hmÞ (4)

sm ¼ CNNðxm
i ; hsÞ (5)

where hm and hs are the parameters of the private CNN for the cell

type m and the shared CNN, respectively.

Our proposed MTTFsite follows the shared-private model. Thus,

MTTFsite has the ability to separate private features of each cell type

from common features and can reduce the influence of private features

of each cell type to other cell types. In MTTFsite, the network topology

of the shared CNN and the private CNN for each cell type contain

two parallel CNN models: one is used to learn representations from se-

quence features and the other is used to learn representations from his-

tone modification features. Then the common features and the private

features of each cell type are concatenated to represent instances and

fed into an multi-layer perception (MLP) for its prediction.

3 Experiments and results

3.1 Experimental settings
In MTTFsite, the CNN models in both the shared CNN and private

CNNs contain one convolution layer and each convolution layer con-

sists of 200 convolution kernels of length 10. Each convolution layer is

followed by a max pooling layer. A dropout regularization layer with

dropout probability of 0.5 is used to avoid overfitting. The outputs of

the shared CNN and the private CNN for the target cell type are con-

catenated and inputted into the MLP of the target cell type. The MLP

consists of two fully connected layers of 200 neurons and a softmax

classifier for predictions. We use Adagrad (Duchi et al., 2011) with a

batch size of 64 instances and default learning rate of 0.01. All these

hyper-parameters are selected by carrying out experiments on valid-

ation set. During training, we train the model for 50 epochs. Once

training is finished, we select the model with the highest accuracy on

the validation set as our final model and evaluate its performance on

the test set. All neural models are implemented in PyTorch.

To evaluate the performance of our proposed MTTFsite for

TFBS prediction, we compare MTTFsite with two representative

prediction methods: a baseline method and the fully shared model.

The baseline method is similar to the DeepBind method proposed by

Alipanahi et al. (2015) except that the baseline method also uses his-

tone modification features as additional features. Both the baseline

method and the fully shared model contain two parallel CNN mod-

els: one is used to learn representations from sequence features and

the other to learn representations from histone modification fea-

tures. The two learned representations are concatenated and fed into

an MLP for prediction. The hyperparameters of the baseline method

and the fully shared model have the same values as those used in

MTTFsite.

3.2 Evaluation metrics
AUC, F1-measure and Matthews Correlation Coefficient (MCC) are

used as main metrics. AUC is the area under the receiver operating

characteristic (ROC) curve. An ROC curve plots the true positive

rate (sensitivity) versus the false negative rate (1-specificity) of

different thresholds on the importance score. F1-measure is the

harmonic average of the precision and recall. Precision is the frac-

tion of true TFBSs among the predicted TFBSs, while recall is the

fraction of true TFBSs that have been retrieved over the total

amount of TFBSs. MCC is a correlation coefficient between the

observed and predicted binary classifications. F1-measrue and MCC

can be calculated by following formulae:

F1 ¼ 2� precision� recall

precisionþ recall
(6)

MCC ¼ TP� TN � FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p (7)

where TP, TN, FP and FN denote the number of true positives, the

number of true negatives, the number of false positives and the num-

ber of false negatives, respectively.

3.3 Results of data augmentation using the fully shared

model
We first evaluate the performance of the fully shared model on the

TFs in the five cell types and compare it with the baseline method.

For each TF, the baseline method for each cell type is trained by the

training set of this cell type, and is validated and tested by the valid-

ation set and the test set of this cell type, respectively. In contrast,

the fully shared model of each cell type is trained by the combined

training data of all the cell types and is validated and tested by the

validation set and the test set of this cell type, respectively.

The comparison between the fully shared model and the baseline

method in Supplementary Figure S1A and B shows that the fully

shared model performs better than the baseline method for most cell

type TF pairs. The box plot in Figure 2 shows that the first quartile,

the median and the third quartile of the AUC for the fully shared

model are higher than that of the baseline method for all the five cell

types. Details of AUC, F1-measure and MCC of the fully shared

Fig. 2. Box plot depicting the AUC performance of data augmentation by the

baseline method, the fully shared model and MTTFsite on TFs in the five cell

types
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model and the baseline method for each TF of the five cell types are

listed in Supplementary Table S2. Results show that the fully shared

model outperforms the baseline method for 49 TFs out of the 56

TFs in GM12878, 31 TFs out of the 42 TFs in H1-hESC, 33 TFs out

of the 37 TFs in HeLa-S3, 42 TFs out of the 43 TFs in HepG2 and

60 TFs out of the 63 TFs in K562. These are the evidences that

multi-task learning can indeed improve the performance of TFBS

predictions in most cell type TF pairs through labeled data available

in cross-cell types. Thus, we can come to a conclusion that the

TFBSs of a TF in multiple different cell types indeed have common

features and the common features can be learned by the combined

use of the available labeled data from multiple cell types.

3.4 Results of data augmentation by MTTFsite
The feature space learned by the fully shared model contains both

common features of all the cell types and private features of each cell

type. The prediction for each cell type would be influenced by the pri-

vate features of other cell types as were the case of the fully shared

model. Our proposed MTTFsite separates the learning of private fea-

tures of each cell type from that of the common features. For

MTTFsite in data augmentation, each private CNN is trained by the

training set of the corresponding cell type while the shared CNN is

trained by combined training data of all cell types. In order to evaluate

the usefulness of feature separation, we compare the performance of

MTTFsite with both the baseline method and the fully shared model.

The comparison among the baseline method, the fully shared

model, and our proposed MTTFsite is shown in Supplementary

Figure S1. Supplementary Figure S1B–D show that MTTFsite per-

forms better than both the baseline method and the fully shared

model for most cell type TF pairs, although the margin of improve-

ment over the fully shared model is smaller compared with that of

the baseline method. The box plot in Figure 2 shows that the first

quartile, the median and the third quartile of the AUC for the

MTTFsite are higher than that of the fully shared model and the

baseline method for all the five cell types. Details of AUC, F1-

measure and MCC for the baseline method, the fully shared model,

and our proposed MTTFsite for each TF of the five cell types are

listed in Supplementary Table S2. Table 1 summarizes the AUC per-

formance gain of MTTFsite compared with the baseline method.

For the five cell types, MTTFsite performs better than the baseline

method on at least 79.1% TFs of all cell types. The maximum im-

provement and the average improvement are 12.7 and 2.9% at least,

respectively. On average, MTTFsite performs better than the base-

line method in more than 92.9% of TFs. The micro average of the

maximum improvement and the average improvement are 24.5 and

3.4%, respectively. The improvements are very significant as shown

by P-value ¼ 4:71� 10�37 in Wilcoxon signed-ranks test.

Table 2 summarizes the AUC performance gain of MTTFsite

compared with the fully shared model. For the five cell types,

MTTFsite performs better than the fully shared model in at least

83.9% of TFs for each cell type. The maximum improvement and

the average improvement are at least 2.2 and 0.6%, respectively. On

average, MTTFsite performs better than the fully shared model sig-

nificantly in more than 91.7% of TFs with the maximum improve-

ment and the average improvement of 3.1 and 0.8%, respectively

(P-value ¼7:71� 10�30 by Wilcoxon signed-ranks test). Moreover,

for some TFs, MTTFsite achieves very promising improvements. For

example, the improvements on BCL11A and RXRA in H1-hESC are

2.0 and 2.3%, respectively; the improvements on RAD21 and

SMC3 in HeLa-S3 are 2.5 and 2.0%, respectively; the improvements

on RAD21 and TR4 in K562 are 2.5 and 3.7%, respectively.

3.5 Comparison between MTTFsite and state-of-the-art

methods
Recent works with state-of-the-art performance include DNA

shape-based method, PWM, DWM as well as deep learning meth-

ods. This section will first present comparison of our work with the

use of DNA shape features and then proceed to comparison with

PWM, DWM and deep learning methods.

DNA shapes represent the 3D structures of DNA. Recently,

Mathelier et al. (2016a) proposed four models for TFBS predictions

in vivo by using DNA shape features including helix twist,

minor groove width, propeller twist and the Roll. These four DNA

shape features and their corresponding second-order shape features

(Zhou et al., 2015), used to represent putative TFBSs, were

computed by DNAshape (Chiu et al., 2016; Zhou et al., 2013).

Four DNAshape-based models we compared with include: (i) one-

hot þ shape, which combines the one-hot encoding of nucleotides

with DNA shape features; (ii) PSSM þ shape, which combines

PSSM scores with DNA shape features; (iii) TFFM_d þ shape,

which combines detailed TFFM scores (Mathelier and Wasserman,

2013) and DNA shape features, and (iv) TFFM_f þ shape, which

combines first-order TFFM scores (Mathelier and Wasserman,

2013) and DNA shape features. The implementation of the four

existing models is all available from the software download web-

page (http://github.com/amathelier/DNAshapedTFBS). They are

implemented in our comparison using their default setup and

parameters. In addition to DNAshape, DynaSeq proposed by

Andrabi et al. (2017) can also be used to predict DNA shape fea-

tures. DynaSeq predicts molecular dynamics-derived ensembles of a

more exhaustive set of DNA shape features. In this study, we also

Table 1. Details of the AUC comparison between MTTFsite and the

baseline method for data augmentation

Cell type GM12878 H1-hESC HeLa-S3 HepG2 K562 Averagea

Sample total 56 42 37 43 63 48.2

Improvement

total

52 37 34 41 60 44.8

Improvement

(%)

92.9 88.1 79.1 95.3 95.2 92.9

Maximumb

(%)

31.7 12.7 22.1 37.8 17.9 24.5

Averagec (%) 3.6 3.5 3.2 3.8 2.9 3.4

aThe micro average over the total number of samples.
bThe maximum improvement.
cThe average improvement.

Table 2. Details of the AUC comparison between MTTFsite and the

fully shared model for data augmentation

Cell type GM12878 H1-hESC HeLa-S3 HepG2 K562 Averagea

Sample total 56 42 37 43 63 48.2

Improved total 47 39 37 39 59 44.2

Improvement

(%)

83.9 92.9 100 90.7 93.7 91.7

Maximumb

(%)

2.2 2.8 2.9 2.2 4.7 3.1

Averagec (%) 0.6 1.2 0.7 0.6 0.8 0.8

aThe micro average over the total number of samples.
bThe maximum improvement.
cThe average improvement.

Multi-task learning framework 5071

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz451#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz451#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz451#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz451#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz451#supplementary-data
http://github.com/amathelier/DNAshapedTFBS


compare MTTFsite with DynaSeq. Supplementary Table S3 shows the

AUC of MTTFsite, the four DNAshape-based models and DynaSeq

on five TFs in the five cell types with a total of 24 cell type TF pairs.

Results show that DynaSeq achieves higher AUC than the four

DNAshape-based models on 14 cell types TF pairs. It indicates that

DNA shape features predicted by DynaSeq are more useful than those

predicted by DNAshape, which is consistent with the conclusion

drawn in the original publication (Andrabi et al., 2017). Results also

show that our proposed MTTFsite achieves higher AUC than the

4 DNAshape-based models and DynaSeq for 22 cell-type TF pairs.

The minimum improvement and the maximum improvement are 2%

on GABP in HepG2 and 30% on JunD in GM12878, respectively.

The average improvement is 11.6%, which is a very large improve-

ment for TFBS predictions. This first confirms that MTTFsite is more

useful than the four DNAshape-based models and DynaSeq for TFBS

prediction. One possible reason that MTTFsite outperforms the use of

DNA shape features is that DNA shape features are predicted by com-

putational methods from DNA sequences. Thus, there may be redun-

dancy with sequence features. Furthermore, predicted DNA shape

features may contain many noises.

Current state-of-the-art methods include PWM (Stormo, 2000,

2013), DWM (Siddharthan, 2010) and three deep learning methods:

DeepSEA (Zhou and Troyanskaya, 2015), DanQ (Quang and Xie,

2016) and DanQ-JASPAR (Quang and Xie, 2016). PWM and DWM

are two useful representation methods for TFBSs and achieved good per-

formance (Mathelier and Wasserman, 2013). DeepSEA applies CNN

and DanQ combines CNN with RNN to learn features for TFBSs.

DanQ-JASPAR, an alternative model of DanQ, was developed by initial-

izing half of the kernels in CNN with motifs from the JASPAR database

(Mathelier et al., 2016b). In this evaluation, we implemented PWM and

DWM based on Mathelier’s work (Mathelier and Wasserman, 2013).

We downloaded DeepSEA from its software’s webpage (http://

DeepSEA.princeton.edu/) and DanQ as well as DanQ-JASPAR

from their software’s webpage (http://github.com/uci-cbcl/DanQ).

Performance data for DeepSEA, DanQ and DanQ-JASPAR are the

results of using their default setup and parameters. We compare

MTTFsite with these five state-of-the-art methods by 5 TFs in the

5 cell types with a total of 24 cell type TF pairs. As MTTFsite is

trained by datasets in five cell types and seven histone marks, we

trained DeepSEA, DanQ and DanQ-JASPAR for each TF with the TF

binding profiles in the five cell types and the seven histone-mark pro-

files to make a fair comparison. Table 3 shows the AUC of our pro-

posed MTTFsite and the 5 state-of-the-art methods on the 24 cell type

TF pairs. Results show that DWM achieves higher or equal AUC than

PWM for 20 cell type TF pairs, which is consistent with the conclusion

of the original publication (Siddharthan, 2010). DanQ achieves higher

AUC than DanQ-JASPAR on 12 cell type TF pairs and achieves lower

AUC than DanQ-JASPAR on the remaining pairs. This indicates that

DanQ and DanQ-JASPAR have comparable performances. DanQ

performs better than DeepSEA for most cell type TF pairs, which is

consistent with the result reported in the original publication (Quang

and Xie, 2016). Most noticeably, MTTFsite performs better than the

5 state-of-the-art methods in 21 out of the 24 cell type TF pairs. On

the 21 pairs, the minimum, the maximum and the average improve-

ment are 0.9, 22.5 and 6.0%, respectively. It should be noted that the

performance of DeepSEA, DanQ and DanQ-JASPAR are much better

in their reported original publications. However, their performance in

this study is much worse. The main reason is that the original models

are trained by 690 TF binding profiles for 160 different TFs, 125 DHS

profiles as well as 104 histone-mark profiles while the models in this

study is trained by TF binding profiles of only 5 cell types and 7

histone-mark profiles. It indicates that the performance of DeepSEA,

DanQ and DanQ-JASPAR closely relies on large number of datasets.

3.6 Results of cross-cell type prediction by MTTFsite
Due to the high cost of TF ChIP-seq experiments, many cell types

only have labeled data for very limited portion of TFs. Most TFs are

not labeled. This motivates us to use computational methods to

Table 3. The AUC of five state-of-the-art methods and MTTFsite on five TFs in five cell types

TF Cell type PWM DWM DanQ DanQ-J DeepSEA MTTFsite

CTCF GM12878 0.586 0.578 0.765 0.731 0.677 0.859

H1-hESC 0.566 0.575 0.794 0.758 0.689 0.816

HeLa-S3 0.505 0.509 0.720 0.698 0.670 0.834

HepG2 0.523 0.527 0.796 0.757 0.697 0.871

K562 0.923 0.938 0.728 0.693 0.635 0.839

GABP GM12878 0.844 0.844 0.797 0.845 0.791 0.934

H1-hESC 0.721 0.740 0.789 0.791 0.763 0.729

HeLa-S3 0.877 0.875 0.658 0.681 0.630 0.946

HepG2 0.786 0.791 0.794 0.838 0.795 0.864

K562 0.756 0.754 0.775 0.793 0.763 0.913

JunD GM12878 0.906 0.919 0.621 0.606 0.589 0.957

H1-hESC 0.557 0.566 0.693 0.686 0.643 0.876

HeLa-S3 0.863 0.860 0.777 0.788 0.711 0.942

HepG2 0.925 0.878 0.813 0.826 0.738 0.829

K562 0.684 0.687 0.655 0.653 0.595 0.912

REST GM12878 0.906 0.919 0.621 0.606 0.589 0.957

HeLa-S3 0.899 0.922 0.602 0.597 0.559 0.940

HepG2 0.886 0.902 0.630 0.603 0.602 0.911

K562 0.867 0.890 0.646 0.645 0.623 0.905

USF2 GM12878 0.891 0.891 0.673 0.698 0.615 0.938

H1-hESC 0.841 0.851 0.729 0.752 0.662 0.887

HeLa-S3 0.908 0.912 0.641 0.654 0.561 0.938

HepG2 0.952 0.953 0.697 0.751 0.591 0.904

K562 0.921 0.926 0.660 0.715 0.580 0.945

Note: DanQ-J denotes DanQ-JASPAR. The bold and underscore numbers denote the best performer and second best performer, respectively.
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predict TFBSs for TFs in those cell types that have no labeled data

for them. As our proposed MTTFsite can use a shared CNN to learn

common features by leveraging on the available labeled data from

available cell types, it aims to predict TFBSs for TFs in the cell types

without labeled data for them. This is what we refer to as cross-cell

type predictions. To evaluate the performance of MTTFsite for

cross-cell type TFBS prediction, we assume that only the test set of

the target cell type is available while the training set as well as the

validation set are unavailable. In cross-cell type prediction,

MTTFsite trains both the shared CNN of all cell type and the pri-

vate CNN of the target cell type by combined training data of cross-

cell types. MTTFsite is validated by combined validation set of

cross-cell types and then tested on the test set of the target cell type.

We compare the performance of cross-cell type prediction by

MTTFsite with the fully shared model and the baseline method. The

fully shared model is trained and validated by cross-cell types like

MTTFsite and the baseline method is trained and validated by the

target cell type.

The comparison among the baseline method, the fully share

model and our proposed MTTFsite is shown in Supplementary

Figure S2. Supplementary Figure S2A and B show that the fully

shared model performs better than the baseline method for most cell

type TF pairs. The box plot in Figure 3 shows that the first quartile,

the median and the third quartile of the AUC for the fully shared

model are higher than that of the baseline method for all the five cell

types. It indicates that the use of information of cross-cell types is

useful and can achieve better performance than the baseline method

which is trained by the target cell type. Supplementary Figure S2B–

D shows that MTTFsite performs better than both the baseline

method and the fully shared model for most cell type TF pairs. The

box plot in Figure 3 shows that the first quartile, the median and the

third quartile of the AUC for MTTFsite are higher than that of both

the baseline method and the full-shared model for all the five cell

types. Details of AUC, F1-measure and MCC for these three meth-

ods on TFs in the five cell types are listed in Supplementary Table

S4. Table 4 summarizes the AUC performance gain of MTTFsite

compared with the baseline method for cross-cell type TFBS predic-

tions. For the five cell types, MTTFsite outperforms the baseline

method on at least 73.8% TFs of each cell type. The maximum im-

provement and the average improvement are at least 25.7 and at

least 5.1%, respectively. On average, MTTFsite outperforms the

baseline method in more than 80.9% of TFs. The micro average of

the maximum improvement and the average improvement are 36.9

and 5.1%, respectively. The improvement is very significant accord-

ing to P-value ¼ 1:42� 10�23 by Wilcoxon signed-ranks test.

Table 5 summarizes the AUC performance gain of MTTFsite

compared with the fully shared model. For the five cell types,

MTTFsite performs better than the fully shared model in at least

88.1% of TFs for each cell type. The maximum improvement and

Table 4. Details of the AUC comparison between MTTFsite and the baseline method for cross-cell-type prediction

Cell type GM12878 H1-hESC HeLa-S3 HepG2 K562 Averagea

Sample total 56 42 37 43 63 48.2

Improvement total 46 31 29 35 54 39

Improvement (%) 82.1 73.8 78.4 81.4 85.7 80.9

Maximumb (%) 40.9 31.0 25.7 42.0 34.7 36.9

Averagec (%) 5.1 8.0 4.1 5.1 4.0 5.1

aThe micro average over the total number of samples.
bThe maximum improvement.
cThe average improvement.

Table 5. Details of the AUC comparison between MTTFsite and the fully shared model for cross-cell-type prediction

Cell type GM12878 H1-hESC HeLa-S3 HepG2 K562 Averagea

Sample total 56 42 37 43 63 48.2

Improvement total 54 37 36 41 59 45.4

Improvement (%) 96.4 88.1 97.3 95.3 93.7 94.2

Maximumb (%) 4.2 3.6 3.5 4.0 4.4 4.0

Averagec (%) 1.2 1.5 1.2 1.4 1.3 1.3

aThe micro average over the total number of samples.
bThe maximum improvement.
cThe average improvement.

Fig. 3. Box plot depicting the AUC performance of cross-cell type prediction

by the baseline method, the fully shared model and MTTFsite on TFs in the

five cell types
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the average improvement are at least 3.5 and at least 1.2%, respect-

ively. On average, MTTFsite performs better than the fully shared

model significantly in more than 94.2% of TFs with the maximum

improvement and the average improvement of 4.0 and 1.3%, re-

spectively (P-value ¼ 4:55� 10�13 by Wilcoxon signed-ranks test).

The improvements for many TFs are quite promising. For example,

the improvements for RAD21 and MAFK in H1-hESC and CTCF,

RAD21 and SMC3 in K562 are more than 3.0%; the improvements

for CTCF and EZH2 in GM12878, CTCF in HeLa-S3, NRSF in

HepG2 are more than 4.0%. It is a strong indication that MTTFsite

has a better prediction power than that of the fully shared model.

By comparing MTTFsite with the full-shared model, we find that

the private CNNs of the cell types without labeled data in MTTFsite

function similarly to the shared CNN in the fully shared model be-

cause they both are trained by the combined training data from

cross-cell types. The only difference is that MTTFsite contains both

features learned by private CNNs and by the shared CNN whereas

the fully shared model only uses features learned by the shared

CNN. In the fully shared model, if some cell types contain too much

training data, the learned features are dominated by private features

of these cell types such that many common features are lost. As

MTTFsite can separate private features from common features, the

lost common features in the private CNNs can be complemented by

the common features learned by the shared CNN. Therefore, the

features learned by MTTFsite for each cell type contain more com-

mon features than that learned by the fully shared model.

In order to further demonstrate the performance of MTTFsite

for cross-cell type prediction, we evaluate MTTFsite on TFs in K562

cells from PIQ study (Sherwood et al., 2014), which are available

from online resource located at http://piq.csail.mit.edu/data/

141105-3618f89-hg19k562.calls/141105-3618f89-hg19k562.calls.

tar.gz. Although there are a total of 1316 TFs with genome-wide

TFBSs available in K562 from PIQ study, only 28 TFs have training

set in at least one cell type of the 5 cell types in this study except

K562. So MTTFsite is only tested on the 28 TFs with available train-

ing data. In Andrabi’s work (Andrabi et al., 2017), TFBSs are

selected from the ‘calls’ data and equal number of non-TFBSs are

selected with the cutoff score of 0.25, where the maximum number

of TFBSs and non-TFBSs was fixed at 2000 by random sampling.

However, in order to evaluate MTTFsite on genome scale, we col-

lected all the TFBSs from the ‘calls’ data and equal number of non-

TFBSs to make up test set. Thus, for each TF, MTTFsite is trained

by the combined training data available in the four cell types in this

study and tested on the test set from PIQ study. The performance is

listed in Supplementary Table S5. Results show that MTTFsite

achieves good performance on most TFs and the AUC performance

on seven TFs is more than 0.8. As training data comes from ChIP-

Seq while testing data comes from DNAse-Seq, results indicate that

MTTFsite can be applied for cross-platform prediction.

ENCODE-DREAM in vivo transcription factor binding chal-

lenge contains a across-cell type prediction challenge, in which each

TF has cell types for training and held-out cell types for testing. We

downloaded the 13 cell type TF pairs in the Final Submission

Round. For each TF, MTTFsite is trained by at least one cell type

and tested by held-out cell types, which are newly generated and

have never been previously released by ENCODE. As the challenge

do not provide histone modification features, MTTFsite is trained

only from DNA sequences and chromatin accessibility measured by

DNAse-Seq. The advantage of MTTFsite is that it can learn com-

mon features in histone modification features for TFBSs shared by

multiple cell types. Even though, MTTFsite trained from DNA se-

quence and chromatin accessibility cannot fully demonstrate the

advantages of our method, MTTFsite still achieves very good per-

formance on the 13 cell type TF pairs. The performance is listed in

Supplementary Table S6. Supplementary Table S6 shows that

MTTFsite achieves good performance for all the 13 cell type TF

pairs. Specifically, AUC of all the 13 pairs is more than 0.9 and

AUC of 7 pairs is even more than 0.95. Results indicate that

MTTFsite can achieve good performance for cross-cell type TFBS

prediction even when histone modification features are not

available.

3.7 Results on cell type shared TFBS and

cell-type-specific TFBS
One advantage of MTTFsite is that it can leverage on cell type

shared TFBSs available in other cell types to train the shared CNN.

To validate this, we evaluate the performance of MTTFsite on cell

type shared TFBSs and cell-type-specific TFBSs, separately. In this

study, cell type shared TFBSs of a cell type are defined as the TFBSs

which have at least a TFBS of other cell types in its range of 100 bp.

The remaining TFBSs are referred to as cell-type-specific TFBSs.

According this criterion, TFBSs of each cell type are divided into cell

type shared TFBSs and cell-type-specific TFBSs. Details of the num-

ber of cell type shared TFBSs and cell-type-specific TFBSs for TFs in

the five cell types is listed in Supplementary Table S7. For each

target cell type, MTTFsite is trained by combined labeled data avail-

able in cross-cell types and tested on cell type shared TFBSs and

cell-type-specific TFBSs of the target cell type, separately. Sensitivity

is used to evaluate the performance of MTTFsite. The sensitivity of

MTTFsite for TFs in the five cell types is listed in Figure 4.

Figure 4A shows that MTTFsite achieves higher sensitivity on cell

type shared TFBSs than cell-type-specific TFBSs for all cell type TF

pairs except one. Figure 4B shows that the first quartile, the median

and the third quartile of the sensitivity for cell type shared TFBSs are

higher than that for cell-type-specific TFBSs for TFs in all the five

cell types. Details of the sensitivity for cell type shared and specific

TFBSs for TFs in the five cell types are listed as Supplementary

Table S8. Results indicate that MTTFsite indeed can effectively le-

verage on cell type shared TFBSs available in cross-cell types to learn

common features of all cell types.

As MTTFsite achieves higher sensitivity on shared TFBSs than

specific TFBSs in almost all the five cell types for each TF, the shared

TFBSs dominate the performance of MTTFsite. If other cell types

have more shared TFBSs available by target cell types, MTTFsite

can achieve higher prediction performance. Therefore, high-quality

predictions of MTTFsite for each TF rely on available TFBSs shared

by target cell types and other cell types.

It should also be noted that Figure 4B shows that specific TFBSs

in H1-hESC achieve the lowest sensitivity among the five cell types.

It is possible that MTTFsite achieves low sensitivity scores for spe-

cific TFBSs in H1-hESC because specific TFBSs in H1-hESC have

different characteristics compared with other cell types for some

TFs. Based on this hypothesis, we conducted an additional experi-

ment to calculate the cosine similarities among the five cell types for

both specific TFBSs and shared TFBSs of each TF. For each TF, we

first represent specific TFBSs and shared TFBSs by histone modifica-

tion features and calculate their center in each cell type by calculat-

ing the median value of each histone modification feature. Then,

based on these centers, we calculate the cosine similarity between

any two cell types. Finally, for each cell type, its cosine similarities

to other cell types are averaged. The average cosine similarities of

the five cell types for both specific TFBSs and shared TFBSs of each

TF are shown in Figure 5. The figure shows that the cosine

5074 J.Zhou et al.

http://piq.csail.mit.edu/data/141105-3618f89-hg19k562.calls/141105-3618f89-hg19k562.calls.tar.gz
http://piq.csail.mit.edu/data/141105-3618f89-hg19k562.calls/141105-3618f89-hg19k562.calls.tar.gz
http://piq.csail.mit.edu/data/141105-3618f89-hg19k562.calls/141105-3618f89-hg19k562.calls.tar.gz
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz451#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz451#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz451#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz451#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz451#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz451#supplementary-data


similarities of shared TFBSs are higher than that of specific TFBSs in

the five cell types. This explains why MTTFsite achieves higher per-

formance for shared TFBSs than that for specific TFBSs. Figure 5

also shows that specific TFBSs in H1-hESC have the lowest cosine

similarity to other cell types among the five cell types. This is indeed

likely the reason that specific TFBSs in H1-hESC achieve the lowest

sensitivity. Figure 5 further shows that K562 has lower cosine simi-

larity than the other three cell types. This explains why specific

TFBSs in K562 achieve lower sensitivity than the other three cell

types. The other three cell types have small cosine similarity differ-

ences, so their specific TFBSs have small sensitivity differences.

nextPBM has been proposed to characterize the impact of cofac-

tors and phosphorylation on TF binding and determine cell-type-

specific TFBSs (Mohaghegh et al., 2019). The authors analyzed

DNA binding of PU.1/SPI1 and IRF8 from human monocytes and

found that cofactors and phosphorylation have no effect on autono-

mous PU.1/SPI1 binding and only have effect on its cooperative

binding with monocyte-specific cofactors. Thus, nextPBMs can only

identify cell type specific cooperative TFBSs of PU.1/SPI1 with IRF8.

As our proposed MTTFsite needs cell type specific TFBSs to learn

cell-type-specific features by private CNNs and PU.1/SPI1 does not

have cell-type-specific TFBSs, current datasets used by nextPBM are

inappropriate to improve MTTFsite. Nevertheless, nextPBM is cap-

able of identifying cell-type-specific TFBSs by comparing TFBSs

from nuclear extracts to that from in vitro transcription/translation

protein. Therefore, in the future, we can apply nextPBM to identify

cell-type-specific TFBSs for TFs. This should help to improve

MTTFsite for cell-type-specific TFBS prediction by learning cell-

type-specific features through private CNNs using the identified

cell-specific TFBSs identified by nextPBM.

3.8 Application in gene expression prediction
TFs can bind to DNA through TFBSs to regulate gene expression.

Therefore, we hypothesize that TFBSs are significant for gene ex-

pression regulations and can play an important role in gene expres-

sion prediction.

In this work, we propose a new gene expression prediction

method, referred to as TFChrome, by combining the use of TFBSs

predicted by MTTFsite and histone modification features. We evalu-

ate TFChrome by 20 cell types from the Roadmap Epigenomics

Consortium (RMEC) (Kundaje et al., 2015). These 20 cell types

have seven common histone modification features (Boyle et al.,

2008; Crawford et al., 2005). Since these 20 cell types do not have

available labeled data for any TF, MTTFsite combines the available

labeled data from GM12878, H1-hESC, HeLa-S3, HepG2 and

K562 as training data to predict TFBSs for TFs in these 20 cell types.

More specifically, we predict the TFBSs for 72 TFs in the 20 cell

types, which are listed in Supplementary Table S1. As the 20 cell

types from RMEC and the 5 cell types with labeled data contain

seven common histone modification features including H3K27ac,

H3K37me3, H3K36me3, H3K9ac, H3K9me3, H3K4me1 and

H3K4me3, these seven histone modification features are used in

both the TFBS prediction and the gene expression prediction.

Details of the definition of gene expression prediction and the used

gene encoding method are given in Supplementary Methods.

To consider the relative importance of predicted TFBSs and his-

tone modification features, we use two baseline methods for com-

parison: (i) using only predicted TFBSs and (ii) using only histone

modification features. our proposed TFChrome combines both the

predicted TFBSs and histone modification features. Table 6 gives the

Fig. 5. Cosine similarities of cell-type-specific TFBSs in different cell types

A B

Fig. 4. (A) Scatter plot depicting the distribution of the AUC performance for cell type shared TFBSs and cell-type-specific TFBSs. (B) Box plot depicting the AUC

performance for cell type shared TFBSs and cell-type-specific TFBSs on TFs in the five cell types
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performance evaluation of the three methods. Note that the max-

imum, the minimum and the average AUC of prediction using only

predicted TFBSs are 0.815, 0.744 and 0.769, far better than random

guessing. This is a strong indication that our hypothesis is correct

that TFBSs indeed play an important role in gene expression

predictions.

Table 6 also shows that TFchrome outperforms the method

using only histone modification features. The Wilcoxon signed-

ranks test with P-value of at least 3.36e�5 also indicates that the im-

provement is very significant. For some cell types, the performance

improvement by TFChrome is quite prominent. For example, for

Fetal_Muscle_Trunk, H1_BMP4_Derived_Trophoblast_Cultured_

Cells and Psoas_Muscle, the improve in AUC are 3.3, 4.0 and 5.7%,

respectively. These are evidences that TFBSs predicted by our pro-

posed MTTFsite and histone modification features are complemen-

tary for gene expression predictions.

Several computational methods were proposed for gene expres-

sion predictions. TEPIC (Schmidt et al., 2017), Zhang’s method

(Zhang and Li, 2017) and DeepChrome (Singh et al., 2016) are three

methods with state-of-the-art performance. As the used datasets and

the definition for the problem of gene expression prediction in

TFChrome are different from TEPIC and Zhang’s method, we only

compare TFChrome with DeepChrome. DeepChrome, proposed by

Singh et al. (2016), uses CNN and histone modification features,

which outperforms most previous methods. As TFChrome has 15

cell types common with DeepChrome, we compare them on those

15 cell types. Supplementary Table S9 shows the performance com-

parison of TFChrome and DeepChrome. Note that the AUC of

DeepChrome on the 15 common cell types are given directly from

Singh’s work. Supplementary Table S9 shows that our proposed

TFChrome performs far better than DeepChrome on 14 out of the

15 common cell types. The maximum, the minimum and the average

improvement in AUC is 12, 1.7 and 6.2%, respectively, which are

quite large. As both methods use the histone modification features,

the main difference is that TFChrome also use the additional feature

from the predicted TFBSs. Thus, it is fair to say that the improve-

ment is contributed by the predicted TFBSs using MTTFsite.

4 Conclusion

In this paper, we present a novel data augmentation method using multi-

task learning framework, MTTFsite, for TFBS predictions. MTTFsite

contains a shared CNN to learn common features of all cell types and a

private CNN for each cell type to learn private features. The aim of the

algorithm is to make use of common features cross different cell types to

help predicting TFBSs for TFs in cell types that have no labeled data.

Performance evaluation shows MTTFsite can effectively leverage on

labeled data available in cross-cell types to learn common features of all

cell types. As MTTFsite can separate private features from common fea-

tures, it outperforms the fully shared model significantly. For cross-cell-

type prediction, MTTFsite also outperforms the compared models. This

is a clear indication that common features learned by MTTFsite from

labeled data available in cross-cell types are indeed useful for cross-cell-

type predictions. To further prove the usefulness of MTTFsite, we pro-

pose to make use of the predicted TFBSs for gene expression prediction.

The new gene expression prediction method TFChrome makes com-

bined use of the TFBSs predicted by MTTFsite and histone modification

features. The evaluation on 20 cell types shows that TFBSs predicted by

MTTFsite significantly improves the performance of gene expression

predictions compared with the state-of-the art methods. Gene expres-

sions of organisms are closely related to identification of diseases. For ex-

ample, low expression of BRCA1 plays an important role in breast and

ovarian cancers. Therefore, accurate gene expressions predicted by our

proposed TFChrome can provide valuable reference and assistance for

the diagnosis and treatment of dozens of diseases.

One direction of future works is to investigate the relative importance

of labeled data from different cell types in cross-cell type TFBS prediction.

The second direction is to investigate the prediction of TFs of cell types

without any labeled data by using labeled data of other TFs from the

same cell type, which is also referred to as cross-TF TFBS predictions.
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