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Abstract—Degradation of commercial populations remains a frequent phenomenon even with the use of
methods of stocktaking and control of production volume. In fish farming, the concept of “overfishing” is
used with and the signs of this condition are well known. However, the processes leading to the degradation
of reserves develope in various ways. According to the theory of nonlinear dynamical systems, several types
of crisis development can be classified. Of particular interest are the phenomena of collapse, that is, variants
of a rapid decline in numbers, which are unexpected for the organizations controlling the fishery. Immedi-
ately before the collapse, the state of the stock can be assessed as relatively stable and it may experience fluc-
tuations. Contrary to expectations, there was no rapid recovery after a rapid reduction in cod, whitefish Core-
gonus clupeaformis of the Great Lakes, halibut and other valuable species. This paper considers a hybrid model
for the collapse of red king crab Paralithodes camtschaticus stocks of the Kodiak archipelago of Alaska with
unusual distinctive oscillating dynamics. The computational scenario in a hybrid system with survival and
growth equations considers the logic of decision-making in operation management. The scenario differs in
that after the fall of catches, the crab population goes into the sporadic fluctuations that do not have a regular
character and are not characteristic of the population. The collapse itself occurs after a long interval of fishing
while the population is in an unstable mode. The analysis shows that a long species life cycle is not a decisive
factor for eliminating the risk of a collapse scenario. The presence of reserve generations does not change the
situation qualitatively, the efficiency of their reproduction in crab and cod off the coast of Labrador turned
out to be unexpectedly low. The status of stocks of large predators that require seasonal moratoriums on fish-
ing must be regularly checked.

Keywords: nonlinear dynamics of ecosystem degradation, scenario modeling, management of biological
resources exploitation, population collapse scenarios, irregular fluctuations and cycles, red king crab Para-

lithodes camtschaticus population crisis
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The properties of oscillating phenomena in the
dynamics of various biological processes were investi-
gated in our previous studies using mathematical
methods. It was possible to describe damping fluctua-
tions for a series of decreasing peaks of outbreaks of
insect pests in boreal forests [1]. Transient oscillatory
regimes leading to a “bottleneck” population crisis
after the active phase of aggressive invasion were con-
sidered [2]. The oscillating process, unsteady in ampli-
tude, is illustrated by modern epidemic dynamics. In
many countries, the incidence records of COVID-19
have taken the form of a series of “waves” rolling in at
intervals of four and a half months. For example, this
happens in the United States, according to statistics
given (Fig. 1). The waves cause an important psycho-
logical problem when victory over the epidemic seems

very close, but it is suddenly necessary to reintroduce
restriction regimes.

The regime of “epidemic waves” with an interval of
four to six months is common; however it is not the
only possibility for the development of this scenario.
Epidemic processes and mortality rates differed sig-
nificantly in different regions. In some countries, res-
idents are more susceptible to the disease than in oth-
ers. As an example, in Belgium, with 80% vaccination
of citizens aged 18+, mortality remains slightly higher
than in Slovakia with a vaccination rate of 54%. These
obvious differences are interesting when considering
people from the same ethnic group who live perma-
nently in different regions. Our hypothesis about the
immunological cause of such noticeable differences
due to the influence of the spread of seasonal corona-
viruses in the past, proposed in the spring of 2020 [1],
has been substantiated. Cross-reactive immune T-cells
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Fig. 1. The dynamics of waves of hospitalization of patients diagnosed with COVID-19 in all states of the United State per week
from 03/7/2020 by age groups. (https://gis.cdc.gov/grasp/covidnet).
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Fig. 2. The dynamics of COVID-19 infection cases in Denmark (monitored every case) per week with a pronounced peak in

December 2020 (https://coronavirus.jhu.edu).

were also detected, and a universal immunodominant
peptide was identified [3].

Many more studies will be focused on the analysis
of the causes of the differences in the nature of local
epidemics and their modeling. We have seen a brief
outbreak of infections in Denmark, turning into spo-
radic dynamics without distinct periodic effects.
There is an interesting aspect of the generality of non-
linear effects for biocybernetics. The epidemic sce-
nario in Denmark shown on the graph in Fig. 2 is
dynamically similar to the pattern of the development
and rapid completion, in a month, of the breeding
outbreak in psyllids of the genus Cardiaspina in Aus-
tralia with the threshold launch scenario and with the
probability of repetition of the A-shaped peak in pests
with stochastic population behavior [4].
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The global dynamics of the pandemic at the end of
October 2021 demonstrates an intermediate trend of
decreasing cases of infection (and the proportion of
deaths) in the phase of attenuation of the third wave. A
number of countries are breaking out of the trend of
decreasing mortality in the autumn wave of 2021,
where restrictions have been re-introduced and then
canceled. In other regions, the beginning of the next
phase of infection growth was observed; the dynamics
was asynchronous. According to the graph shown in
Fig. 3, it is already clear that the incidence at the peak
of the fourth wave in Russia will significantly exceed
the maximum of 2020.

The modifications of the SIR model of the epi-
demic proposed in the spring of 2020 could not predict
the long oscillatory dynamics. The authors of [5] have
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Fig. 3. The dynamics of COVID-19 epidemic waves in Russia according to official statistics of daily recorded cases of infection

(https://coronavirus.jhu.edu).

proved that their system of equations did not have
orbitally stable periodic solutions. Non-local SIR
models with a solution in the form of traveling waves
were being developed in 2021. Methods describing
local flu outbreaks are not suitable for pandemic con-
ditions. Historical analogies based on the “Spanish
flu” and “swine flu” will not help model forecasts,
since there were not four waves of previous flu pan-
demics. The pandemic of the “Russian flu” in 1889—
1892 was most likely caused by the HCoV-OC43 coro-
navirus, which lost its pathogenicity in further evolu-
tion and transformed into four types; this was a way to
reduce the pathogenicity of the virus to elude immu-
nity.

The scenario of stepwise relaxation of oscillations
without decreasing amplitude is unusual in biosys-
tems, we can phenomenologically describe with the
following equation:

dN —ran| K — Nz(t - 1)

N\

ar (e &K+cNa—q»J (1)
x(H-N(@{-1), 0<H<K.

In equation (1), K is the value of the epidemic
threshold for triggering an extreme increase in mor-
bidity at » > 1; H is the pre-threshold state of accumu-
lation of an active group of distributors. H acts in
equation (1) with respect to the number of cases at
some point earlier, lagging behind the average time
interval of the latent stage of infection. According to
the graph in Fig. 3, we estimate H = 5000. Including

e M a5 a damping functional sets the final attenua-

tion of waves of any pandemic at t — oo. Theoretically,
the effect is achieved with a threshold level of “collec-
tive immunity” A(¢) (according to various forecasts of

experts this threshold is from 75% or even 92% in the
population).

In the real scenario, instead of the attenuation
phase of the third “wave”, the fourth wave immedi-
ately began from the end of September, which indi-
cates the effect of an additional disturbing factor of
amplification of propagation. A similar dynamics of
cyclical disruption by a sharp outbreak was observed in
April 2021 in Brazil. Presumably, the cause was an
“alarming” strain (Delta AY.4.2), however, it may be
an unknown variant. The Delta variant originated in
2020. It was shown that the threat from Delta is asso-
ciated with mutations not only of the S protein, but
also with improvements in the structural N protein of
the nucleocapsid, which increased the percentage of
assembly of functional virions suitable for further
infection inside the cell [6]. Only 1.5% of new virions
are functional in HIV.

Mutations will continue to occur as random events
in weakened host organisms; however, the selection
factors of variants are not so stochastic and may
change. For modeling, it is interesting that the accu-
mulation of mutations in S1 was recorded at once.
After multiple mutations, stability intervals followed.
Adaptive evolution of the viral protein S1 subunit in
2020 was correlated with an increase in infectivity, via
selection by affinity of its binding to the cellular recep-
tor. A dangerous scenario is when the selection of
mutations of the S-protein that overcome humoral
immunity is provoked at low vaccination rates, that is,
immunoglobulins will systematically begin to lose
binding affinity to updated S-protein sites. The role of
antibody-dependent amplification of infection in the
development of the “cytokine storm” complication
was analyzed [7, 8]. The ADE effect for COVID has so
far been detected only in laboratory experiments with
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animals [9]. The probabilistic ADE effect can lead to a
cyclical local effect of an increase in morbidity in
which the presence of antibodies developed earlier for
some “drifting” antigens of old strains can become a
negative factor in macrophage infection. The pro-
posed solution to stop this process is revaccination of
the population with vaccines of different technologies.
In Chile, those who received the inactivated vaccine
were given a third vaccination with a dose of mRNA
vaccine.

A number of hypothetical methods of coronavirus
inactivation have been discussed [10, 11]. In addition
to the formation of long-term immunity due to CD8+
T-lymphocytes, the effect of the initial dose of infec-
tion on the dysregulation of the immune response
[12, 13] and complications in COVID [14] remains
unclear. In a dangerous scenario, the release of cyto-
kines is initially slowed down due to the inhibition of
interferon activity by auxiliary proteins of the virus;
and then it sharply increases and launches an ava-
lanche-like destructive positive feedback loop of the
inflammatory reaction.

To describe the three different scenarios of epi-
demic dynamics shown on the graphs, it is necessary
to use different special mathematical apparatus capa-
ble of generating the exact nonlinear effects we need.
Their number is limited by fundamental theorems,
which forces us to combine methods.

We will discuss another important situation of
rapid changes in population processes, the phenom-
ena of degradation with controlled intervention. The
purpose of this work is to design a computational
structure with an algorithmic representation of event-
fulness in continuous time for scenario modeling of
stock degradation options that occur as an unexpected
collapse during controlled fishing. The dynamics of
the development of marine fisheries crises, similarly to
that of local epidemics, differs significantly from
known examples; however, there are also some
important aspects of similarity of situations in which
we will compare nonlinear effects.

SCENARIOS OF COMMERCIAL DEGRADA-
TION AND POPULATION COLLAPSE

Fishing regulated according to quotas of allowable
catch often led to the degradation of biological
resources, both local [15] and in a huge oceanic area
[16]. The optimal exploitation of reserves is far from
solved. Sometimes not even 30% of the estimated quo-
tas allocated for fishing during an obvious crisis were
used, as in the Caspian basin in 2006—2010 [17]. Both
short-cycle species and large predators are subject to
sharp degradation, but with significant differences in
their recovery rates. Typing according to the similar-
ity/difference in the stages of scenarios is interesting to
us for analyzing the nonlinear dynamics of population
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crises. Cases with reliable estimates and catch data are
important.

The most important aspect, which we mathemati-
cally drew attention to when comparing different cases
is the degradation of biological resources that occurs
either gradually with a small (<10%) annual loss, or in
the form of a final collapse. The situation with the
populations of sturgeon of the Caspian Sea is an exam-
ple of degradation that has lasted for half a century; it
was caused by excessive fishing and violation of the
natural river flow of the Volga [18]. Since 2010 four
species have been included as endangered species in
the “Red Book”. The official statistics shown in Fig. 4
[19] do not include illegal seizure. Now, in interna-
tional documents, the UN calls on countries to fight
IUU-fishing, that is, illegal, unregulated, and unre-
ported fishing. It is necessary to know how much a
subject has actually caught, even with the legal right to
catch; moreover, for forecasting it is necessary to rep-
resent both the gender and size-age distribution of th
individuals of the catch.

The reason for such a long depletion of stocks
during predatory fishing is the complex intrapopula-
tion structure of these fish with seasonal races [20] and
the evolutionary adaptation of sturgeon to reproduc-
tion in limited channel spawning grounds [21, 22].
Subpopulation groups of fish entering the Volga or
Ural rivers earlier or later than the main spawning
group had chances to avoid fishing in the river; how-
ever, their efficiency of reproduction is lower than at
the optimal flood level and temperature [23]. By ana-
lyzing the data on the migration of juveniles using
moving average methods, we previously found the
presence of two maxima for the indicator of spawning
efficiency of the starry sturgeon Acipenser stellatus in
the Volga. For the diamond sturgeon Acipenser
gueldenstaedtii, a single domed maximum with an
asymptote at a level that was half of the maximum was
shown, and the shape of the curve of the dependence
of'the stock and replenishment of the beluga Huso huso
did not have an extremum [24, 25]; however, our data
interval was incomplete, since the stocks of beluga
were depleted at the beginning of the 20th century.

A similar situation with a long 35 year degradation
(according to [26, 27]) was observed for the zander Sti-
zostedion lucioperca in the Sea of Azov. In the situation
with sturgeon, there were opportunities to stop fishing
long before the point of degradation. Artificial release
of juveniles did not meet expectations for commercial
return. The sharp collapse of stocks shown in Fig. 4 is
fundamentally and obviously different from the pro-
longed monotonous depletion of valuable stocks. Pop-
ulation collapse is interpreted as a decrease in the
number of adults by 90% in 3 years, and lasting for at
least 10 years [28]. Many works have been devoted to
cases of commercial collapse of hydrobionts, its causes
and detectable signs for various objects of fishing, for
example, for the mollusk Chlamys islandica [29]. A sche-
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Fig. 4. The dynamics of degradation of three populations of Caspian Sea sturgeon (diamond sturgeon, starry sturgeon, and

beluga) according to the volume of official catches [19].
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Fig. 5. The dynamics of catch for the general scenario of the stock collapse scheme (according to [30]).

matic diagram of the development of the collapse of
stocks according to a catch schedule with an increase
in the level of withdrawal, according toreview [30], is
shown in Fig. 5. Immediately before the collapse, the
catches had passed the peaks, but were still quite high.
Consequently, such a hypothetical population could
withstand a high level of withdrawal rate for a long
time (¢ > 0.6), and this would be considered the norm.
This is confirmed by the cases with Atlantic cod [31]
and with the Volga starry sturgeon, where in some
low-water years the withdrawal from the spawning
part of the population reached up to g = 0.8. Hopes
for a recovery reserve due to generations that have
not yet entered the commercial age are eventually
leveled by the long maturation of juveniles of these
species, which will also face a suboptimal gender
distribution due to different maturation times in
males and females; this will represent generations

with significantly different numbers at the time of
the first spawning.

It was believed that short-cycle commercial spe-
cies, such as the Peruvian anchovy Engraulis ringens,
could be subject to a sharp but short reduction in
stocks. The catches of the most fished fish in the world
fell rapidly several times and recovered, but eventually
decreased from a record 13 million tons in 1971 to
1.1 million tons by 2015, including due to the frequent
occurrence of the warm El Nino current. Depletion of
commercial stocks of Atlantic cod Gadus morhua off
the coast of Canada was a crushing collapse in eco-
nomic consequences due to the forced cessation of
fishing since 1992 [32]. In addition, back in 1990, the
forecasts here were favorable.

The provincial governments of Canada strictly reg-
ulate marine fishing; however, in the seasons immedi-
ately before the collapse, the quotas allocated were not
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Fig. 6. The dynamics of the biomass of the cod spawning
stock in the province of Newfoundland and Labrador rel-
ative to the critical LPR level (in million tons, according to
estimates in [35]). Since 2015, there has been a steady
increase in the spawning stock of the population and by
2030 we can expect to reach a critical level of the stock.

fully used, which indicates a systematic reassessment
of the state of reserves. Many authors have discussed
the degradation of this massive dominant predator in
the waters of the provinces of Newfoundland and Lab-
rador. The errors in the regulation of fishing, the unre-
liability of the assessment of the replenishment of gen-
erations due to the inaccuracy of accounting methods,
the selectivity of the removal of large fish, and the
accompanying natural factors of currents off the coast
of North America were considered [33]. The selectiv-
ity of the removal of large and prolific individuals leads
to a situation in which “stunted” and rapidly maturing
genetic forms will prevail in the population; however,
they are characterized by increased post-spawning
mortality (an example known to fishermen is the Bal-
tic smelt Osmerus eperlanus and its short-cycle lake
form snetok).

Experts have not reached a consensus on the causes
of the collapse for the cod case, although many ver-
sions and hypotheses have been put forward, includ-
ingjustifications of their miscalculations. A significant
factor unaccounted for by fishing forecasts was the
increased cannibalism of cod with an abundance of
their own young. Initially, the regulatory authorities
set a moratorium on cod fishing for 1.5 years. Accord-
ing to the most pessimistic expert forecasts, recovery
after the collapse should have taken 9 years [34]; how-
ever, the fishery was not restored even after 20 years.
Itis the absence of the expected beginning of stock
recovery according to model forecasts that is the main
problem in the crisis scenario for large and long-lived
species. The population was supposed to be restored
quickly due to the hypothetically numerous reserve
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generations of cod still unused by the fishery; however,
their numbers were unexpectedly not enough.

A graph of the dynamics of cod catches with a long-
term stabilization interval between the peak of record
catches and the collapse of the fishery in 1992 is avail-
able on Wikipedia. Here we show another, more inter-
esting graph of the calculated dynamics of the biomass
of the spawning stock of cod (Fig. 6). Modern esti-
mates from [35] clearly confirm the threshold effect,
which was previously difficult to explain for a multi-
age stock.

After the degradation of the dominant predator
population, changes occurred in the community of
bottom hydrobionts. Fishing off the coast of Labrador
has shifted to benthic invertebrates, which have
increased biomass without the pressure from their
main predator. The shrimps have become much larger.
A similar situation was observed for the fauna in the
Caspian Sea, where the fishing of large gobies began,
they occupied a niche after the depletion of the stock
of sturgeon, their predators and the main consumers
of benthos. The size and age structure of mollusk pop-
ulations that were previously consumed by sturgeon
has changed. By 2000 large individuals began to pre-
dominate [36]. However, high productivity is provided
by young organisms. Historically, the stocks of stur-
geon fish were supported by a benthic feed base with
low biomass, but with high productivity. The diet for
juvenile sturgeon and cod has actually decreased.

From the point of view of nonlinear dynamics, a
semi-stable equilibrium state was observed before the
collapse of the cod, below which reproduction is
reduced by a step function. Similar threshold transi-
tions are already known in models for insect dynamics
[37]. The situation with the forecast of cod stocks has
been calculated many times; according to modern
estimates, the fishing population will be restored by
2030 [38]. Analyzing several situations in different
regions, we drew attention to the collapse develop-
ment variants that are particularly interesting for
mathematical biology.

THE SITUATION OF THE COLLAPSE
OF THE COMMERCIAL CRAB POPULATION

Several situations of fishing collapse that differ in
dynamics have happened; these collapse events
attracted only local attention. Therefore, we analyzed
a lesser known example of the dynamics of degrada-
tion of economically valuable stocks of a “non-fish”
fishing object, which is interesting from the point of
view of modeling.

Many populations have a natural oscillatory mode
[39, 40]. At the same time, the duration of their oscil-
lation period may not correlate with the length of the
life cycle of the species itself [41]. As an example, in
the case of cyclical outbreaks of the eastern spruce
budworm Choristoneura fumiferana or quarter-century
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Fig. 7. The dynamics of Paralithodes camtschaticus crab fishing off the coast of the Aleutian Peninsula of Alaska and the islands

of the Kodiak archipelago with collapse (according to [43]).

periods of fluctuations of the Far Eastern sardine Sar-
dinops melanostictus [42] the cycles are not violated by
the current global climate warming trend. The cycle
can be an alternative stable mode of existence of the
biosystem, along with equilibrium in a different range
of the number of its components (in a different area of
attraction of the attractor). The management problem
is that the experts who determine the level of fishing
withdrawal (seasonal quotas) are not ready for changes
in natural trends. If experts have clearly observed a
positive trend on the rising “wave” of the population
cycle, they tend to extrapolate this trend in forecasts
for the next seasons.

Figure 7 shows a schedule of fishing stocks of the
Kamchatka crab Paralithodes camtschaticus (also
known as “red king crab”) with a final collapse by 1985
in the region of the Aleutian Peninsula of Alaska, in
the Shelikhov Strait and the waters of the neighboring
islands of the Kodiak Archipelago [43].

The crab population, which is numerous in the
Pacific Ocean, has degraded over 35 years of fishing
during quota-regulated and selective-sized fishing and
has not recovered, despite all efforts. The peak of the
crab catch was reached in 1966. As a result, the process
from the peak of the catch to the point of collapse and
the moratorium on fishing took almost 20 years
(1966—1985). In this scenario, much more time
passed before the collapse than in the case of cod in
the waters of Labrador. Before the collapse, crab
catches had been steadily growing to a local maximum
for 5 years, the population was considered safe and
there were no visible reasons for statisticians to adjust
the withdrawal. The graph, which shows the dynamics
of the catch mass (M, million pounds) of the Kodiak
crab population, shows two sharp drops associated
with a decrease in the stock .S, when the quota was not
mastered by fishing. The first 3.8-fold drop in catches
occurred in 1968. A similar peak in catches with a

sharp intermediate drop was also observed for Cana-
dian cod. Between the crises, 17 years of crab fishing
passed with 50% fluctuations in the catches. Recovery
of crab stocks turned out to be more difficult than that
of cod, and there is no data on the appearance of pos-
itive dynamics in this fishing area. The death of crabs
in previously lost nets prevents recovery. The duration
of the life cycle of the Kamchatka crab and cod of the
Northwest Atlantic and their role as the dominant
predator in the community (enhanced by cannibal-
ism) are comparable.

Fishing is regulated for gourmet bottom inverte-
brates even more strictly than for mass commercial
fish species, such as cod and anchovy, where the mar-
gin of error can be thousands of tons. However, it is
possible to successfully plan future catches with a sta-
ble share of commercial return from the initial vol-
umes of roe, and when the relationship between
spawning stock and replenishment is successfully
approximated by a fractional linear relationship. For
sturgeon fish, the flood parameters calculated by the
correlation method are used for correction. The man-
agement of the exploitation of biological resources
becomes more complicated when the reproduction
efficiency of a given population obeys an asymptotic
dependence due to competition, which has extremes.

The case of crab collapse is mathematically more
complicated. After the reduction of the number due to
overfishing in 1965—1967, a sharp loss of equilibrium
was obvious; however immediately an oscillatory
mode of the stock size appeared between the first and
final crisis of fishing. The scenario of local degrada-
tion of the Kamchatka crab population differs from
the dynamics of the cod crisis in the large oscillating
transition. For cod, pseudostabilization of the stock,
which was in unstable equilibrium, was observed for a
long time. If we compare the situations of known col-
lapses with each other, then, from the point of view of
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Fig. 8. The dynamics of whitefish catches in Lake Ontario (in million kg) with collapse in 1965 and population recovery by 1985,

the catch quota is shown separately (according to [44]).

nonlinear dynamics, the visible metamorphoses of
phase portraits have not only obvious similarities, but
also some differences. In hydrobiont species that are
very different taxonomically, the regulation of demo-
graphic processes can be reflected by a mathematically
similar functional. It is the manifestation of threshold
nonlinear effects and modes of sporadic fluctuations
in the scenarios under consideration that make it
unrealistic to establish a universal strategy for optimal
fishing. It turned out to be difficult for statisticians to
anticipate rapid collapse and understand its causes.
Atlantic analogues are the cod Gadus morhua and the
crab Paralithodes camtschaticus; these are long-lived
large predators with a reserve of reproductive poten-
tial, as it was believed, they should not immediately
collapse like anchovies.

Erroneous decisions in management theory can be
both random and systematic. In order to confirm the
hypothesis that the described scenario is not a conse-
quence of a rare combination of circumstances at sea
or an incident of displaying heterogeneously collected
statistics, we will give another non-trivial example of a
collapse that occurred after a pronounced peak catch
and a subsequent 12-year fishing interval with an
intermittent trend. A similar situation developed for
the whitefish Coregonus clupeaformis in Lake Ontario
with subsequent restoration (Fig. 8) [44]. This variant
of the crisis requires a separate mathematical discus-
sion, since there are accounting materials for the
Great Lakes.

An additional factor of mortality unaccounted for
in fishing forecasts in the case of whitefish in Lake
Ontario was the invasion of a parasite, the sea lamprey
Petromyzon marinus, into the Great Lakes. The lam-
prey was actively fought. After 20 years, the whitefish
population began to recover, fishing was reopened;
however, the allocated quota for catching again turned
out to be excessive, and the situation with overfishing
No.2 2022
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of whitefish was repeated, as predicted by the collapse
schematic diagram in Fig. 5. Whitefish in some lakes
has not recovered.

All three scenarios of degradation we have
described are much more difficult for specialists mak-
ing decisions about the level of exploitation than the
persistent and long-lasting depletion of sturgeon
stocks in the Caspian Sea.

‘We propose the construction of a discrete-contin-
uous model for analyzing the dynamics of the transi-
tion from equilibrium to an oscillatory regime with a
threshold collapse effect.

METHODOLOGY OF THE THEORY
OF POPULATION REPLENISHMENT
FORMATION

The justification of modeling with the inclusion of
hybrid structures will be built within the methodology
of the theory of replenishment formation. We will
briefly outline the basic mathematical provisions of
the concept and emphasize the non-obvious problems
due to the use of this apparatus in evaluation of data
about a dynamically changing object. The characteris-
tics of reproduction efficiency in the collapse scenario
should change with a large decrease in the stock rela-
tive to the historical optimum according to the inher-
ent regulation functions, that is, first they should
smoothly decrease, and then have a threshold effect
that cannot be described in traditional models. The
model should not require “external” parameter
changes during calculations to describe the collapse.

The mathematical theory of the formation of
replenishment of populations of hydrobionts was sub-
stantiated in [45, 46]. The main idea was formulated in
the method of constructions based on observational
data of the functional relationship between the existing
parent stock and the replenishment received from
spawning. It was assumed that if we estimate the form
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of nonlinearity in the dependence, then it is possible to
withdraw excess stock above the level of replenish-
ment, the bisector of the coordinate angle [45]. In
this case the optimal solution is obvious, namely, to
transfer the stock §'to a state S, when the position
of the dependence curve over the bisector is largest,
DI[A(S) — S] — max. The approach does not work for
all commercial species. The method of f(.S) curve
analysis is more applicable to large species with large
individual fertility, the effect of the stochasticity of
environmental factors on which is less. Their stock sta-
tus after the vulnerability interval is determined
mainly by fishing and partly by post-spawning mortal-
ity. The taxonomic proximity of species does not guar-
antee similarity or the presence of visible dependen-
cies; the level of competition for resources and survival
factors of their young is more important. Cannibalism
was considered to be one of the most important factors
[45]. Intraspecies confrontation increases with a high
stock density in spawning grounds, which was relevant
for the species of the family Salmonidae studied in
small rivers in Canada. The evolutionary adaptation of
Caspian sturgeon was aimed at overcoming this factor,
which used both remote migrations and spawning in
the summer months to minimize competition. The
overlap of migration routes leveled this adaptation.

If the reproduction conditions have changed dra-
matically, then the position of the extremes of the f(.S)
dependence relative to the bisector transforms accord-
ingly, and the maximum of the curve shifts to the left.
Due to such factors of influence, more flexible meth-
ods are needed in calculations for the mathematical
description of the variety of dependencies and the
variability of the possible development of situations.

DYNAMIC PROPERTIES OF MODELS
AND DATA ANALYSIS

A well-known reproduction function (replenish-
ment of R from S) R = f(S) = aS exp(-bS) was pro-
posed [45] with two parameters: reproductive param-
eter a > 1 and parameter 0 < b < 1 that takes into
account the effect of competition factors with increas-
ing density. The nonmonotonicity of dependence is
not only due to strong intraspecies competition
between individuals for the best places during spawn-
ing in rivers, but also due to hypoxia [45]. With the
redundancy of the roe in the stores, the dead roe
becomes a source for the development of pathogenic
microorganisms. The curve has one extreme maxi-
mum at S = 1/b and a horizontal asymptote at
limg_,., f(S) = 0. Research in the search for methods
to determine the dependence in the efficiency of
reproduction continues [47, 48].

We are interested in the properties of reproduction
models as dynamical systems with different attractors,
and not in of the properties of approximating data sets
to functional curves. The parameters are usually
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“unequal” in their influence on qualitative changes in
phase portraits. In the iterative model R, = aRnebe"
at0<ac< e2, the trajectory generated by iteration from

the R, starting point ¢"(R, > 0) will have a single stable
O(R*) = R* equilibrium position R* = (Ina)/b > 0.
When increasing a to a = e’ +¢, the R* equilibrium
will lose stability, |/ '(R*)| > 1. A cycle with a period of
p = 2 will occur around an unstable stationary point.

However, almost all points of R, are attracted to this
cycle, except for R* and all its point-prototypes

¢ "(R*). If a is further increased, the cycles of all pow-

ers of 2 will occur, p=2',i — . These changes
during bifurcations constitute a well-known “univer-
sal” chaotization scenario [49]. The finite increment
of the parameter a leads to the period p becoming

infinite. The cyclic points R* that have lost stability
are not attracted to the attractor. It is important to

note that the sequences of bifurcations with p = 2

occur identically for all functions with a constant neg-
ative special ratio of the higher derivatives, the
“Schwarzian”. The characteristic of the function cal-
culated with the second and third derivatives of f(S5),
as well as the two Feigenbaum universality constants,
do not have an ecological interpretation [50], they
determine the type of behavior of iterations.

It is possible to discuss whether high reproductive
potential or highly density-dependent mortality leads
to randomization according to the model forecast. In
fact, the mathematical theory of the formation of a
global attractor in the form of a Cantor set based on
the analysis of the renormalization of a group has no
biological interpretation. In discrete models of biosys-
tems it is better to avoided randomization according
to M. Feigenbaum not because of the appearance of
the chaos mode itself, but because of a number of
effects of periodic windows. To do this, it is enough to
violate the criteria of the doubling cascade with p = oo;
the most acceptable option is to specifically obtain

alternative attractors for the trajectory @"(R,). A cha-
otic mode is possible without an attractor.

An alternative model of the nonlinear dependence
“stock-replenishment” with a three-parameter func-

tional iteration R,,, = aR,/(1 + R,/K)" similarly expe-
riences an infinite cascade of bifurcations of doubling
the period; only randomization will occur with an
increase in the parameter b > 1, which sets the inten-
sity of the impact of compensatory mortality (increas-
ing with increasing density). In a model without
extremes of bifurcations, the birth of cycles does not
occur, there is only equilibrium (possibly trivial) and
any trajectory tends to it.

Note that the construction of the f(S5) curve based
on observational data is a fundamentally hard to solve
task. Regression methods were proposed [45]. How-
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Fig. 9. The data on the dynamics of the pink salmon stock
with atrajectory that we added and the “stock—replenish-
ment” dependence constructed by the Ricker regression
method [51].

ever, for dynamic systems, the approximation of ellip-
tical point thickenings of any curve will not give any
prognostic possibilities. In discrete dynamics, cyclic
trajectories (sequences of repeating points) do not
look like ellipsoids from continuous models. Imagine
that a population is a natural dynamic system that
develops according to some mathematical law, the
evolution operator @. The state in which the popula-
tion occurs as a result of this dependence is limited to
a subset in the phase plane (the behavior is dissipa-
tive). Eventually, the values of the stock quantity are
compressed into a subdomain of the phase space, the
neighborhood of a stable equilibrium state or a limit
cycle of a finite period; however, the image points
remain within a limited subset of Y’ = € on the phase
plane R X S.

The trajectories of discrete dynamical systems have
attracting sets that can be topologically equivalent for
various functional dependencies. The set of topologi-
cal types of attractors is limited. Figure 9 shows an
example graph on the R X .§ plane with data on the
number of pink salmon with a 2-year life cycle in a
river with a hypothetical dome-shaped replenishment
curve constructed by the author [51]. We have added a
trajectory in the form of a Lamerea diagram. Obvi-
ously, there is dependence between adjacent genera-
tions of pink salmon, otherwise the points would not
lie under the arrows from the bisector; however, the
complex dynamics cannot be explained by construct-
ing such a curve. The iteration of the function with one
maximum drawn by the author of [51] here simply has
a stable stationary point, the intersection with the
bisector (the angle of inclination of the tangent is
slightly less than m/4). The stability criterion for
point R*, the calculated modulus of the derivative at
this point, is less than one |@(R*)| < 1. With an increase
in the angle of inclination of the tangent >m/4, a short
cycle would occur; however, none of the points pres-
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ent in the figure fall into the area of the graph where
the points of such a cycle could be located.

According to our assumption, the curve for the data
in Fig. 9 should have both a maximum and a mini-
mum, and the left branch should increase asymptoti-
cally at f(.5) < S. The dynamics of pink salmon can
often become aperiodic. A model based on

R, = aRne_bR" with @ > 40 in a chaotic mode was pro-
posed to describe changes in fluctuation trends in
“even” and “odd” populations of the pink salmon
Oncorhynchus gorbuscha of adjacent years [52].

It is impossible to restore the form of the “stock
and replenishment” dependence from the thickening
of points on the graphs. The shape of the curve can be
estimated in a specific case when the observed popu-
lation gradually degraded under the influence of fish-
ing. If the fishery has brought the population out of a
stable regime and the impact of the catch has long pre-
vailed over the natural dependence in the restoration
of the stock; then, due to the consistent reduction of
the stock, it is possible to judge the shape of the curve
(or the absence of an obvious dependence) on the
graph of monitoring data on the number of juveniles,
using the moving average method. It was possible to
confirm the presence of extremes in the dependence
on the graph in the coordinates “stock X replenish-
ment” in such populations [53]. Correlation methods
cannot be reliable in this task. A remarkable example
of false explicit correlation in the trends of population
phenomena was shown [54]. There was no obvious
dependence “stock X replenishment” even with the
small size of the Kamchatka crab population of the
Kodiak archipelago [55]. However, dynamics some-
times allows us to solve the inverse problem and
assume the behavior of the system under study.

THE FORMAT OF EVENTS AND TIME
FRAMES IN THE REPRODUCTION MODEL

We are not just developing another model function
“stock-replenishment”; we will describe a methodol-
ogy for representing functional dependence for sce-
nario analysis of situations with nonlinear effects that
we need for this task.

It is often necessary to introduce additional condi-
tions into ecological models both for the beginning
and for the completion of the factor, since the course
of processes can change abruptly when a number of
conditions in the environment are met. “Hybridity”
has now become too broad a term in modeling (mean-
ing pulse, automatic, etc.) [56]. The author of [56]
developed variously recorded dynamic models that
relate to hybrid structures and differ in the type of
switching organization. We define the chosen con-
struction as a predicatively redefined computational
structure with a frame-by-event time and use the
methods of glued calculations.
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It is important for the methodology to adapt the
representation of model time as a sequence of tuples of
events and to determine the logic of switching. The
points in the cropped continuous time for events that
lead to rearrangements in the system of differential
equations can be determined by probabilistic or logical
methods. Events are required to describe structural
qualitative changes as special states in the space of
variables with zero duration.

The life cycle of the standard length of an aquatic
organism developing from eggs (both fish and crusta-
ceans) before puberty is accompanied by metamor-
phosis. The sequence of continuous time intervals
connected by the algorithm can be biologically justi-
fied using the ideas of the theory of the phasing of the
development of hydrobionts, developed by the scien-
tific school of B.B. Vasnetsov [57, 58]. For each spe-
cies, there are significant metamorphoses in the
ecologo-physiological development that change its
role in the trophic chain of the community and sur-
vival; therefore we will set the division of the vulnera-
bility interval into stages. The change in the survival
rate by 1% at the stages in early ontogenesis is of great
importance. In tasks with switching, it is logical to set
the time format with a continuous and with a discrete
component. For this task, we will choose a format that
is suitable for modeling a process with a modified
impact and especially in a situation of expert fishing
management.

We use framing of the hierarchy of continuous time
intervals in computational experiments with a predica-
tively variable form of impact. Inside the main frames,
we will make an order of numbered events #. Hybrid
event time for computational experiments is formal-
ized in the form of a multiset of ordered elements on a
fixed interval length T:

LH#Q{LM%/J{T%,LR}

n

where i is the number for the event inside the frames
before T and # is the current frame number in the
order of successive generations. Recording time with
two discrete components leaves the edges {TL, iR} to
the right and left of the main unit, the frame with the
number n. The edges between time frames that are not
included in the frame in the form of points {TL, L R}
are needed to perform rebuilds in the points of system
transitions that are highlighted by the conditions. At
the right point | R, the settings of the magnitude of the

impact of fishing are changed. At the left point TL we
make the transition to the calculation of the develop-
ment of the next adjacent generation. The purpose of
time formalization is to accurately introduce elements

of eventfulness in management, since the points 7', 2,
and ¢ will be indicated from calculations of completely
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continuous additional variables. It is not always neces-
sary to format time with floating-length subintervals
into fixed frames due to calculated events. Eventful-
ness can be entered without setting a frame, as in phys-
ical tasks with relay switching.

The idea of time manipulation is that the computa-
tional model of a generation’s life is formed based on a
dynamically redefined system. The factors of popula-
tion decline vary significantly between the stages of
ontogenesis and development of crustaceans [59].

BASIC PREDICATIVE COMPUTING
STRUCTURE

The changes represented in the model by their
essential genesis are strictly mandatory, algorithmi-
cally predetermined in time, or optional consequences
of other processes. The choice of an alternative equa-
tion in the model is carried out only with a special ratio
of the calculated values. The second idea of the
method, which can be applied to different popula-
tions, is to determine events from the assessment of the
state of the set of predicates, followed by changes in
the procedure for calculating equations. For a model
reflecting biological discontinuity, we propose a com-
putational structure with sequential redefined forms
that preserve continuity. The value of N(7) in each
frame changes from N(0) = ASto N(T), where A is the
average fertility for the five previous seasons. The sys-
tem is formalized by a differential equation with a set
of possible “interchangeable forms” for the right side
and additionally with a set of predicates for changing
the calculation mode, Boolean functions P(x, y) with
a set of values {0;1}. The predicate is given by the
mathematical relation of continuously changing argu-
ments. Predicates are by default at 7, P(x, y)= 1, and
they will necessarily have to take the value P(x, y)= 0
from the state of their arguments at # (or vice versa,
change the value from 0). The arguments P(x, y, ...) in
our method are variables from auxiliary and related to
the dynamics of N(7) equations, calculated synchro-
nously with equations (2).

The time of ontogenesis before entering the repro-
ductive age of successive generations is set by combin-
ing time intervals with a set of calculated events:

te[0,71= | Jiln./. 711 i=1..3.

Biologically, the frame interval is the standard life-
time of a generation before the start of reproductive
activity. Numbered event points in the interval of juve-
nile ontogenesis are ontogenetic “interruptions”.
Compare these metamorphoses with the equations in
the right part for the decrease in the number of the
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generation from N(0), which is uneven at the three
main stages of early ontogenetic development:

—(ouw(ON@) + BN @), AO!
—0L,N(@0)/W(T) = BN (@), B(t,w(t)) (2)
—0aw(t =N (1 = &) = B, A, w(t)).

The parameters o, < o, < o3 and P are the coeffi-
cients of juvenile mortality depending on the number
of the generation itself. The third in order of equa-
tions (2) with o a small delay § < 7 is included to
account for the exhaustion of resources by early stages,
where 7T is the length of the earliest stage. For the sec-
ond stage prone to predation, the growth factor w(t)
reduces the loss. The predicates P,, P, and P; give bio-
logically interpreted moments when to stop calcula-
tions of each of the forms of the right part, the condi-
tion for completing the activity of the equation and
obtaining intermediate results:

P(—t < 1),

dN _
dt

Pzt #T,—w <w),
B =T,w, <w).

We have written two predicates in expressions (2.1)
with logical negation, so these events will become pos-
sible if the relations are violated. The calculation of
equations (2) considering the conditions (2.1) occurs
with the cycle algorithm until P, = 1. Predicates must
always define transition events in the time frame
uniquely and for each 7. Avoiding ambiguity, we can
additionally use logical variables, flags that change the
state from one to zero if the transition is prohibited.
Recording a continuous-event model time as a multi-

set of (t,,1',1'"") elements means that the model con-
siders a sequence of frames for the life cycle time of an
individual generation. Inside each time frame with the
initial position #, there are “intra-frame” events,
which we have designated by the superscript #. The
transitional level of development w, was used to exit
the generation from a quadratically determined mor-
tality rate. The set of events can be expanded. For each
form of the right part, at the moment of the event, the
initial conditions associated with the previous calcula-
tions are calculated. To calculate the dynamics of the
new (n + 1) generation, the initial conditions for the
first in the structure of equation (2) are reinitialized:

(2.1)

i+l

k
N(0),, = kSn’Sn = (N(T)n + zva(T)n—mj’

m=1

where v, is the indicator of post-spawning survival for
a series of previous m generations, and .S is the number
of the stock ready for reproduction with average fertil-
ity A.

Population processes are variable even without the
influence of fishing. In the scenario application of the
model, it is important to estimate the current values of
the P,, P,, P; set. Transitions of two types in equa-
tions (2) are recorded, that is, only those based on the
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counts of time unit segments 7 and caused by internal
ratios of the calculated indicators. In this case, the
shape change in equations (2) occurs after comparing
the ratios of values under conditions (2.1) for internal
model variables, by w(7); however, another species-
specific dynamic characteristic can be used. The idea
of using related characteristics and calculations of aux-
iliary indicators makes it possible to expand the basic
model in a variety of ways. Fishery management is
represented by a special scenario algorithm in a hybrid
model. It is convenient to vary such a control effect
according to the given logic of the scenario with the
eventfulness of the computational experiment.

We use the interdependence often noted in many
species [60] between the growth rates of juvenile
aquatic organisms and mortality, which was proposed
to be used for modeling in [61] with the inverse depen-

dence w'(¥) = (N _l(t)). The predicative structure of
the set of right-hand sides of equation (3) will be
solved numerically in relation to the auxiliary indica-
tor of the average dimensional development of indi-
viduals of the generation w(?):

dw_ O 3)

_—+X 5
at YN+

where 0 is a corrective indicator, and ¢ is a fixed
reflection of the abundance of food resources, which
can also be a seasonal periodic dependence G(¢). The
energy spent on growth in hydrobionts in northern lat-
itudes depends on temperature [62]. Here % € [—€, €]
is a correction related to temperature, it can be positive
or negative. For optimal spawning conditions in equa-
tion (3) we take y - = 0. Thus, the availability of an
available food supply affects survival in the model
indirectly.

We will calculate R = N(T) = @(N(0)) to deter-
mine the properties of the phase portrait of iterations

R, = @(R,). We are interested in the boundaries of

n

the field of attraction and singular points.

SMOOTHLY TRANSFORMABLE MODEL
DEPENDENCE

It is necessary to reflect the effect of the aggregated
group [63], since we are considering situations for
populations outside the historically established num-
ber. With a small number of S, the role of unfavorable
factors in reproduction is high [64, 65]. It is methodi-
cally wrong to introduce an explicit minimum L
threshold of the Ollie effect here, as in the Bazykin
equation [66]. The L threshold is unknown to experts
in advance, and not all changes in regulation are rig-
idly predetermined. According to ecological criteria,
changing the basic population characteristics by a leap
is unreliable.

We have developed a method for taking into
account the variability of factors in the form of a point
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introduction into a predicatively redefined dynamic
system of special functions as varying coefficients,

¥ (n) # const for iterations of ¢"(x,_;, ¥(n)), with only
a limited range of values. Such functions should be

constant throughout the frame [T L, R] of continuous
model time. Triggers in calculations will change their
function value when the frame n: = n + 1 is changed.
Y is associated with the initial state.

In the equation of the decrease in the number of
generations, the mortality coefficients are divided to
oN? and BN. The value of w(f) with the parameter o
takes into account the rapid depletion of resources
necessary for development as the total biomass of lar-
vae increases. It is important to consider the loss of
reproduction at the stage with #,. The effect of losses
can be strongly manifested at a low density of mature
individuals § — min@, more eggs will remain unfertil-
ized. The effect of the reproduction efficiency reduc-
tion for a small group is realized in the model by a
dynamic coefficient with BN. Its influence depends on
the size of the parent population .S, from which we cal-
culated the initial conditions f{.S). The range of influ-
ence of N(0) on ¥ should be limited. The range of val-
ues of the “trigger function” f{(.S) on the right has a
quickly achievable end limit:

Y(S) = 1+ exp(-LVS? + ),
limg_._ W(S) = 1, ¥(0) = 2.

The {({ < 1) coefficient will reflect the level of
expressiveness of the effect of losses from the original
roe. With an optimal stock, ¥ does not determine the
calculations, which will allow the factor to be turned
off smoothly in equation (2) for the first stage:

a;_ftv = —oaw(t)N*(1) = Y[SIBN (). )

In equation (4), we took into account smooth
changes in regulation, whereas in the hybrid system we
described threshold changes in the dynamics of the
decline in the number of juveniles, which cannot be
avoided. The structure of the hybrid model in the
Rand Model Designer computing environment can be
adapted for a group of co-living and competing gener-
ations.

A METHOD FOR ANALYZING DISCRETE
ITERATIONS OF A HYBRID MODEL

By obtaining with N(0) - N(T) = (N (0)) the
functional dependence after numerically solving
equations (2) and (2.1) together with (3) and (4) and
with N(0) = AS for biologically acceptable values of
N(0) e N, it is possible to evaluate the dynamic prop-
erties of the iterations @(...p(x,)) of this dependence.
The numerical solution with the calculation of N(7) is
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used to calculate the functional iterations R,,; =

o(R,) — g,R,, where the coefficient g € [0,1) is the
established share of commercial seizure. With regu-
lated fishing, ¢ is set by experts for each season n,
which will be considered in the scenario study of the
development of the situation. The most important
parameter of the model for changing the form of
dependence and the behavior of iterations turns out to
be the fecundity of A, but in ecological reality this is a
slowly changing characteristic.

In iterations, we will get the separation of the set of
available starting points R, of the trajectories of an
unstable “repeller” point. So the iterations will get two
areas of attraction Q, and Q, for two alternative attrac-
tors. The dependence used as the evolution operator ¢
will have more than one maximum (Fig. 10). For us,
the position relative to each other of the first from the
origin of the coordinates of the maximum R,,, and the

local minimum R, (R, > R,.) is important, but
the preservation of @(R,,,,) > R, is significant.

We will obtain a family of nonlinear curves relevant
to the problem with extremes and horizontal asymp-
tote by changing only the effect of ¥ and not changing
the values of the generation loss parameters in equa-
tion (2). The mathematical basis for the analysis of
their iterations is the theory of the dynamics of maps
developed in [67] with the Schwarzian value changing
sign when the argument changes. For iterations of the

function x,,, = @(x) with three extremes, the condi-
tions of the D. Singer theorem [68] are not satisfied,
which are necessary for the realization of the scenario
of the transition to a global chaotic attractor through a
cascade of bifurcations of doubling the period of the
cycle p — « according to the Feigenbaum-Collet-
Tresser theory [69], since with a smooth change in the

parameter of such an iteration x,,, = ¢(x), two alter-
native stable cycles of an even period (p = 2) will arise.
Accordingly, the cascade will not be infinite and the
Cantor set will not be formed.

The arsenal of descriptive tools for iteration
dynamics is wide, although limited [70]. Three topo-
logical forms of attractors are available for

R,,, = ©(R,) iterations, namely, a finite period cycle or
an equilibrium point x* = @(x*), an attractor similar
to a Cantor set, and an interval attractor in the form of
a conjugation of an uncountable set of segments. For
iterations x,, = @(x,_,) = ©(n) (taking into account the
changing external perturbation), there are three types
of bifurcations, rearrangements of the type and num-
ber of attractors, which are direct and inverse. Attrac-
tors other than equilibrium points can instantly lose
the invariance property f(A) e A, which depends on
the position of the boundary dQ in their region of
attraction €. The attractor can break into parts or
intersect with the boundary of its area of attraction €2:

Vx, € Q and lim,_,_ ¢"(x,), and at this moment a cri-
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Fig. 10. A graph of the model dependence with three extremes and two equilibria at the points of intersection with the bisector of
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sis situation is fixed. So the theory of maps intersected
with the problem of biocybernetics.

ANALYSIS OF ANONLINEAR COLLAPSE
SCENARIO

Scenario modeling that allows to comparison and
evaluation of variants of situations is an approach to
the regulation of multi-species fishing [71]. Consider
the dynamics of collapse in a scenario experiment with
the logic of expert management of commercial sei-
zure. The mathematical basis of the scenario will be
the metamorphoses of the phase portrait of iterations
caused by the transformation of the extremes of the
dependence. In the scenario model, it is better to cal-
culate the number of individuals Y, withdrawn from
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the stock S in the fishing season # instead of the mass,
which will be the observed value.

For our problem, we obtain the dependence when
solving three Cauchy problems glued by N(0); from
equation (2) with a non-constant number of nontrivial

stationary (@(R*) = R) states due to the level of exter-
nal influence g; however, their number should remain
at least two for each #. In the initial situation, the curve
¢(S) without significant impact is characterized by
four increasing points 0 < R* < Ry < RY < R}, equi-
librium states (Fig. 11) (the position of the graph of the
model dependence relative to the coordinate angle
bisector) that do not coincide with the extremes of
the curve. The dependence with a pronounced min-
imum was determined earlier for the Volga starry
sturgeon [72].
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Fig. 12. The curve of the model dependence after the inverse tangent bifurcation with two unstable equilibria and min ¢(S) > Rj.

For the targeted reconstruction of the phase por-
trait in the scenario, three unstable stationary points
are needed with stability R = 0 for each n. The first
metamorphosis will be obtained by gradually increas-
ing g, which will cause an inverse tangent bifurcation,

the fusion of a stable R} with an unstable Ry equilib-
rium. As a result, we observe the loss of the largest
equilibrium state, the previously attracting point of the
trajectory for the Q, region (Fig. 12).

The structure of the hybrid system of equations
makes it possible to scale the evolution operator @
along the abscissa axis in computational scenarios and
change the positions of the extremes ¢ according to
the influence of external conditions. The function ¥
does not change the relative position of the fourth sta-

ble equilibrium R}, but affects the position of min@(5)

relative to the precritical unstable repeller R5. R* plays
the role of a critical repeller and the boundaries of the
areas of attraction 0€2. The projections of the extre-
mum points of the local maximum and minimum have
an important property, namely, the maximum is dis-
played by the abscissa to the right of the minimum
(O(Rpayx) > Ry 1t is possible to transform extremes
and nontrivial equilibria at @(AS) from min @(S) < RS
and max @(S) > R into the form of min @(S) > RS

and max @(S) > R} > R. Changes in these ratios in
the dependencies min @(S) dramatically affect the
qualitative behavior of the iteration trajectory.

A set of parameters of a computational experiment
for a situation when a commercial crab population has
recovered to a stable equilibrium optimal for its food
base after an unstable existence can be made. The
basis for the assessment will be a model season of
12 model months. Crab catches ¥, = R g, are gradu-
ally increasing without forcing the fishery. After spon-
taneous growth, experts make a decision based on

their logic to raise the annual quota (g, = 0.62). It is
quite logical that crab catches for the first four seasons
after the increase in the share of seizures show histori-
cally record values for the fishery (¥ — max). After
“successful” seasons, catches sharply drop. The vol-
umes of commercial crab stocks bypass the local min-
imum of the reproduction curve @, avoiding falling

into the € neighborhood of the critical state R*.
Experts see stabilization, as they are used to averag-
ing Y,. According the logic of expert forecasts, in this
scenario, good reproduction efficiency for previous
seasons was taken into account immediately after the
loss of equilibrium and the passage of a local mini-
mum (g = 0.35) was established. Catches after the first
fall began to increase significantly. According to the
statistical methodology, experts have no reason to
adjust fishing management for further decline.

The value of the reserve after the increase in fishing
pressure breaks into the aperiodic mode, but in a lim-
ited range of values. As a result, the time of the catch
growth Y after the minimum is unpredictable. Experts
will see changes similar to fluctuations caused by the
instability of environmental conditions. The decision
to minimize the withdrawal rate to ¢ = 0.2 in the oscil-
lation mode is rejected. When g > 0.33 is set, after the
trajectory passes through the neighborhood of R, a
population collapse is realized in the computational
scenario (Fig. 13). Fishing stops, although the catch
quota for the season has been allocated, as it happened
with cod in 1992.

The final drop in catches was called the “collapse”,
while the first reduction in crab catches was thought
temporary and barely noticed, in absolute terms it was
greater. During the first crisis, crab catches decreased
sharply, which did not entail a seasonal full morato-
rium on fishing. Fishing was continued under unstable
fluctuations with constant fishing pressure and a
moderately favorable forecast. According to the prin-
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Fig. 13. The computational scenario of catch dynamics with the effect of stock collapse.

ciples of nonlinear dynamics, this behavior is regarded
as a sign of the presence of critical points; however sta-
tistical methods cannot establish points for the stock
when the function connecting the stock and replenish-
ment changes almost vertically.

Modeling has shown that the path to the final crisis
consists of transitional regimes. In a computational
experiment, the scenario of collapse of Kamchatka
crab commercial stocks develops from two phases;
their duration depends on the increase in Ag with the
intensification of marine fishing. If a timely morato-
rium has not been introduced, the second phase of
degradation will inevitably occur after eleven model
seasons in the time format of the computing environ-
ment with the transition through the threshold of crit-
ical unstable equilibrium. In the model, the reproduc-
tion of the population after the degradation phase does
not compensate for the natural decline of parental
generations; therefore, the introduction of adult crabs
from other places is necessary.

PHASE PORTRAITS OF THE COLLAPSE
SCENARIO WITH OSCILLATIONS

Three nonlinear phenomena called “crises” are
known for functional iterations [73]. In addition to the
basin-boundary crisis, an internal crisis and a merging
crisis are identified; the latter is specific to the scenario

of doubling the cycle period (p = 2',i — o) [74]. Cri-
ses are not caused by transformations of the topologi-
cal types of the attractors and bifurcations themselves;
they are associated with rearrangements of the posi-
tion of the attractor relative to its neighboring unstable
invariant sets, a single point or a fractal set.

The phase portrait metamorphosis used in the sce-
nario is the boundary crisis of the interval attractor A,
which remains after the merger of stable and unstable
equilibria. In the order of the list of Huckenheimer’s
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theorem [75], this topological type of closed ®-limit
sets of iterations is No. 3 of the three possible types of
attractors. The effect of the crisis occurs when A
comes into contact with the boundary of its area of
attraction. Initially, the neighborhood of the local
maximum, where the value of A slightly exceeds the
value of @ at the point of the third repeller, is
@(max @(N(0)) £ &) > Rf. When tangent bifurcation
occurs, the unstable and stable points R and R}
merge into one critical point R (Q(R:)) = 1), which
disappears. This is how we simulate the first drop in
the crab catch. The stability of the iteration point
O(R*) = R* can be estimated by the position of the
tangent from the known property |@'(7*) <1. We
denote the cumulative set of prototype points of the
second repeller RS as {¢ "(Ry)}, and the inverse itera-
tion of the function ¢ into the right prototype of the

point R¥ as ¢ '(RY) = R,". These prototypes are
excluded from the field of attraction; they are never
attracted to the attractors. If there are direct proto-

types for Ry both to the right and to the left of the
point, this will make Q,-the area of the attraction of
R} disconnected. The repeller Ry exists in all model
scenarios and has prototypes both on the right and on

the left for each n. The points R and R} appear/dis-
appear after a forward/backward tangent bifurcation.

The equilibrium R for ¢ exists for each n; while the
presence of a prototype in the repeller R* depends on

the values of ¥ increasing as R¥,, — R approaches.

When the initial position of the R, point of the trajec-
tory turns out to be R* < R, < RS < R and corre-
sponds to a subset from the R, € (R*, R) N {o "(R)}
interval, the population in the scenario will reach the
level of high stable abundance in a finite number of

steps (pﬂ(Ro):R;“ , O <oo through the mode of
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Fig. 14. The transformation of unimodal model dependence after one tangent bifurcation.

pseudo-stochastic fluctuations. Therefore, the sce-
nario of population recovery with a timely moratorium

and ¢ = 0 in the model is real, 0< R, < R},
lim,_,, ©"(R,) = R}; aboundary crisis is possible even
when in contact with Ry.

It is assumed that for finite-dimensional smooth
dynamical systems we can observe three fundamen-
tally different forms of chaos [76]. The characteristics
of irregular fluctuations of points generated by our

¢"(R,) are a consequence of the shape of the curve
with three extremes and the instability property of the
intermediate results obtained during calculations at
different positions of the initial point of the trajec-
tory R,. This is due to the “riddling” region 7 in the
phase space. The phenomenon of riddling occurs
when nested invariant sets are formed [77]. Segment /
includes a scattered continuum set of subintervals
from the regions of attraction of Q,, Q, of two attrac-
tors. The boundaries of all subintervals do not belong
to these regions of attraction and form a separate set,
the “strange repeller”, which is an invariant closed set,
in any e-neighborhood of which there are points
belonging to the region Q,, Q,. The boundaries of the
“riddled” region I will determine the maps of the
points R, > Ry SO that 1 =[Q(R,;,), O(R,.x)] for
two extremes of the model dependence, but not
the fixed interval [R", RY], since the very existence
of Rf depends on g, The starting points R, €
[O(Rin), P(Ryax)], Wwhich can be attracted to the
attractor, are everywhere adjacent to those that are
never attracted to R;. Combinations of sets of those
points R, that are mapped to unstable repeller equilib-
rium positions under the action of iterations of ¢ are
excluded from the interval /. When unstable stationary
points on the graph of the replenishment efficiency
dependence ¢ have more than one direct prototype,

the point R{l*, which will be displayed in the repeller

—1%

O(R, ") = R} at the first iteration, the aperiodic mode
observed in computational scenarios, and uncertainty
of the trajectory behavior arise due to the riddling of 1.

The interval I between the displays of the extremes
of the function ¢ will include the interval attractor
A C [O(Rin), ®(Ryay)] within itself. The interval [
contains an attractor of the interval type A < [, where
A is a closed invariant subset of /, but A is discon-
nected, since any € neighborhood of a point VR, € A
contains non-stretching points from an invariant and
continuum set Y', minimally consisting of all RS pro-
totypes and having both right and left direct proto-

types, {0 (R,"), 9 "(R,"™")}. A subset of the strange
repeller will make up the entire union of points R,
scattered in 7 without attraction:

Y=o (R0 "R, 9" (R).

The trajectories of the starting point {®"(R,)},
R, 2 {9 "(R5)} have the possibility of falling into the €
neighborhood of the chaotic repeller Y', consisting of a
set of all non-stretchable points and arising when the
position of the extremes of the dependence @(R)
changes. When the conditions 3R, Rye I, Ry¢ Y

and @(R,) < R are met, the intervals in A will no lon-
ger be a closed and invariant subset where the condi-
tion @(A) € A is met. Chaotic movement in a finite
number of iterations @, 0 < k < oo is observed in / with

the end of the chaotic mode lim, ., ¢"(R,)) =0,
k < d < 0. The duration of the aperiodic modes varies
somewhat due to the sensitivity to perturbations of the
R, * € at the time point, which we choose as the initial
point in the computational experiment. The property
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of randomization, limited both in time and in the
range of [ values of @(R), reflects the natural uncer-
tainty for a marine fishing object.

‘We noted that other collapse scenarios can develop
without fluctuations. For such situations, a less com-
plex dependence can be obtained in the model, ini-
tially having a pair of stationary points. Stable and
unstable points begin to merge into a critical equilib-
rium, as in Fig. 14. At this moment, the trajectory sta-
bilizes up to the disappearance of the only stationary

point R,

This variant of collapse is mathematically
described more simply, without complex transient
modes, and requires a single metamorphosis of the
phase portrait. In a state of dependence V0 < R,

R # RZQ(R) < R, a small unpredictable external pres-
sure and an increase in natural mortality can lead the
population to collapse.

CONCLUSIONS

A variant of the degradation of commercial stocks
after finding the population in a state of unstable oscil-
lations has been considered. A method of mathemati-
cal formalization of non-trivially varying reproduction
efficiency in the traditional form of dependence of
stock and received replenishment has been developed.
A computational scenario with the implementation of
two metamorphoses in the phase portrait of an itera-
tive dynamic system to account for the identified fea-
tures of the degradation of commercial crab stocks is
presented. The collapse scenario in the model con-
firmed that the ideas for organizing the optimal, most
profitable strategy for the exploitation of biological
resources are dangerous in reality. The optimal state
for fishing is close to the critical threshold, where there
is a high probability that reproduction ceases to
replenish the stock. The randomization in the new
hybrid model successfully simulates stochastic pertur-
bation of the conditions of the breeding environment.

The Canadian cod crisis has been thoroughly
examined; however, its key cause has not been estab-
lished. The collapse of the Kamchatka crab, as well as
cod off the coast of Labrador, was provoked by dis-
torted ideas about the well-being of these biological
resources and, most importantly, by overestimating
the effectiveness of replenishment of reserves. The real
dependence on the intensification of fishing lay closer
to the bisector R=S than experts assumed. The reason
for the overestimation error was that the extremes of
the non-monotonic dependence shift as the stock

number depletes in the range of § € [Q(Rin), O(Rax)]
values. With intensive fishing, the value of @(R) at the
extremum of R_. is shifted downwards along the ordi-

min
nate axis in such a way that @(R,;,) < R’. Next, a
boundary crisis is realized for the A attractor, com-

posed of a set of intervals 3y € A and @(y) ¢ A. After

BIOPHYSICS Vol.67 No.2 2022
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the crisis, the points of the trajectory dx, € A,

lim, .. ¢"(x,;) = 0 appear. The point R* is an unstable
equilibrium for the population at a critical number; if

O(R,.,) < R, irreversible degradation of the stock is

realized for a finite number of iterations (pk (R, = 0.
The final collapse is reflected in the simple form

R, ¢ Y, (R,) = 0,k < co. Inthe S € (R, R}) range,
the reproduction efficiency according to our model is
still quite high due to the local maximum. This intro-
duces misleading expectations of the continuation of
the trend of reproduction recovery. It has been shown
that with a further small loss of the stock, the repro-
duction efficiency in the disproportionately sharply
decreases until the critical threshold of replenishment
of stocks is almost reached.

A small systematic error in stock estimates in the

S e (R}, RY) range is sufficient for the collapse of the
fishery, since the actual share of withdrawal will be
higher than planned; moreover, this discrepancy will
increase over time. After the first drop in the popula-
tion, there is a sharp transition to a state of strong
irregular fluctuations with pronounced local peaks,
but this is still a reversible state. The population will be
able to recover if an unobvious management decision
is taken immediately and the withdrawal is halved.

We consider limitation of the technical capabilities
for fishing (the size of fishing gear, the fuel supply on
ships, and the tonnage of ships) to be a rational tactic
when regulating catch, but not a limit on the volume of
production: strict quotas do not save populations. Par-
adoxically, it’s time to figure out how to temporarily
reduce the effectiveness of fishing gear on complex
fishing objects. Registration of a 20% reduction in
catches for non-cyclical populations of large domi-
nant predators is the basis for the introduction of a
seasonal moratorium on catch. The fishery should
not be motivated to underestimate the actual
catches in reporting. Monitoring data on the sur-
vival of juveniles is necessary for the exact choice of
the permissible level of exploitation, which was
obtained during observations of the spawning of the
Volga starry sturgeon [78, 79]; however, they were
evaluated after degradation.

The originality of the hybrid modeling method
with the inclusion of event changes comprises the
analysis of the ways of development of the existing sit-
uations. The phenomenon of collapse develops
according to the internal logic of the traditional
method of expert fisheries management for many
countries when issuing seasonal quotas [80] based on
estimates using statistical smoothing and approxima-
tion of the number of distributed populations of
aquatic organisms over a large water area [81]. The use
of the developed computational structure is promising
as a unit of reproduction calculations as part of mod-
ern multi-species models of biosystems [82]. The dif-



318

ficulty in using aggregated polymodel complexes for
forecasting and optimizing fishing is the complex
parameterization and interpretation of the results,
wherein a small perturbation of one of the many bifur-
cation parameters will qualitatively change the behav-
ior of the final solution, while a change in the values of
other coefficients will not cause a significant response.
The structure can include a stochastic component for
individual situations [83].

Examples of crises and rapid outbreaks of different
populations require an expansion of the representation
of dynamic models for ecological problems. The sim-
ilarity of the situations confirms our hypothesis about
the existence of a finite set of forms of scenarios for the
development of extreme changes in ecodynamics. In
this case we will be able to classify (regardless of their
nature) the forms of changing processes known to us
(outbreaks, crises, and formation and destruction of
irregular oscillations with a large amplitude), by com-
paring them with the known types of metamorphoses
as a set of tools (bifurcations of attractors or rearrange-
ments of the boundaries of their areas of attraction) of
phase portraits of discrete or continuous dynamical
systems for describing scenarios. The commonality of
nonlinearity and the typification of scenarios create a
functional of regulation. The concept of dynamic col-
lapse was applied in [84] not only to individual popu-
lations, but also to entire biocenoses.

Close attention should be paid to the mathematical
description of threshold states and rapid transforma-
tions when forecasting processes with nonlinear regu-
lation [85], which is relevant now, for example, for
age-related changes in the effectiveness of the adaptive
immune system, noted in [86]. Synthetic “polymu-
tant” pseudotypes of the S-protein were generated to
select the optimal antigenic target and predict the
further evolution of SARSCoV-2 strains; it was
shown, in particular, that the ability to neutralize
antibodies previously developed in patients infected
with the original virus variant decreased with the
accumulation of S-protein mutations sharply and in
a threshold manner [87].
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