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Abstract: Many studies have focused on how autophagy plays an important role in intestinal
homeostasis under pathological conditions. However, its role in the intestine during hibernation
remains unclear. In the current study, we characterized in vivo up-regulation of autophagy in
enterocytes of the small intestine of Chinese soft-shelled turtles during hibernation. Autophagy-
specific markers were used to confirm the existence of autophagy in enterocytes through
immunohistochemistry (IHC), immunofluorescence (IF), and immunoblotting. IHC staining indicated
strong, positive immunoreactivity of the autophagy-related gene (ATG7), microtubule-associated
protein light chain (LC3), and lysosomal-associated membrane protein 1 (LAMP1) within the mucosal
surface during hibernation and poor expression during nonhibernation. IF staining results showed
the opposite tendency for ATG7, LC3, and sequestosome 1 (p62). During hibernation ATG7 and
LC3 showed strong, positive immunosignaling within the mucosal surface, while p62 showed
strong, positive immunosignaling during nonhibernation. Similar findings were confirmed by
immunoblotting. Moreover, the ultrastructural components of autophagy in enterocytes were
revealed by transmission electron microscopy (TEM). During hibernation, the cumulative formation
of phagophores and autophagosomes were closely associated with well-developed rough endoplasmic
reticulum in enterocytes. These autophagosomes overlapped with lysosomes, multivesicular
bodies, and degraded mitochondria to facilitate the formation of autophagolysosome, amphisomes,
and mitophagy in enterocytes. Immunoblotting showed the expression level of PTEN-induced kinase
1 (PINK1), and adenosine monophosphate-activated protein kinase (AMPK) was enhanced during
hibernation. Furthermore, the exosome secretion pathway of early–late endosomes and multivesicular
bodies were closely linked with autophagosomes in enterocytes during hibernation. These findings
suggest that the entrance into hibernation is a main challenge for reptiles to maintain homeostasis
and cellular quality control in the intestine.

Keywords: enterocytes; autophagy; autophagosome; ATG7; LC3; p62; hibernation; Chinese soft-
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1. Introduction

Energy-saving strategies are used by different kinds of animals to survive in stressful and
food-scarce environmental conditions. One of the strategies, hibernation, is a remarkable physiological
circumstance described by a profound yet reversible rest-like state.
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Hibernation is an adaptive survival strategy in response to cold and foodless winter seasons, mostly
found in mammals and birds [1]. Previously, our research group addressed the life cycle of the Chinese
soft-shelled turtle that consists of a hibernation period, which starts from the early days of December
and continues into March, and a nonhibernation period from May to October [2,3]. Hibernation is
a way that some animals, including Chinese soft-shelled turtles, cope with unfavorable ecological
conditions by dramatically reducing their body activity [4,5], metabolic rate [6], and physiological
parameters such as body temperature and heart and respiratory rate compared to nonhibernation [7,8].
Hibernation is an energy-limiting period [6], as during this period the animals are sedentary, and the
demand for oxygen is reduced severely, thus eliminating the need for food during cold seasons [2,9];
although, animals face different kinds of challenges in these critical situations. However, animal bodies
have developed different physiological defense mechanisms against any stressor that could enter
into the animals along with nutrients in the digestive system [10]. One of the defense mechanisms is
autophagy, which participates in the promotion of cellular fitness and the maintenance of intestinal
homeostasis [11].

Autophagy is a degradation pathway that is stimulated by cellular or environmental stresses
in order to remove damaged organelles, protein aggregates, and intracellular pathogens through
the formation of double-membrane structures, called autophagosomes [12], which, when fused
with lysosomes, deliver their contents for degradation by lysosomal enzymes [13]. This process
comprises the intensive action of numerous cytoplasmic proteins [14]. Autophagy performs
essential roles in the maintenance of cellular and tissue homeostasis by degrading cell contents
under the condition of nutrient starvation [15]. Besides that, autophagy plays an important role in
numerous physiological and pathological conditions such as aging, immunity, cancer, inflammatory
diseases, metabolic stress [12,16–18], and intestinal cell survival during physiological stress [19].
Among intestinal diseases, autophagy was first linked to pathogenesis of Crohn’s disease when
genome-wide association studies identified mutations in the autophagy-related gene ATG16L1 as a risk
factor for Crohn’s disease [20]. Recently, researchers have observed the role of autophagy in dendrite
epithelial cell communication, adaptive immunity response, NOD2-directed bacteria sensing, lysosome
destruction, and immune-mediated clearance to be important for inflammatory bowel disease (IBD)
pathogenesis [21,22]. Autophagy has been shown to be critical for the recognition and degradation of
pathogens, thus functioning as an innate barrier against infection [23]; bacteria targets include Listeria
monocytogenes [24] and Salmonella typhimurium [25]. Despite the many studies in which autophagy
responds to provide defense mechanisms against pathological conditions, the autophagic pathway in
the small intestine of reptiles during hibernation remains obscure.

The known biology of autophagy was revolutionized following the identification of autophagy
genes within mammals [26]. ATG7 is the most essential member of an autophagy-related gene family
that encodes the E1-like enzyme, which facilitates both LC3 and other autophagy-related genes [27].
The microtubule-associated protein light chain (LC3) and p62 biomarkers are regularly used for
checking the intensity of autophagy [28]. LC3 is mostly used for to check the autophagic activity in
the milieu of cellular housekeeping and autophagic cell death [29]. LC3 is a soluble protein that is
recruited from the cytoplasm to the autophagosome membrane. During autophagy, LC3-I is conjugated
to phosphtidylethanolamine to form LC3-phosphatidylethanolamine conjugate (LC3-II), which is
strongly bound to the autophagosomal membrane [30]. The p62 proteins, also called sequestosome1
(SQSTM-1), help with acknowledgment of autophagic cargo [31]. LAMP1 is a well-known protein
for lysosomal/autophagosome markers [32]. PTEN-induced kinase 1 (PINK1) is the specific marker
of mitophagy [33]. Adenosine monophosphate-activated protein kinase (AMPK) is one of the most
important molecular energy sensors in eukaryotic cells [34]. AMPK is required for the induction and
progression of the autophagy process. AMPK regulates many metabolic processes. One of the catabolic
processes activated by AMPK is macroautophagy (here after, autophagy) [35].

Autophagy is a conserved pathway among vertebrates and is well-studied in mammals [36].
It also contributes in starvation and various extrinsic and intrinsic stresses. However, its role in reptilian
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enterocytes has not yet been reported. Chinese soft-shelled turtles are one of the most nutritionally and
pharmacologically important animals in China. As a seasonal hibernating animal, this species is an
excellent model for studying the regulation of this natural protective mechanism. Therefore, we have
made a hypothesis concerning in vivo up-regulation of autophagy in enterocytes of the small intestine
of the Chinese soft-shelled turtle during hibernation.

2. Materials and Methods

2.1. Animals and Tissue Preparation

All techniques with the Chinese soft-shelled turtles (Pelodiscus sinensis) were directed according
to the Animal Research Institute Committee guidelines of Nanjing Agricultural University, China.
A total of 20 mature P. sinensis, aged between of 4 and 5 years, were selected for the current research.
The turtles were brought from an aquatic pond in Nanjing, Jiangsu Province of China during the
hibernation period in the months of February and March (n = 10) and the nonhibernation period in the
months of August and September (n = 10). The average body weight (mean ± SD) of each mature
P. sinensis was 1.45 ± 0.10 kg. Before sampling, the temperature was noted during hibernation (4 to
8 ◦C) and nonhibernation periods (20 to 25 ◦C). We fed the turtles in the nonhibernation period and
did not feed the turtles in the hibernation period. After at least 24 h, the animals were anaesthetized
using intraperitoneal injection of pentobarbital sodium (20 mg kg−1) and were euthanized by neck
dislocation. The middle part (jejunum) of the small intestine was collected and preserved quickly for
experiments (details below). All the protocols were approved by the Science and Technology Agency
of Jiangsu Province (SYXK (SU) 2017-0007).

2.2. Immunohistochemistry

Small intestinal tissue slides of both groups (hibernation and nonhibernation) were deparaffinized
in xylene for 10 min two times. All slides were exposed in a grading series of ethanol (75–100%) and
kept for 2 min in each grade. Antigenic sites were exposed by boiling for 2–3 min in 30% sodium
citrate and then rinsed three times in phosphate-buffered saline (PBS) for 5 min. These sections were
covered with 3% hydrogen peroxide in PBS for 15 min at 37 ◦C in order to block the further activity of
endogenous peroxidase. The samples were blocked with 5% bovine serum albumin and incubated with
primary antibody (Table 1) in a moisture chamber at 4 ◦C overnight. After washing, the sections were
incubated with secondary antibody biotinylated anti-rabbit IgG (Boster Bio-Technology, Wuhan, China)
for 60 min at 37 ◦C. Then, they were rehydrated in PBS (pH 7.2) and incubated with avidin-biotinylated
peroxidase complex for 45 min at 37 ◦C. After washing with PBS, peroxidase activity was exposed
using DAB (Boster-BIO-technology, Wuhan, China) according to manufacturer guidelines.

Table 1. Information about primary antibodies.

Primary Antibody Species Catalog No. Dilution Source

ATG7 Rabbit 10,088-2-AP 1:75 Proteintech
LC3 Rabbit 12,135-1-AP 1:75 Proteintech
P62 Rabbit 51,145 1:75 Cell signaling Tech

LAMP1 Rabbit 55,273-1-AP 1:75 Proteintech
PINK1 Rabbit ab174775 1:1000 Abcam, USA
AMPK Rabbit Ab3759 1:1000 Abcam, USA

2.3. Immunofluorescence

Tissue paraffin sections of the small intestine (hibernation and nonhibernation) were incubated
with primary antibody at 4 ◦C for 24 h (Table 1). Then, secondary antibody was applied for 60 min at
37 ◦C. Samples were fixed with mounting medium containing 4’,6-diamidino-2-phenylindole (DAPI) to
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stain the nucleus. Immediately thereafter, images were captured with a BX53 camera (DP73, Olympus,
Tokyo, Japan).

2.4. Immunoblotting

Small intestinal tissue samples were homogenized in ice-cold radio immunoprecipitation assay
(RIPA) buffer that contained protease and phosphate inhibitors (Roche Applied Science, Penzberg,
Germany). After centrifugation at 13,000× g for 15 min, the protein concentration in the supernatant
was quantified with the bicinchoninic acid protein assay (Thermo Scientified). Protein samples (45 µg)
were loaded on 4–12% SDS–PAGE gels. Electrophoresis was run at 120 V for 2 h at 4 ◦C (Bio-Red
Mini-Protean), and immunoblotting was performed with primary antibodies (diluted 1:1000) and
β-actin (1:10,000; Bioworld, Nanjing, China). The intensities of target proteins LC3, p62, PINK1,
and AMPK were normalized against β-actin. Three independent experiments were performed for
western blotting quantification analysis.

2.5. Transmission Electron Microscopy

After tissue sample collection, samples were cut in to small pieces, immersed in 2.5%
glutaraldehyde solution, and then fixed in 1% hungry acid for transmission electron microscopy
experiments. Samples were dehydrated with gradient alcohol, which was replaced with acetone,
and embedded in Epon812, double stained with uranyl acetate citrate, and observed by HITA H-7650
transmission electron microscopy (TEM).

2.6. Statistical Analysis

ImageJ software was used for the measurement [37] of immunoblotting protein bands and
immunofluorescence intensity of villi in the small intestine, and data were reported as the mean ±
SEM. A t-test was performed using GraphPad Prism to determine significant differences between the
two groups. The differences were considered significant at P < 0.05 (one-tailed).

3. Results

3.1. Cellular Localization of Different Autophagy Protein Markers in the Small Intestine During Hibernation

To investigate the protein marker expressions related to autophagy during hibernation of P. sinensis,
immunohistochemistry (IHC) analyses were performed to perceive the positive reactions of ATG7, LC3,
and LAMP1 in turtle intestines. In contrast to nonhibernation (Figures 1C, 2C and 3D), the enterocytes
during hibernation showed strong, positive immunoreactivities of ATG7, LC3, and LAMP1, especially
at apical and basal regions of the mucosal surface (Figure 1A, Figure 2A, Figure 3C). Furthermore,
immunofluorescence (IF) staining was performed to determine the localization of ATG7, LC3, and p62
proteins. The IF staining results showed the opposite tendency for ATG7, LC3, and p62 proteins.
Strong, positive immunosignaling of ATG7 and LC3 was detected at apical and basal regions of
the mucosal surface during hibernation (Figures 1B and 2B); however, weak immunosignaling was
detected during nonhibernation (Figures 1D and 2D). While during nonhibernation p62 showed
strong, positive immunosignaling at apical and basal regions of the mucosal surface, it showed weak
immunosignaling during hibernation (Figure 3A,B). Statistical analysis proved that the quantification
of immunofluorescence intensity of ATG7 and LC3 was significantly increased during hibernation.
However, p62 significantly increased during nonhibernation as compared to hibernation (Figure 4A).
Similarly, immunoblotting analysis confirmed the protein levels of LC3 and AMPK were enhanced
during hibernation as compared to nonhibernation, and the protein level of p62 increased during
nonhibernation rather than during hibernation (Figure 4B). Finally, the autophagy-specific markers,
ATG7, LC3, p62, and LAMP1, and AMPK progression of the signaling autophagy proteins analyzed
through IHC, IF, and immunoblotting proved that the autophagic pathway was up-regulated in the
enterocytes of the small intestine during hibernation. Furthermore, the dispersion patterns of these
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autophagic proteins in the mucosal region of the small intestine are summarized in Table 2 to elucidate
the similarities and dissimilarities during hibernation and nonhibernation.Biomolecules 2019, 9, x FOR PEER REVIEW 5 of 17 
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the small intestine of Pelodiscus sinensis. During hibernation (A,B) and nonhibernation (C,D), there were
strong, positive (black arrow) and weak expressions (white arrow). Scale bar = 50 µm (A,C) and 20 µm
(B,D).
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of the small intestine of P. sinensis. During hibernation (A,B) and nonhibernation (C,D), there was a
strong, positive expression (black arrow), a strong, positive expression in the lumen of the intestine
(red arrow), and weak expression (white expression). Scale bar = 50 µm (A,C) and 20 µm (B,D).



Biomolecules 2019, 9, 682 6 of 17
Biomolecules 2019, 9, x FOR PEER REVIEW 6 of 17 

 

Figure 3. Immunofluorescence staining of p62 and immunohistochemistry of LAMP1 in the mucosal 
surface of the small intestine of P. sinensis. During hibernation (B,C) and nonhibernation (A,D), there 
were strong, positive (black arrow) and weak expressions (white arrow). Scale bar = 50 µm (A,B) and 
20 µm (C,D). 

Figure 3. Immunofluorescence staining of p62 and immunohistochemistry of LAMP1 in the mucosal
surface of the small intestine of P. sinensis. During hibernation (B,C) and nonhibernation (A,D),
there were strong, positive (black arrow) and weak expressions (white arrow). Scale bar = 50 µm (A,B)
and 20 µm (C,D).
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structure, called a phagophore, and a well-developed endoplasmic reticulum (Figure 5A–D) 
appeared as the first step of autophagy. After the closure of the blind ends of the phagophore, the 
autophagosomes with organelles enclosed inside were observed (Figures 6A,B,D,F and 7A). The 
fusion of the autophagosome with lysosomes caused development of autophagolysosomes (Figure 
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Figure 4. (A) Fluorescence intensity quantification of ATG7, LC3, and p62 (n = 10 turtle/group and
20 villi/section of each turtle). The values represent mean ± SEM. * indicates a statically significant
difference between hibernation and nonhibernation. (B) Immunoblotting protein expression levels of
LC3, p62, PINK1, and AMPK in the small intestine of P. sinensis during hibernation and nonhibernation.
Experiments were repeated three times, with similar results in each.

Table 2. Distribution of ATG7, LC3, p62, and LAMP1 in the mucosal region of the small intestine
during hibernation and nonhibernation.

ATG7 LC3 p62 LAMP1

IHC IF IHC IF IF IHC

Hibernation
AC ++ +++ +++ +++ + ++

BC ++ +++ +++ +++ + ++

Non-hibernation
AC + + ++ + +++ +

BC + + + + +++ -

(-) no expression; (+) weak, positive expression; (++) moderate, positive expression; (+++) strong, positive
expression; IHC; immunohistochemistry, IF; immunofluorescence, AC; apical compartment, BC; basal compartment.

3.2. Ultrastructural Formation and Localization of Autophagosomes in Enterocytes of Small Intestine During
Hibernation

The biological process of autophagy was detected in the cytoplasm of enterocytes of the small
intestine in P. sinensis during hibernation. TEM findings revealed that during hibernation, the cytoplasm
of enterocytes exhibited the cumulative formation of a double-membraned, cup-shaped structure,
called a phagophore, and a well-developed endoplasmic reticulum (Figure 5A–D) appeared as the
first step of autophagy. After the closure of the blind ends of the phagophore, the autophagosomes
with organelles enclosed inside were observed (Figure 6A,B,D,F and Figure 7A). The fusion of the
autophagosome with lysosomes caused development of autophagolysosomes (Figure 7C), and in the
lysosomal pathways, the multivesicular bodies (MVBs) were engulfed by autophagosomes to form
amphisomes (Figure 7D). However, no evidence was found for the formation of autophagolysosomes
and amphisomes in enterocytes during nonhibernation (Figure 7E,F). Additionally, mitophagy
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is the main type of autophagy; during hibernation, many degraded mitochondria were closely
associated and overlapped with autophagosomes, suggesting that more mitophagy occurred during
hibernation (Figure 6B,D and Figure 8B,D,G,H,I). Furthermore, we detected a mitophagy-related
protein, PINK1, which regulates mitophagy by changing the membrane potential of mitochondria.
Immunoblotting showed that the expression level of PINK1 was enhanced during hibernation as
compared to nonhibernation (Figure 4B). As the final step of autophagy, many residual bodies with
electron-dense contents of digested organelles were closely associated with autophagosomes in
enterocytes during hibernation (Figure 8C). During hibernation, the apical membranes of enterocytes
broke, and the cytoplasm along with the remains of organelles and autophagosomes were discharged
into the lumen of the small intestine (Figure 8A,C,F). A similar finding was also observed in IF staining
of the LC3 marker of autophagy during hibernation (red arrow) (Figure 2B). These observations
proved that the autophagic pathway was significantly dominant inside the cytoplasm of enterocytes
as well in the lumen of the small intestine of P. sinensis during hibernation. Besides that, during
hibernation, the cytoplasm of enterocytes exhibited the exosomes secretion pathway, as early endosomes,
late endosomes, and multivesicular bodies were closely associated with autophagosomes (Figures 6C
and 8D). Finally, we summarized the subcellular features of autophagy in enterocytes of the small
intestine during hibernation and nonhibernation (Table 3).
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Figure 5. Formation of phagophores in enterocytes of the small intestine in P. sinensis during
hibernation (A,B) and nonhibernation periods (C,D). E, enterocyte; GC, goblet cell; M, mitochondria;
ER, endoplasmic reticulum; ID, interdigitation; multivesicular bodies (white arrow head), phagophore
(white bold arrow). Scale bar = 1 µm (A,C), 400 nm (B), and 200 nm (D).
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Figure 6. Formation of autophagosomes in enterocytes of the small intestine in P. sinensis
during hibernation (A–D) and nonhibernation periods (E,F). E, enterocyte; GC, goblet cell; MRC,
mitochondria-rich cells; M, mitochondria; autophagosome (white arrow); interdigitation (black arrow
head); ee, early endosome; Le, late endosome; multivesicular bodies (white arrow head); exo, exosome.
Scale bar = 1 µm (A,E), 200 nm (B,D), and 400 nm (C,F).
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Figure 7. Autophagolysosome and amphisome formation in enterocytes of the small intestine in P.
sinensis during hibernation (A–D) and nonhibernation periods (E,F). E, enterocyte; GC, goblet cell; M,
mitochondria; Lu, lumen; Mv, microvilli; rb, residual bodies; autophagosome (white arrow), lysosome
(black arrow); amphisome (curve black arrow). Scale bar = 1 µm (A,B,E) and 200 nm (C,D, F).
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Table 3. The comparison of subcellular autophagy appearances in enterocytes of the small intestine of
P. sinensis during hibernation and nonhibernation.

Enterocyte Hibernation Nonhibernation

Phagophore ++ +
Cytoplasmic

Autophagosome ++ +

Luminal Autophagosome + -
Autophagolysosome + -

Mitophagy ++ -
Amphisome + -

More apparent (++), less apparent (+), and absent (-).

4. Discussion

The gastrointestinal tract response to long-term aphagia has been studied in estivating
amphibians [38] and hibernating mammals [39]. Although the time of fasting in endothermic
animals is in the range of a few hours, in ectotherms, it can be several months (characteristic of
hibernation) [40]. During the hibernation periods of mammals, amphibians, and reptiles, the efficient
removal of cytoplasmic contents are thought to be important for cellular life and the maintenance
of the internal milieu; however, this mechanism is poorly understood [4,40]. Previous reports have
suggested that the removal of residual material and cytoplasm are mediated by intestinal epithelial cells
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through engulfment [5]. However, hibernating animals protect their internal body physiology through
different mechanisms [41]. One of them is autophagy. However, the role of autophagy in the small
intestine of ectotherms is largely unknown. In our current study, we investigated the in vivo role of
autophagy in enterocytes of the small intestine of P. sinensis during hibernation. Our IHC and IF results
for ATG7 and LC3 showed strong, positive expressions at luminal and basal regions of the mucosal
surface of the small intestine during hibernation. These expression patterns of different proteins of
autophagy might be involved in the maintenance of intestinal homeostasis. Nighot et al. [42] reported
similar patterns of expression during cell starvation of ATG7, LC3, and p62 in intestinal epithelial
cells, which enhanced the tight junction barrier function by targeting the degradation of the CLDN-2
pore-forming protein. Increasing the expression of CLDN-2 caused the epithelial monolayer to become
leaky and the conductivity of Na+ to increase [43,44]. After the stimulation of autophagy during
starvation, the gap junction connexin proteins (CX50 and CX43) were targeted by the LC3 protein
in Hela cells [45]. Furthermore, in contrast to a previous report [46], we detected weak expression
of p62 in the small intestine during hibernation in our results. A previous report confirmed the
enrichment of autophagy with the LC3 level in aggregation with decreased p62 levels [47]. In our
results, ATG7, LC3, and p62 showed the opposite tendency to each other, which was an indication of
active autophagy [48]. The p62 protein functions as a selective autophagy receptor for the degradation
of autophagic cargo and serves as an index of autophagy degradation [37,49]. Consequently, these
findings suggested that, during the hibernation period, these autophagic proteins promoted the tight
junction barrier function of intestinal epithelial cells, which is essential for maintenance of intestinal
homeostasis. Nutrient starvation-induced autophagy significantly increased trans-epithelial electrical
resistance and decreased the ratio of Na+/K+ paracellular permeability [50]. The knockout of ATG7 in
intestinal epithelial cells of mice synergistically intensified the intestinal disease, increased widespread
submucosal inflammation [51], and inhibited the secretion of intestinal mucins [52]. These findings
strongly suggest that ATG7 is essential for controlling the intestinal inflammatory response and
defense mechanism against intestinal pathogens. In addition, in our results the immunoreactivity of
LAMP1 was increased during hibernation as compared to nonhibernation. LAMP1 is a lysosomal
marker. An in vitro study using melanoma cells concluded that LAMP1 is used for regulation of
carbohydrates [53]. However, the lysosome is the last point of many vesicle-trafficking pathways,
including those for phagocytosis and autophagy [54].

We further characterized the autophagic response of intestinal enterocytes using immunoblotting
and TEM. TEM is a reliable and accurate way of monitoring autophagy [55]. In the current study,
the expression level of AMPK was increased, and the formation of phagophores and double-membrane
structures, called autophagosomes [13], were enhanced in enterocytes of the small intestine during
hibernation. AMPK is activated selectively by glucose deprivation [35]. AMPK increases an autophagic
flux by contributing to autophagosome maturation and enhances the progression of autophagy [56].
Autophagosomes are stable compared to other organelles in the cell, and autophagosomes only appear
when needed [57]. Interestingly, during hibernation, the presence of well-developed autophagosomes
within the cytoplasm of enterocytes and in the lumen of the intestine were observed (Figures 2B
and 8A,C). During long periods of starvation, too many autophagosomes developed. Eventually,
the cytoplasm of the cell is filled with autophagosomes, and then the cell membrane ruptures,
and organelles are discharged into the lumen of the intestine [11]. During the period of hibernation,
more reserve bodies are gathered in the cytoplasm of enterocytes, which might be eventually removed
through autophagy because this process performs a role in cell death [58]. On the other hand,
the environmental stress of heat can deregulate the function of autophagy [59]. Taken together, our
IHC, IF, and TEM data suggested that the activity of autophagy was decreased in the small intestine
of P. sinensis during nonhibernation. Therefore, at low temperatures and during long periods of
the hibernating state, the autophagic pathway is more active in maintaining cellular homeostasis by
degrading cytoplasmic damaged organelles and proteins.
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Previous reports have explained that mitophagy is the autophagic degradation of mitochondria,
as a quality control mechanism for the maintenance of the internal cell environment [60]. This method
is selective for degraded mitochondria that are isolated from fusion and fission processes [61]. In the
current study, during hibernation, the enhanced level of PINK1 indicated more mitophagy. PINK1 is a
mitophagy-related protein that is essential for cellular homeostasis under different circumstances [62].
Furthermore, during hibernation, the increased formation of multivesicular bodies was closely
associated with autophagosomes. Recently, Fader reported that the process of degradation through
autophagy required functional multivesicular bodies [63]. Multivesicular bodies are secreted by
enterocytes for the maintenance of intestinal mucosal immunity [64]. Recently, studies have suggested
that multivesicular bodies and autophagosomes may fuse together and create new vesicular structures,
called amphisomes, then amphisomes fuse with the lysosome to digest the degraded material [11,65].
The autophagic lysosomal pathway inhibits the secretion of harmful proteins in the exosome for cellular
fitness [66], and these autophagic vacuoles release vesicular luminal Ca2+ to facilitate interaction
with multivesicular bodies [67]. As in our findings, the structures of the amphisome and exosome
secretion pathways as well as the early endosome, late endosome, and multivesicular bodies were
closely linked with autophagosomes inside the cytoplasm of enterocytes during hibernation (Figures
6C and 8D). Therefore, reptilian intestinal enterocytes could be a good model to study the cross-talk
between autophagosomes and multivesicular bodies.

5. Conclusions

Our data demonstrate, for the first time, information about the in vivo up-regulation of autophagy
in reptilian intestines during hibernation. Results indicated the expression of autophagy-specific
markers provided solid evidence that autophagy is significantly active in the mucosal surface of the
small intestine during hibernation. The cumulative formation of phagophores and autophagosomes
enhance the autophagic pathway of micro-autophagy, macro-autophagy, and mitophagy in enterocytes
of the small intestine for the maintenance of intestinal homeostasis of P. sinensis. A schematic diagram
of autophagy in enterocytes of the small intestine of P. sinensis during hibernation is presented in
Figure 9. We believe that our study opens a new avenue to unravel the significance of autophagy
during hibernation.
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