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Abstract

Population breeding through recurrent selection is based on the repetition of evaluation and recombination among best-selected individu-
als. In this type of breeding strategy, early evaluation of selection candidates combined with genomic prediction could substantially
shorten the breeding cycle length, thus increasing the rate of genetic gain. The objective of this study was to optimize early genomic pre-
diction in an upland rice (Oryza sativa L.) synthetic population improved through recurrent selection via shuttle breeding in two sites. To
this end, we used genomic prediction on 334 S0 genotypes evaluated with early generation progeny testing (S0:2 and S0:3) across two sites.
Four traits were measured (plant height, days to flowering, grain yield, and grain zinc concentration) and the predictive ability was assessed
for the target site. For days to flowering and plant height, which correlate well among sites (0.51–0.62), an increase of up to 0.4 in predic-
tive ability was observed when the model was trained using the two sites. For grain zinc concentration, adding the phenotype of the pre-
dicted lines in the nontarget site to the model improved the predictive ability (0.51 with two-site and 0.31 with single-site model), whereas
for grain yield the gain was less (0.42 with two-site and 0.35 with single-site calibration). Through these results, we found a good opportu-
nity to optimize the genomic recurrent selection scheme and maximize the use of resources by performing early progeny testing in two
sites for traits with best expression and/or relevance in each specific environment.
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Introduction
Population improvement strategies are recognized as methods to
exploit the genetic diversity of a crop and enrich the genetic basis
of breeding programs. In rice, population breeding through recur-
rent selection (RS) was suggested as a valuable option in counter-
ing the decline in genetic diversity among the improved rice
germplasm from Latin America and the Caribbean (LAC; Cuevas-
Pérez et al. 1992; Guimar~aes et al. 1996). RS in rice started in South
America in 1985 (Taillebois and Guimar~aes 1989) and later spread
to most of the continent through a Food and Agriculture
Organization funded initiative (Châtel et al. 2005; Martı́nez et al.
2014). In the region, RS was applied to rice synthetic populations,
each composed of several elite materials, carefully chosen as
founders, which had intercrossed for various generations
(Guimar~aes 2005). Following recurrent cycles of selection and re-
combination, several thousand S0 plants (S being used here to de-
fine the number of selfing cycles) are available for use in the
breeding program either as new parents for population improve-
ment or as S0 progenies for variety development. The particular-
ity of RS breeding in rice as performed in various countries in
LAC is that it uses a recessive nuclear male sterility (ms) gene to

facilitate outcrossing (reviewed in Frouin et al. 2014). This gene
allows random recombination among a large number of parental
plants at each cycle. Different ways are used to improve popula-
tions carrying the ms gene (Châtel and Guimar~aes 1997).
The most common practice is to evaluate a moderate number
(200–300) of candidates randomly drawn from the synthetic pop-
ulation. The evaluation of the candidates is then performed
through progeny testing, with more or less fixed families (S0:2,
S0:3, or S0:4 depending on the trait and required experimental de-
sign, obtained through several cycles of inbreeding and bulk har-
vest). Subsequently, parental lines are selected to be used for the
next recombination cycle. Among others, two compromises have
to be made that have a direct impact on the genetic gain achieved
by the RS breeding scheme: (1) the number of candidate units
evaluated through progeny testing with direct impact on the se-
lection intensity and; (2) the required degree of fixation of those
progenies prior to phenotyping, which would affect the breeding
cycle length and influence the precision of genetic variance
estimates.

Since its introduction by Meuwissen et al. (2001), genomic
prediction (GP) has been widely adopted by animal and plant
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breeders alike. By allowing rapid selection of superior genotypes
and accelerating the breeding cycle, GP has shown great potential
since the advent of this new breeding paradigm in crop species in
2007 (Bernardo and Yu 2007). The value of GP in the context of RS
is fairly evident as the selection based on genomic estimated
breeding value (GEBV) can be applied to a very large population
of genotyped entries through the calibration of a prediction
model performed on a reduced set of training units. Furthermore,
the average progeny phenotypic values associated with the
genomic matrix of the respective S0 individuals could allow a
more precise estimate of the genetic variation in the case of early
generation segregating candidate units. GP was simulated on
multiparent populations (Heffner et al. 2011; Guo et al. 2012; Bian
and Holland 2017; Allier et al. 2020a) directly related or not to a
breeding program to assess the potential use of GP in genetic im-
provement through RS. However, few simulation studies have
assessed the potential value of GP for crop synthetic populations
(Müller et al. 2017, 2018; Schopp et al. 2017). Theoretically and
through simulation approaches, recurrent genomic selection has
the particular advantage of managing both the genetic gain and
the maintenance of genetic diversity in the breeding program
(Gorjanc et al. 2018; Allier et al. 2020b). In a simulated wheat
breeding program, the inclusion of a step of population improve-
ment with rapid recycling of early material proved to be greatly
superior in terms of genetic gain compared with a program rely-
ing solely on biparental crosses between elite material to gener-
ate diversity (Gaynor et al. 2017). Similarly, recurrent genomic
selection in soybean (Ramasubramanian and Beavis, 2020) and
maize (Zhang et al. 2017) showed the long-term potential of RS
combined with GP. GP has already been applied to material from
RS for rice in single (Grenier et al. 2015; Morais Júnior et al. 2017)
and multi-environment contexts (Morais Júnior et al. 2018). In
these studies, the results showed relatively good predictive ability
(PA) for various simple and complex traits such as plant height
(PH), flowering date (FL), and grain yield (YLD). In both cases,
however, the calibrations were based on material that underwent
some degrees of fixation through plant selection and a few cycles
of selfing. A significant jump in efficiency in these schemes is
expected by calibrating on early generation candidates from S0

progenies to save time in building the models and to accelerate
the recycling of the selected germplasm.

GP integrating genotype by environment interaction (GxE) has
proven successful, showing greater PA than the single environ-
ment prediction, provided environments are positively corre-
lated. An approach to multi-environment GP was proposed and
applied by Burgue~no et al. (2012) where the authors modeled the
environment and genotype covariance structure and used it
within a mixed model framework. Later, GxE was incorporated in
a GP model by separately capturing the main marker effect, com-
mon to all environments, and an environment-specific marker
effect (Lopez-Cruz et al. 2015). This method is easy to implement
and showed good results for wheat breeding under multiple envi-
ronmental conditions. Additionally, it has the advantage that it
enables working with different genotype covariance structures.
Genotype covariances based on either a linear kernel (GxE
GBLUP) or a Gaussian kernel (GxE RKHS) have been tested, and
the Gaussian kernel allows a more flexible structure than the lin-
ear kernel and potentially better prediction (Cuevas et al. 2016).
To optimize calibration with the multi-environment data, various
strategies of genome-based models including GxE were proposed
(Jarquı́n et al. 2020). The authors compared different partitioning
of the calibration sets among the multiple sites where the popu-
lation was tested, with different degree of overlapping of the

genotypes between environments. Sparse testing designs in
which subset of the genotypes are tested in each location was
presented as a method to reduce the experimental effort and op-
timize the use of breeding program resources.

This study was conducted in the context of a collaborative rice
breeding program between CIAT (International Center for
Tropical Agriculture, member of the CGIAR centers) and Cirad
(French Agricultural Research Centre for International
Development). The CIAT-Cirad rice breeding program has histori-
cally conducted population development and improvement
through RS. Its current RS program based on progeny testing is
conducted in two locations; at CIAT-HQ in Palmira, where rice is
cultivated all year round under irrigated conditions, and in Santa
Rosa (SRO), an experimental site where rice is grown under
rainfed conditions during the main cropping season. Although
aiming to implement early GP in our RS scheme, we were also in-
terested in making optimal use of all the data gathered in both
locations (target and not target) for the breeding program. The
main objective was to evaluate the PA of the GP model including
the GxE interaction to obtain reliable estimates of the breeding
value of selection candidates in the target site.

Materials and methods
Development of PCT27 population
The genetic material used in this study belongs to the tropical ja-
ponica group of cultivated rice (Oryza sativa L.). Several synthetic
populations developed in the CIAT-Cirad rice breeding program
were improved for adaptation to upland ecosystems and acid
soils. In 2015, Grenier et al. (2015) used a training set defined with
348 S2:4 lines derived from four populations to study the potential
of GP in an RS scheme. Of the 348 families at the S2 generation,
marker-assisted-selection for the ms gene (Frouin et al. 2014)
helped to select [ms:MS] male fertile plants in 35 randomly sam-
pled families. One single plant per family was selfed, and the
seeds of each of 35 plants were mixed in equal proportion to gen-
erate a candidate population hereafter referred to as PCT27
(Figure 1). Two recombination cycles were performed at CIAT-HQ
in Palmira under irrigated conditions in a bundled field isolated
from other rice experimental plots by at least 50 m to avoid pol-
len contamination and without any selection pressure. At each
cycle, a population of about 3000 plants was established with
male sterile and male fertile plants randomly distributed within
the plot. The recombining units were then collected by harvesting
male sterile plants pollinated by any male fertile plants in the vi-
cinity. At the third cycle of recombination, 334 S0 fertile plants
were randomly extracted from the population to constitute our
reference population. All entries were advanced to the S0:2 and
then S0:3 generation by bulk harvesting seeds from 15 to 20 male
fertile plants per line per generation. Additionally, 50 temporal
checks from the same population were also advanced by bulk
method to the generations S0:2 and S0:3 and were used to test the
generation effect and the year effect within the site. The terms
line and genotype were used indifferently in this work to refer to
the S0 plants and their bulked offspring at either generation S0:2

or S0:3 if specified.

Genotyping
Leaf tissues were sampled on the 334 S0 plants and DNA extrac-
tion was performed as in Grenier et al. 2015. Genotyping was done
by genotyping-by-sequencing (GBS) approach (Elshire et al. 2011).
The detailed method is described in Appendix A and the genetic
characterization of the population can be seen in Supplementary
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Tables and Figures. As a result of the genotyping and subsequent
genetic analysis, the population was characterized by 9928 SNP
markers fairly well distributed among the 12 rice chromosomes
(Supplementary Table S1 and Figure S1). The MAF distribution
among the 334 S0 reflects a population where rare alleles were
not depleted, which fits well with long-term objectives of a popu-
lation breeding program (Supplementary Figure S2). The degree
of allelic fixation varied greatly between the genotypes but
remained relatively low for individuals at the S0 generation
(Supplementary Table S1). Considering the rather large average
LD (Supplementary Table S2) and the slow LD decay observed
(Supplementary Figure S3), the average marker density (1 SNP ev-
ery 40 kb) was considered good enough to allow the capture of all
linked QTLs with the SNP matrix in hand. The whole population
was characterized, with a total absence of structure, which pro-
vides a good base for setting up a GP scheme through CV
(Supplementary Figure S4).

Field trial and phenotyping
Field phenotyping was performed at two locations in Colombia.
One site was an experimental field at CIAT-HQ in Palmira (PAL)
located in the Valle del Cauca, Colombia (3.50� N–76.35� W, 1000
masl). At this location, rice evaluation trials are conducted under
irrigated conditions and can be performed all year round due to
favorable environmental conditions and good water availability
that enable the irrigation scheme throughout the crop cycle. As it
is not a rice prone area, no severe disease pressure is naturally
present, and the rice crop usually expresses its full potential. On
the other hand, SRO is an experimental site, owned by the
Colombian National Federation of rice growers (Fedearroz) lo-
cated in the Oriental plains of Colombia, in the department of
Meta, Colombia (4.03� N–73.48� W, 300 masl). At this site, the rice
crop is established through direct seeding and the trials are con-
ducted under rainfed conditions during the main cropping sea-
son, between May and September. The predominance of rice

Figure 1 Process followed for the development of the PCT27 population. Populations PCT4-C0, PCT4-C1, PCT4-C2 and PCT4-C3 were described in
Grenier et al. (2015). Each population contains about 3,000 plants with half male fertile plants (!? ) that can be selfed and half male sterile plants ($).
“SSD” is the single descend method of generation advance applied to 100 male fertile plants per population.� indicates the selfing process. The “MAS”
(marker-assisted selection) process was performed for the selection of S2 plants based on genotypic profile at the ms gene. Genotyped plants are
symbolized as þ for plants with the [ms:ms] genotype, = for the [ms:Ms] genotype and � for the [Ms:Ms] genotype. “rec” are recombination cycles
performed by harvesting all male sterile plants from the population without any selection pressure. For PCT27—rec#1 this first recombination cycle
was done among the progenies of 35 families randomly extracted among the four populations.
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cultivation in this area, the climatic conditions of hot and humid
summers during the main growing season and the natural occur-
rence of various strains of pathogens (bacterial, fungal, or viral)
make this site a hot spot for disease screening.

Four trials were conducted during two consecutive years, 2017
and 2018, using different semesters for each location. Field trials
were established in PAL on December 4, 2017 and December 10,
2018 and in SRO on December 5, 2017 and May 30, 2018. At each
site, the experimental design followed a lattice with 16 blocks
and three repetitions. The 50 temporal check lines (only S0:2 in
the 2017 trials and S0:2 and S0:3 lines in the 2018 trials) were ran-
domly distributed across the design within each repetition of the
two sites and 2-year trials. In PAL, the trials were established af-
ter transplanting 3-week-old seedlings in a bundled field. The
plot size was two rows of 17 plants with 25 cm between plants
and between rows. Fertilizer application followed a split applica-
tion with N, P and K nutrients added at 25 and 35 days after trans-
planting. Irrigation was maintained continuously in order to
ensure a 25 cm layer of water in the field until a week prior to the
crop maturation period. In SRO, the trials were established by di-
rect sowing of two 4-m long rows, spaced by 26 cm at a density of
one gram of seed per linear meter. Split fertilizer application was
performed according to the recommended application for grow-
ing tropical japonica rice in upland soil conditions. Phytosanitary
treatment was applied in SRO to prevent blast outbreaks. For all
four trials, a similar design was applied, but with a different ran-
domization.

Four traits were measured following the IRRI Standard
Evaluation System (IRRI 2013) on the whole training population
including the 50 temporal checks. FL was expressed as the num-
ber of days after crop establishment—being either the date after
either transplantation (PAL) or sowing (SRO)— when 50% of the
plants within a plot reached anthesis. PH was calculated as the
average height measured in centimeters of five plants with their
panicle extended. YLD was obtained by weighing the grains col-
lected within each plot after discarding the plants at the start
and end of each plot. For each harvested plot, percent humidity
was measured and used to correct the weight of collected grains,
expressed in grams per plot, for a relative humidity of 14%. The
YLD value was neither adjusted for the plot size nor for the count
of fertile plants. The grain zinc concentration (ZN), expressed in
parts per million, was measured on a subsample of collected
grains polished in Teflon equipment, using energy dispersive
X-ray fluorescence spectrometry (X-supreme 8000, Oxford
Instrument, Shanghai, CN) available at the CIAT-HQ Nutritional
Laboratory. The exact same procedure was used for generation
S0:2 in 2017 and generation S0:3 in 2018.

The 50 temporal checks were phenotyped as S0:2 in 2017 and
as S0:2 and S0:3 in 2018. This allowed measurement of the non-
confounded year within site effect on the S0:2 and the generation
effect in 2018 by analyzing the data from the S0:2 and S0:3 lines as
presented in Appendix B.

Statistical models for GP
Raw data were visually explored for outliers as described in
Appendix C. Based on clean data, Pearson’s correlation between
phenotypic BLUPs obtained in PAL and SRO was computed for
generations S0:2 and S0:3 using the 334 S0 families phenotyped in
both generations.

All the models were estimated using ASReml-R v3.0 (Butler
et al. 2007). GP was done independently in each generation. For
single-site calibration, the following model was used:

Yijk ¼ lþ ri þ b rð Þij þ gk þ eijk (Model 1)

The fixed effects were the intercept l and the replicate
effect ri. The random part was composed of the block
effect bij nested in replicate with distribution b � N 0; Ir2

b

� �
,

the genotype effect gk that represents the progeny means
with distribution g � N 0;Mr2

g

� �
and the residual eijk with

e � Nð0; Ir2
e ).

The variance r2
b is associated with the blocks, while r2

g and r2
e

are the genotypic and error variances, respectively. The two vari-
ance–covariance matrices used are I for the identity matrix and
M representing the genotype variance–covariance computed
according to either of the two prediction methods described be-
low.

For the two-site approach the following model was used:

Yijkl ¼ lþ si þ r sð Þij þ b r sð Þð Þijk þ gl þ gsil þ eijkl (Model 2)

The fixed effects were the same as for Model 1, with an
additional fixed site effect si. The random part of Model 1 was
completed with the genotype (progeny means) by site interaction

gsil with distribution gs � N 0;
MPAL r2

gsPAL 0

0 MSRO r2
gsSRO

2
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3
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0
@

1
A and the re-

sidual eijkl with distribution e � N 0; Ib
r2

ePAL 0

0 r2
eSRO

" #
�
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.

In addition to the three variances described in Model 1, Model
2 includes two site-specific genotype by site interaction variances
r2

gsPAL and r2
gsSRO as well as two site-specific error variances r2

ePAL

and r2
eSRO. The error variance–covariance is modeled by

the Kronecker product of the identity matrix and the variances
matrix.

To compute the variance structure (M) for the genotype effect
and genotype by site interaction (MPAL;MSRO), two different ker-
nels were used. In the first approach, GBLUP, M ¼ MPAL ¼ MSRO,
where M was based on the linear kernel M ¼ XX�N (Lopez-Cruz
et al. 2015), a proportional of the matrix proposed by VanRaden
(2008) was used, with X being the genomic data with genotypes
coded as �1, 0, 1 and N the number of markers. The second ap-
proach, RKHS, was based on the reproducing kernel Hilbert space
approach by Gianola and van Kaam (2008). Three different vari-
ance–covariance structures were computed: one for the complete
data ðM0Þ and one for each site independently MPAL ;MSROð Þ; all
based on the Gaussian kernel Ke xme; xneð Þ ¼ exp �hi kð xme � xnek2Þ,
for xme; xne being two marker genotype vectors and
m; nð Þ 2 1; . . . ;Nf g2. The bandwidth h controls the decay rate of

the correlation between the lines, smaller h giving a sharper cor-
relogram. We computed h with the method proposed by Pérez-
Elizalde et al. (2015) and the provided R function marg.fun. A
gamma prior distribution for h was used, the shape parameter
was set at 3 and the scale parameter set at 1.5. Three different
bandwidth parameters were computed as the method relies par-
tially on phenotypes, and hence yields different kernels depend-
ing on the site. New bandwidth parameters were estimated at
each cross-validation (CV) cycle based on the BLUP-adjusted phe-
notypes of the sampled training set, as in Pérez-Elizalde et al.
(2015). For both methods, the genotypic information was based
on 9928.

Models 1 and 2 with identity matrix as variance–covariance
matrices were used to compute broad sense heritability. H2 at
trial level (generation within site) was used as a measure for re-
peatability and computed using the formula:
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H2 ¼
r2

g

r2
g þ

r2
e

NR

(1)

, where NR represents the harmonic mean number of plots per
genotype. The global H2 per generation (considering the two sites
for each generation) was computed with Model 2 following the
formula:

H2 ¼
r2

g

r2
g þ

r2
gsPALþr2

gsSRO

NE þ r2
ePALþr2

eSRO
NR

(Eq. 2)

, where NE is the harmonic mean of the number of sites per
genotype, r2

gsPAL and r2
gsSRO are the genotype by site interaction

variance for each site, NR is the number of plots per genotype
across both sites and r2

ePAL and r2
eSRO are the residual variances

for respectively PAL and SRO, respectively. Hence, H2 was based
on the genetic variance and the mean interaction variance and
mean residual variance across the two sites (Holland et al. 2003,
Isik et al. 2017). H2 was computed with the function pin from
R-package nadiv, adapted to use external harmonic means.

CV schemes for evaluating PA
Several CV schemes were used with different partitioning of the
population among the two sites (Figure 2 and Supplementary
Table S3).

In the first instance, only phenotypic data from the target site
of selection SRO was considered (Figure 2). In that scenario, pre-
dictions were obtained based on Model 1 with a calibration based
on a single site (SINSRO). Various calibration set sizes (s) were
tested, s e f25, 50, 100, 200g.

For the two-site CV procedures, Model 2 was used.
Calibrations were constructed with either a balanced (BAL) or im-
balanced (IMB) representation of both sites. BAL1 represents a
calibration method where both sites were represented by an
equal number of phenotyped S0 families. Sets of “s” S0 were se-
lected and their phenotypes in both sites were used for the train-
ing (Figure 2). This corresponds to a CV1 in Burgue~no et al. (2012).
For BAL2, “s” refers to the number of S0 families observed in SRO
and in PAL, however, only a fraction of the families was observed
in both sites (i.e., the overlap), the remaining families being ob-
served in only one of them. An overlap of 50% of the total number
families included in the calibration was targeted. For “s” S0 fami-
lies observed in both sites, the total number of S0 families was

then 3
2 s. For the IMB scenario, the whole population was pheno-

typed in PAL and only a fraction of size “s” was phenotyped in
SRO (Figure 2).

The same CV procedures were applied to each generation and
with both GP models (GBLUP and RKHS). The GEBVs in SRO were
obtained for the S0 included in the validation set, defined as the
set for which no phenotype at SRO was recorded. In each sce-
nario, 100 alternative samplings were performed for which the
PA was measured as cor Ŷ ;GEBV

� �
. The reference Ŷ was obtained

with the complete SRO phenotypes using Model 1 and M ¼ I, I be-
ing an identity matrix and computed as Ŷk ¼ lþ gk. GEBVs were
obtained with the models including molecular information as
Ŷk ¼ lþ gk for SINSRO or ŶSRO;l ¼ lþ sSRO þ gl for the other predic-
tions (BAL1, BAL2, and IMB). For each scenario, the mean and the
standard deviation of PA were computer on the 100 iterations.

To ensure that the variation in accuracy between the CV pro-
cedures was only due to the size differences in the training set,
the correlations were always computed on the predictions for 100
genotypes randomly selected from the validation sets. However,
for BAL2 with a training set size of 200, the validation set was re-
duced to 34 genotypes as those were the only genotypes with no
phenotypic records that could be used for the validation with this
strategy (Supplementary Table S3). The PA was still computed,
but as the correlation was computed on only 34 points, the
results must be considered with caution.

Effects of the calibration parameters on PA
To investigate the response of the PA to the calibration parame-
ters, linear models were fitted to the PA obtained from the 100
iterations with each scenario. Depending on the scenario, the in-
dependent variables were year, GP method, CV scenario, training
set size, and all their combinations. Proportion of variance associ-
ated with one or more main effect, errors or interactions were es-
timated through the Eta2, as Eta2 ¼ SSqeffect/SSqtotal, where
SSqeffect is the sum of squares for the effect under consideration
and SSqtotal is the total sum of squares of all effects, errors, and
interactions in the ANOVA study. Throughout the text, this ratio
is expressed as a percentage.

Results
Effect of sites and generations on the phenotypic
performance
The phenotypic data were collected in two sites and on the same
S0 progeny at two generations. In each site, the phenotyping was
done in 2017 for 334 families at the S0:2 generation and in 2018 for
the same 334 families at the S0:3 generation.

For most traits recorded in the two locations, the mean pheno-
typic values differed between sites (Table 1 and Figure 3).
Although the differences between sites were moderate for FL and
PH, they were large for YLD and ZN, with more than 60% change
in the 2017 trials. The S0:2 families evaluated in 2017 had later
flowering, shorter PH, lower yield and higher zinc concentration
in SRO than in PAL. However, this tendency did not hold for the
2018 trials. The differences between sites in PH were greater at
the 2018 trials, with taller S0:3 plants in SRO. For each trait, the
spread of the data was consistent across site and year with 0.4–4
points of difference in the coefficient of variation. The highest co-
efficient of variation was observed for YLD in 2018 (34%), and was
higher than in the 2017 trial (27%). The trait broad sense herita-
bility (H2) at trial level showed large differences between traits
and across sites and years. This measure of trial repeatability
ranged from 0.52 for YLD in the PAL_2017 trial to 0.96 for FL in

Figure 2 The four scenarios of CVs to evaluate the prediction accuracy in
Santa Rosa (SRO). The first scenario (SINSRO) uses phenotypic
information from a single site, whereas the three others include Palmira
(PAL) phenotypes in two-site models. In the latter case, the level of
information between locations is either balanced (BAL) or imbalanced
(IMB). The gray area represents the genotypes included in the training
set with a varying size “s” to calibrate the model and the green area
represents the validation set fixed to 100 genotypes.
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SRO_2017. Heritability was systematically higher in SRO than in
PAL, and similar or slightly increased in the 2018 trials for all
traits in all locations, but for FL and YLD measured in SRO.

As the year and the generation effect were confounded,
50 temporal checks were used to untangle the potential effects of
generation and year. The significance of the fixed effect and vari-
ance decomposition among the 50 temporal checks showed that
differences were exclusively due to year effect and neither a sig-
nificant generation effect nor a significant genotype by genera-
tion interaction could be observed (Supplementary Table S4).

For each trait scored in each year, an analysis of the variance
components was performed on the combined data from both
sites using Model 2 (Table 2). The proportion of variance
explained by the genotype effect was greater that of the com-
bined genotype by site interaction effects from both sites (GxSPAL

and GxSSRO) only for FL in 2018, and PH recoded in both years. As
a result, greater heritability was observed for these traits/year
combination with H2 ¼ 0.57, 0.50, and 0.62 for FL_2018, PH_2017,
and PH_2018, respectively. The lowest genotype contribution to
the explanation of variance was encountered for YLD, with large
interaction effects and error effects associated with a particular
site for each year, resulting in low H2 in both years (H2 ¼ 0.19 and
0.11 in 2017 and 2018, respectively). For ZN, the genotype effect
represented a third of the combined GxS interaction variances in
both year trials, leading to similar and moderate H2 for both years
(H2 ¼ 0.38 and 0.40 for 2017 and 2018, respectively). The variance
decomposition for each trait was coherent with the site correla-
tion observed within years (Table 3). The highest correlations
between SRO and PAL were observed for PH (r ¼ 0.62) and FL (r ¼
0.62) in 2018. For the same traits in 2017, the correlations were
lower (r ¼ 0.55 and 0.51 for FL and PH, respectively). The site cor-
relation was the lowest for YLD in both years (r between 0.13 and
0.20) and intermediate for ZN with comparable values in both
years (r ¼ 0.41 and 0.42 in 2017 and 2018, respectively).

Predictive abilities with calibration using single
environment data
The effects of different parameters used for the calibration of the
model were first investigated for the PA from the single environ-
ment CV in SRO; SINSRO (Figure 4). Similar global average PA were

achieved for all traits combining set sizes, years and GP methods
(PA ¼ 0.30, 0.33, 0.27, and 0.24 for FL, PH, YLD, and ZN, respec-
tively; Supplementary Table S5). The linear model including all
the factors taken individually, their first-order interaction and
one second-order interaction explained 33–59% of the observed
variation of PA (Table 4), indicating that a large proportion of the
variability was due to the sampling of the CV method.

The training set size accounted for most of the PA variance
explained by the model for all the traits. The largest training set
size greatly improved the PA for all the traits (Eta2 ¼ 22%, 53%,
39%, and 33% for FL, PH, YLD, and ZN, respectively). The year fac-
tor described a lower proportion of the total explained variance,
with a maximum of 11% of the explained variance in PA for FL.
For all traits GP model explained only a very limited proportion
(<1%) of the variance. For most traits (PH, YLD, and ZN), the aver-
age PA was greater when predictions were performed with the
GBLUP model. For this reason, the rest of the article will focus on
the results achieved with the GBLUP model. However, the results
for RKHS can be found in Supplementary Material
(Supplementary Table S8).

Predictive abilities with calibration using single
and two-environment data
Two CV scenarios including SRO and PAL (BAL1 and BAL2) were
compared with SINSRO including only SRO data to investigate the
combined effect of the training set composition and its size
(Figure 5). The calibrations were tested in the two different years
for their ability to predict line performance in SRO.

When the two sites were included in the training set, the main
source of variation was the number of phenotypes from SRO and
PAL included in the training set. Comparing the PA associated
with the set size “s” in the case of BAL1 and BAL2 with the PA
obtained with the same “s” in SINSRO allowed us to assess the ef-
fect due to the addition of phenotypes from PAL to the training
set. Globally, across all set sizes, PA in the BAL2 scenario was
greater for all the traits considered (Supplementary data Table
S6), with average PA ranging from 0.23 for ZN to 0.38 for PH.

Although training set size was the factor explaining most of
PA variation (>22%) for all traits, year effect had some impor-
tance (11%) but only for FL. CV methods on the other hand

Table 1 Descriptive values of the experiments in all trials (site � generation combinations) with mean, standard error (SE), coefficient of
variation (Cvar), and broad sense heritability (H2) from Model 1

S0:2 generation in 2017

Trait a Site mean SE min max Cvar H2 (SE)

FL PAL 88.24 0.24 75 102 3.88 0.69 (0.03)
SRO 82.17 0.37 61 96 7.93 0.96 (<0.01)

PH PAL 125.62 0.62 88.4 155.4 7.76 0.61 (0.04)
SRO 116.65 0.59 94.2 151.8 6.68 0.79 (0.02)

YLD PAL 673.85 10.33 237.5 1311.5 24.07 0.52 (0.05)
SRO 398.54 9.75 54.3 755.1 27.6 0.75 (0.02)

ZN PAL 14.3 0.18 8.8 22 14.39 0.71 (0.03)
SRO 23.8 0.21 15.9 37.1 12.64 0.81 (0.02)

S0:3 generation in 2018

FL PAL 85.7 0.33 68 103 5.04 0.74 (0.02)
SRO 90.54 0.36 72 108 5.76 0.78 (0.02)

PH PAL 119.84 0.55 92.5 142.67 6.71 0.76 (0.02)
SRO 97.63 0.53 80.8 128 7.09 0.80 (0.02)

YLD PAL 387.54 8.3 54.6 901.1 32.23 0.56 (0.04)
SRO 191.4 7.37 10.7 461.6 33.91 0.58 (0.04)

ZN PAL 15.14 0.16 10.05 21.9 12.82 0.75 (0.02)
SRO 22.21 0.18 15.3 30.8 11.51 0.81 (0.02)

a Traits are days to flowering (FL), plant height (PH), grain yield per plot (YLD), and grain Zn concentration (ZN)
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accounted only for a small fraction of the PA variation. The high-
est gains in PA provided by any two-site CV scenarios compared
with the single-site model were obtained for the training set size
of 50 to predict PH_2017 (PA increase of þ0.07) using the BAL2
model.

Two-site calibration as a sparse testing approach
So far, we have compared single-site prediction with two-site pre-
diction methods to predict the phenotype of families that were
never observed, based solely on between-family information ex-
change. Another possible approach is to take advantage of the
population information by phenotyping all the families in one en-
vironment other than the one targeted for the prediction. As PAL
is easier to manage, being free of main rice pathogens and closer
to the research institute, we tested a scenario with unbalanced
representation of the sites in the training sets (IMB), where all 334

families phenotyped in PAL and only a subset of a varying set size
“s” phenotyped in SRO were considered.

The PA were improved by including the phenotypes of the
whole population in PAL in the training set, and this was consis-
tently observed for all traits, although to a different extent
(Figure 6 and Supplementary Table S7). The largest differences in
average PA were observed for FL (SINSRO ¼ 0.29, IMB ¼ 0.56) and
PH (SINSRO ¼ 0.33, IMB ¼ 0.62). However, for both traits the in-
crease of “s” did not yield a much higher PA with the IMB method.
Average ZN predictions also benefited from PAL information, but
less so (SINSRO ¼ 0.24, IMB ¼ 0.45). For those three traits, the aver-
age PA with the IMB method was rather close to the phenotypic
correlation between the two sites (dotted line in Figure 6).
Conversely, for YLD the average PA was similar between SINSRO

(0.27) and IMB (0.34), with values above the indirect phenotypic
prediction as represented by the site correlation. The partition of
factor effects in the linear model revealed that the proportion of

Figure 3 Histograms of the raw phenotypic values of the four traits: flowering day (FL), plant height (PH), grain yield per plot (YLD), and grain Zn
concentration (ZN). The two environments: Palmira (PAL, irrigated) and Santa Rosa (SRO, rainfed) are represented. Outliers were discarded as presented
in Appendix B.
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variance explained by the CV method depended on the traits (7%
for YLD compared with 	50% for all other traits; Table 5). Only
for YLD did the set size account for a large fraction (32%) of the
explained PA variance. The contribution of the year effect to the
total PA variance was low (
1%) for YLD and ZN while still con-
tributing to a small portion of the variance for FL and PH (10%
and 6.5%, respectively). For both traits, average PA was higher in
the S0:3 2018 trials.

Discussion
Evaluation of early generation progenies
The training population with which we tested the various CV sce-
narios had the expected characteristics for applying GP, both in
terms of marker density relative to the specific population LD
and total absence of structure among the 334 S0 genotypes
(Appendix A and Supplementary Tables and Figures).

Our progeny phenotyping method could not capture the
within-line variation, as we recorded traits as the mean of the
evaluated plot (FL and PH) or from the bulked harvested plot
(YLD and ZN). For most combinations of traits and sites, the dif-
ference in H2 between the S0:2 and S0:3 progeny testing was lim-
ited and fell within the confidence interval of each other.

However, the H2 of the S0:2 progenies was significantly higher for
FL and YLD in SRO and was significantly lower for PH in PAL. This
lack of consistency suggested that changes were driven more by

Table 2 Variance decomposition and broad sense heritability (H2) from Model 2 by trait and generation

Trait a Variance
component

S0:2 generation in 2017 S0:3 generation in 2018

Variance Proportion H2 (SE) Variance Proportion H2 (SE)

FL Genotype 4.92 0.11 0.25 (0.03) 7.86 0.22 0.57 (0.03)
GxSPAL <0.001 <0.001 <0.001 <0.001
GxSSRO 26.44 0.62 4.49 0.13

Bloc 0.93 0.02 1.89 0.05
ResidualPAL 5.59 0.13 9.23 0.26
ResidualSRO 4.93 0.12 12.4 0.35

PH Genotype 21.87 0.17 0.50 (0.04) 22.25 0.26 0.62 (0.03)
GxSPAL 7.93 0.06 6.8 0.08
GxSSRO 7.95 0.06 3.14 0.04

Bloc 5.67 0.05 4.35 0.05
ResidualPAL 57.48 0.46 29.9 0.34
ResidualSRO 24.16 0.19 20.36 0.23

YLD Genotype 1,796.61 0.05 0.19 (0.05) 498.32 0.03 0.11 (0.05)
GxSPAL 4,148.64 0.12 3,220.8 0.19
GxSSRO 3,919.93 0.12 540.88 0.03

Bloc 1,732.23 0.05 1,160.68 0.07
ResidualPAL 16,676.45 0.49 9,301.29 0.53
ResidualSRO 5,768.75 0.17 2,674.47 0.15

ZN Genotype 1.49 0.14 0.38 (0.04) 1.31 0.16 0.40 (0.04)
GxSPAL 0.16 0.02 0.27 0.03
GxSSRO 3.05 0.29 2.28 0.27

Bloc 0.61 0.06 0.44 0.05
ResidualPAL 2.02 0.19 1.62 0.19
ResidualSRO 3.11 0.30 2.53 0.30

GxSPAL and GxSSRO are the genotype by site interaction variances associated with PAL and SRO, respectively. Bloc stands for the variance associated with bloc
within replicate within site. ResidualPAL and ResidualSRO are the residual variances associated with PAL and SRO, respectively.
a Traits are days to flowering (FL), plant height (PH), grain yield per plot (YLD), and grain Zn concentration (ZN)

Table 3 Pearson’s phenotypic correlations and P-value for each
phenotypic trait (BLUPs obtained from Model 1) recorded in the
two sites PAL and SRO within each year of field trial

Trait a S0:2 generation in 2017 S0:3 generation in 2018

FL 0.554 (<0.001) 0.624 (<0.001)
PH 0.509 (<0.001) 0.620 (<0.001)
YLD 0.206 (<0.001) 0.134 (0.014)
ZN 0.408 (<0.001) 0.424 (<0.001)

a Traits are days to flowering (FL), plant height (PH), grain yield per plot (YLD),
and grain Zn concentration (ZN)

Figure 4 Mean predictive ability (PA) for the single-site model in Santa
Rosa (SRO) for the four traits: flowering day (FL), plant height (PH), grain
yield per plot (YLD), and grain Zn concentration (ZN), scored in 2 years
(2017 and 2018). Four training set sizes (25, 50, 100, and 200) and two GP
methods (GBLUP and RKHS) are considered. The bars represent the
standard deviation.
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environmental causes than by the degree of allelic fixation within
the genetic material. This was supported by the temporal checks
for which a significant year effect could be observed for all traits
and sites, while no effect of the generation was observed. We con-
cluded that the changes in mean between S0:2 and S0:3 within
sites were essentially driven by the environment effect. As the
phenotypic variance due to generation was minor compared with
the variance associated with the year, generation advance did
not seem to influence the PA. For time and economic reasons,
calibration on S0:2 phenotypes could thus be preferred as it allows
a reduction of the breeding cycle length and cost.

Potential of early GP
We first tested GP models on the early generation phenotypes
collected in a single environment. As expected, regardless of the
generation, the four traits showed differences in mean PA. FL and
PH were overall the best predicted traits, followed by ZN and
YLD. This was fairly consistent with what is reported in the litera-
ture where FL and PH generally show high PA in absolute terms
and relative to yield parameters (Combs and Bernardo 2013;
Spindel et al. 2015; Ben Hassen et al. 2018a,b). However, when
comparing with another GP study performed on families derived
from rice synthetic populations much higher PA for FL was
achieved than in Grenier et al. (2015), where average PA for FL
reached only a maximum of 0.29 for the population of 343 S2:4

lines. Conversely, maximum PA for PH (0.46) was comparable
with the PA obtained for the 343 S2:4 (0.50) (Grenier et al. 2015),

Table 4 Analysis by trait of the factors influencing the variability
of the PA

SINSRO

Trait a Factor b Eta2 R2

FL Year 0.105 0.333
GP method 0.009

Set size 0.215
Year: GP method 0.000

Year: set size 0.003
GP method: set size 0.001

Year: GP method: set size 0.001
PH Year 0.043 0.592

GP method 0.000
Set size 0.529

Year: GP method 0.002
Year: set size 0.017

GP method: set size 0.001
Year: GP method: set size 0.001

YLD Year 0.004 0.395
GP method 0.001

Set size 0.386
Year: GP method 0.001

Year: set size 0.003
GP method: Set size 0.000

Year: GP method: Set size 0.001
ZN Year 0.027 0.358

GP method 0.001
Set size 0.327

Year: GP method 0.000
Year: set size 0.001

GP method: set size 0.001
Year: GP method: set size 0.001

The results are for the CV SINSRO scenario. Eta2 is the proportion of variance
associated with each effect and R2 is the coefficient of determination obtained
from a linear model applied to the data from the 100 iterations (n¼ 1600).
a

Traits are days to flowering (FL), plant height (PH), grain yield per plot (YLD),
and grain Zn concentration (ZN).
b

Factors are Year (2017 and 2018), GP method (GBLUP and RKHS) and set size
(25, 50, 100, and 200).

Figure 5 Mean predictive ability (PA) of the GBLUP model to predict
phenotypes at Santa Rosa (SRO) for the three CV scenarios: single-site
data in SRO (SINSRO) and two-site data with balanced information from
the two sites (BAL1 with 100% overlap and BAL2 with 50% overlapped
entries). The results for both years (2017 and 2018) and the four traits are
presented. The bars represent the standard deviation and the open dots
represent the CV obtained from only 34 genotypes.

Figure 6 Mean predictive ability (PA) of the GBLUP model to predict
phenotypes at Santa Rosa (SRO) for two CV scenarios: single-site data in
SRO (SINSRO) and two-site data with complete information in Palmira
and incomplete in target site SRO (IMB). The results for both years (2017
and 2018) and the four traits are presented. The bars represent the
standard deviation. Dotted blue lines indicate the phenotypic correlation
between sites.
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but lower than the PA obtained for the 174 S1:3 (0.52) (Morais
Júnior et al. 2018). The maximum PA for YLD (0.39) was slightly
higher than the maximum reported for the rice diversity panel of
369 elite breeding lines evaluated in replicated yield trials (0.30)
(Spindel et al. 2015), but lower than that reported for the 174 S1:3

lines (0.44) (Morais Júnior et al. 2018), despite an H2 for YLD that
was higher in our study (H2 ¼ 0.58) than in the two others afore-
mentioned (0.44 in S1:3 lines and 0.32 in the diversity panel).
Overall, for these commonly reported traits, the PA obtained in
our study did not greatly differ from what was reported for GP in
rice diversity panels or synthetic populations (as reviewed in
Ahmadi et al. 2020).

Although various studies on maize and spring wheat have
proven the effectiveness of the GP-based approach for kernel zinc
concentration, to our knowledge no study applying GP to rice for
grain zinc concentration has yet been reported. Grain zinc concen-
tration is a complex trait greatly influenced by soil and other
associated factors (Jin et al. 2013; Hindu et al. 2018; Velu et al. 2018;
Naik et al. 2020), so there are great hopes that GP will simplify the
process of breeding rice for nutritional quality. On average, the PA
for ZN in a single environment was low (0.26 and 0.24, for 2017 and
2018, respectively). However, the maximum PA in SINSRO reached
0.36 with 200 S0:2 progenies (2017 data and RKHS model), which is
comparable to the average estimated PA obtained with the fivefold
CV1 model applied to the HarvestPlus association mapping panel
of 330 wheat lines (PA ¼ 0.36; Velu et al. 2018).

Effect of the GP methods on PA
In the context of single-site analysis, we found that the two pre-
diction methods, GBLUP and RHKS, induced some differences in

PA only for FL. Although GBLUP uses a linear kernel that models
only the additive effects, RKHS uses a Gaussian kernel that car-
ries the additive effects and the additive–additive epistatic effects
at every possible order (Jiang and Reif 2015). RKHS has been
reported to perform better than the linear model in the presence
of epistasis (González-Camacho et al. 2012; Jiang and Reif 2015;
Onogi et al. 2015). Epistasis has been reported in FL (Hori et al.
2016), PH (Yu et al. 2002; Shen et al. 2014), YLD (Luo et al. 2001;
Xing et al. 2002), and ZN (Lu et al. 2008; Norton et al. 2010);
however, both GP methods performed similarly for the traits we
looked at in our population. The phenotypes we considered were
all progeny means, which represent the breeding value or addi-
tive effect of our tested S0 (Falconer 1960). Different and opposed
epistatic effects can appear in the same family and have probably
impeded RKHS from capturing them accurately. Limited differen-
ces between the two GP methods have also been reported in
previous studies testing predictions for rice collections of fixed
accessions (reviewed by Ahmadi et al. 2020) or S1:3 lines extracted
from synthetic populations (Morais Júnior et al. 2018). Given our
phenotypes and considering the PA, GBLUP appeared as the most
appropriate method in our context of population breeding
considering single or two-site phenotyping data in our calibration
models.

Prediction of the target environment using the
two-site calibration model
Most of the contrasts in phenotypic records observed between
the two sites were due in large part to the differences in crop
establishment, soil conditions, climatic, and biotic constraints as

Table 5 Analysis by trait of the factors influencing the variability of PA

SINSRO/BAL1/BAL2 SINSRO/IMB

Traita Factorb Eta2 R2 Eta2 R2

FL CV 0.003 0.342 0.619 0.792
Year 0.116 0.104

Set size 0.215 0.020
CV: year 0.000 0.010

CV: set size 0.002 0.026
Year: set size 0.003 0.000

CV: year: set size 0.003 0.000
PH CV 0.009 0.539 0.620 0.853

Year 0.019 0.065
Set size 0.492 0.094
CV: year 0.001 0.018

CV: set size 0.004 0.050
Year: set size 0.012 0.004

CV: year: set size 0.002 0.002
YLD CV 0.004 0.407 0.072 0.404

Year 0.009 0.001
Set size 0.390 0.319
CV: year 0.000 0.003

CV: set size 0.003 0.006
Year: set size 0.001 0.001

CV: year: set size 0.001 0.002
ZN CV 0.004 0.322 0.499 0.630

Year 0.020 0.001
Set size 0.291 0.096
CV: year 0.000 0.019

CV: Set size 0.003 0.015
Year: Set size 0.001 0.001

CV: Year: Set size 0.003 0.000

The data are the PA for the CV scenarios comparing SINSRO, BAL1 and BAL2, or SINSRO and IMB. Eta2 is the proportion of variance associated with each effect and R2

is the coefficient of determination obtained from a linear model applied to the data from the 100 iterations (n¼2400 for the model including SINSRO, BAL1 and BAL2
scenarios and n¼ 1600 for the model including SINSRO and IMB scenarios).
a

Traits are days to flowering (FL), plant height (PH), grain yield per plot (YLD), and grain Zn concentration (ZN).
b

Factors are CV (SINSRO, BAL1, BAL2, and IMB), Year (2017 and 2018)and set size (25, 50, 100, and 200).
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well as field management. Between irrigated and rainfed condi-
tions, not only yield performance was expected to be affected by
the environmental conditions, but also the grain zinc concentra-
tion, these two traits showing lower correlation between sites.
Under flooded conditions, the soil oxygen and redox potential
will drop and trigger the formation of non-available zinc or its
adsorption onto different compounds, depending on the soil type
(reviewed in Rehman et al. 2012). As PAL is subject to continuous
flooding, low zinc availability was expected and, consequently,
observed ZN was much lower than in SRO.

Knowing the environment effect on the trait expressions and
the phenotypic correlation between the sites, we tested the po-
tential of GP including two sites with various CV schemes involv-
ing several factors. Of all the factors tested in the scenarios, the
training set size had the most influence on PA. Training set size
explained most of the differences observed for all the traits. The
year of phenotyping was best in explaining the PA variations only
for FL, which could be related to climatic differences and/or small
changes in crop establishment date, which both are known to af-
fect crop phenology. The CV methods SINSRO, BAL1, and BAL 2,
accounted for a small portion of the variance explained by the
models. In general, the two BAL scenarios showed a limited ad-
vantage over SINSRO for all traits. The prediction of unobserved
genotypes for a specific environment using a two-site model was
as precise as that obtained with a single-site model. Indeed, the
prediction of gsSRO is based on the same amount of information
as the gk from a SINSRO calibration. For this reason, the two-site
calibration could perform better only if gk is more precise and rel-
atively larger (larger associated variance) than gsSRO, but this is
expected only for well-correlated environments. BAL1 and BAL2
differed in the number of genotypes repeated over the two sites.
In BAL1, 100% of the genotypes included in the calibration had
phenotypes in both sites (the overlapping proportion), whereas
only 50% of the included genotypes had phenotypes of both sites
in BAL2. The effect of the overlap proportion was tested by
Jarquı́n et al. (2020) in a study that assessed the effects of data al-
location on the PA of genomic-enabled prediction models. With
their GxE model (M3 as presented in their article), the use of over-
lapping sets of genotypes improved the precision. In our case, the
tendency was the reverse. Maintaining similar efforts in pheno-
typing in both sites while reducing the overlap (BAL1 and BAL2
with the same “s” progenies) resulted in higher precision in the
predictions, but only for a specific case of PH_2017 with small
training set size of 50 genotypes. For PH, exploring more of the
population genetic variability within relatively small training set
sizes might have had a greater impact thanks to a higher pheno-
typic correlation between sites.

Although neither BAL1 nor BAL2 could greatly improve PA
compared with SINSRO, calibrating with the whole population
phenotyped in PAL and only a subset “s” of the population in SRO
for predicting in SRO (IMB) generated substantial improvement of
PA for all traits. The interest of this sparse testing method lies in
borrowing information within lines across environments (Lopez-
Cruz et al. 2015). However, if the phenotypes are not correlated
between sites, benefits from the inclusion of both environments
are expected to be low, as we found with YLD, where less im-
provement of PA was achieved through IMB than for the other
traits. Generally, sparse testing is in most cases more precise
than the prediction of unobserved genotypes in known environ-
ments, regardless of the calibration method used (Burgue~no et al.
2012; Jarquı́n et al. 2014; Lopez-Cruz et al. 2015; Ben Hassen et al.
2018a; Millet et al. 2019). However, as the predicted lines must be
observed in at least one environment, the burden on the

phenotyping still remains, but the effort can lead to an increase
in PA for traits with strong to moderate environment correlation,
as was the case for FL, PH, and ZN. For ZN, which has only a mod-
erate site correlation, the IMB yielded a large gain in PA even with
a drastic reduction of the phenotyping effort in SRO (from
SINSRO_s25¼ 0.14 to IMB_s25¼ 0.44 with the 2018 data). Overall,
the sparse testing provided an improvement in the prediction of
ZN in the rice synthetic population, with average PA
(IMB_s200¼ 0.51 with the 2018 data) in the range of those
reported for spring wheat (Velu et al. 2016 ) and maize (Mageto
et al. 2020).

Optimization of calibration procedure for GP
In our study, we tested the calibration of a GP model using phe-
notypic records gathered from early progeny testing in two sites.
The potential of using two-site data and sparse testing for the
model calibration, was considered as a satisfactory measure to
predict most traits, even for YLD, despite a slightly reduced ad-
vantage compared with what was reported for the other traits.

We have demonstrated that the calibration using phenotypic
data collected on progeny testing at two successive early genera-
tions could deliver relatively good and comparable PA. This opens
up possibilities for rapid cycling RS, with recycling of parental
lines from the genotyping of S0 plants, based on the breeding
value of the S0. Yet, there is still a need to confirm that the mod-
els do predict well the performance of more advanced genera-
tions for inbred line development. Indeed, the units to derive in
the pedigree breeding scheme should be selected on the basis of
“varietal ability” (Gallais 1979), which is the expected value of all
lines within a family at fixation. This will be explored in our next
study, with an external validation of the GP models using a differ-
ent set of S0 progenies extracted from the PCT27 and brought to
near fixation.

We are aware that the optimized scheme we suggest, based on
random sampling of the training set, genome-wide markers con-
sidered as random effects, and random allocation of genotypes to
sparse testing could be improved further still by considering
other criteria known to increase the performance of GP. It
remains to be seen whether PA can be improved by optimized as-
sembly of the training set as performed in various studies
(Rincent et al. 2012, 2017; Bustos-Korts et al. 2016; Akdemir and
Isidro-Sánchez 2019; Mangin et al. 2019), by inclusion of particular
weights for some specific loci (Spindel et al. 2016; Bhandari et al.
2019; Frouin et al. 2019) or by use of an efficient method to pro-
ceed to sparse testing in the context of GxE models (Ahmadi et al.
2020).

Notwithstanding optimization of the calibration to develop ef-
ficient prediction models to fit our scheme, we ought also to con-
sider the gain of applying GP-aided RS in our rice breeding
program. So far, only the PA within generations has been tested,
starting with the extraction of S0 fertile plants of the Cn cycle.
Prediction of S0 in Cnþ1 would be done with calibration based on
data from the previous cycle Cn. This has been tested through
simulation (Müller et al. 2017; Ramasubramanian and Beavis
2020) and showed that the persistency of PA across cycles could
be achieved with the accumulation of data from several past
cycles. Simulation studies will be performed on our population to
optimize the long-term use of GP-aided RS and define how and
when it is best to upgrade the calibration model. The simulation
will also offer the opportunity to improve the prediction and ap-
ply genomic selection while maintaining enough genetic diversity
for further use of the population.

Cédric Baertschi et al. | 11



Data availability
All supplementary tables, figures, and the data used in this study
are available at figshare: https://doi.org/10.25387/g3.14139806.

Acknowledgments
The authors would like to thank all the scientists, field workers,
lab assistants from Alliance Bioversity-CIAT who have contrib-
uted to the data collection. Special thanks go to Joe Tohme and
Maria Fernanda Alvarez for their support. Additional thanks are
due to the FLAR Grain Quality Laboratory, the HP-CIAT
Nutritional Laboratory for grain quality evaluation and to
Fedearroz for the access to field facilities at their research station
in Santa Rosa.

Funding
This work was supported by the CIRAD—UMR AGAP HPC Data
Center of the South Green Bioinformatics platform (http://www.
southgreen.fr/). This work was part of C.B.’s PhD study. The
authors acknowledge the support from HarvestPlus, part of the
CGIAR Research Program Agriculture for Nutrition and Health
(A4NH), for co-funding the PhD scholarship and for providing the
funds to carry out the field trial experiments, and the CGIAR
Research Program RICE, for additional support in genotyping and
other field-related activities.

Conflicts of interest
The authors declare that there is no conflict of interest.

Literature cited
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Pérez-Elizalde S, Cuevas J, Pérez-Rodrı́guez P, Crossa J. 2015.

Selection of the bandwidth parameter in a Bayesian Kernel re-

gression model for genomic-enabled prediction. J Agric Biol

Environ Stat. 20:512–532. doi:10.1007/s13253-015-0229-y.

Cédric Baertschi et al. | 13



Perrier X, Jacquemoud-Collet J-P. 2006. DARwin software. http://dar

win.cirad.fr.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al.

2007. PLINK: a tool set for whole-genome association and

population-based linkage analyses. Am J Hum Genet. 81:559–575.

Ramasubramanian V, Beavis WD. 2020. Factors affecting response to

recurrent genomic selection in soybeans (preprint posted 2020

February 14). bioRxiv. doi:10.1101/2020.02.14.949008.

Rehman H, Aziz T, Farooq M, Wakeel A, Rengel Z. 2012. Zinc nutri-

tion in rice production systems: a review. Plant Soil. 361:203–226.

doi:10.1007/s11104-012-1346-9.

Rincent R, Charcosset A, Moreau L. 2017. Predicting genomic selec-

tion efficiency to optimize calibration set and to assess prediction

accuracy in highly structured populations. Theor Appl Genet.

130:2231–2247. doi:10.1007/s00122-017-2956-7.
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Appendix A: “GBS” and data treatment
DNA libraries were prepared at the Regional Genotyping
Technology Platform (http://www.gptr-lr-genotypage.com)
hosted at Cirad, Montpellier, France. For 949 S0 plants extracted
from the PCT27, including the 334 considered in the training set,
genomic DNA was extracted from the leaf tissues of a single S0

plant grown in PAL, using a MATAB lysis buffer (Risterucci et al.
2000) and purified using the NucleoMag C-Beads protocol from
Macherey-Nagel. Each DNA sample was diluted to 20 ng/ll and
150 ng was digested separately with two restriction enzymes PstI
and MseI. DNA libraries were then single-end sequenced in a
single-flow cell channel (i.e., 96-plex sequencing) using an
Illumina HiSeq2000 (Illumina, Inc.) at the Regional Genotyping
Platform (http://get.genotoul.fr/) hosted at INRA, Toulouse,
France.

The fastq sequences were aligned to the rice reference genome,
Os-Nipponbare-Reference-IRGSP-1.0 (Kawahara et al. 2013) using
Bowtie2 with the default parameters (option very sensitive). Non-
aligning sequences and sequences with multiple positions were
discarded. Single-nucleotide polymorphism (SNP) calling was
performed using the Tassel GBS pipeline v5.2.29 (Glaubitz et al.
2014). The filters applied to loci are the missing data (<20%), the
depth for each data point (>10), the minor allele frequency
(>2.5%) and the bi-allelic status of SNPs. To limit the probability
of under-calling a heterozygous site, the read depth for SNP call-
ing was set to a minimum of 10, so that the probability of under-
calling a heterozygous site was limited to a theoretical maximum
of 0.2% (Swarts et al. 2014). Missing data were imputed using
Beagle 4.1 embedded in the R package Synbreed v0.11-22
(Wimmer et al. 2012).

After quality control, 9928 SNPs remained for the genetic char-
acterization of the training set and the GP step. All following
analyses were thus performed on the 334 S0 plants, the latter
used in the GP models. Graphical representation of the SNP distri-
bution across the 12 chromosomes was performed using the
Synbreed package (Wimmer et al. 2012). LD was calculated by
computing the pairwise LD measure r2 as in (Hill and Robertson
1968) with PLINK1.09 using every pair of variants within a 50 var-
iants window (Purcell et al. 2007). Non-linear regression modeling
was performed using the nls function in the statistical package R
v3.3.0 (R Core Team 2017) to represent the LD on each chromo-
some. The effective population size was computed using the
linkage disequilibrium method (Hill 1981; Waples 2006) with the
software NeEstimator V2.01 (Do et al. 2014). Inference of popula-
tion structure was performed using the snmf function from the R
package LEA (Frichot and François 2015). Population structure
was graphically investigated by first computing Euclidean distan-
ces between the genotypes and then building a neighbor joining
tree. The computation and graphical representation were done
with DARwin V6.0.021 (Perrier and Jacquemoud-Collet 2006).

Genetic characterization of the population
The 9928 SNP markers were fairly well distributed among the 12
rice chromosomes (Supplementary Figure S1), with an average
marker density of one SNP every 40 kb ranging from 27.3 to 64 kb
(Supplementary Table S1). For half the markers, the average dis-
tance between the nearest neighbors was 9.9 kb, ranging from 3.1
to 15.5 kb according to the chromosomes. The distribution of
MAF in the population (Supplementary Table S1 and Figure S2)

followed a beta distribution with beta ¼ 5.45 and alpha ¼ 1.37
showing a great proportion of less frequent alleles. Half the loci
had an MAF below 15.7%. Across the whole genome, the average
heterozygosity per locus was 30%, with loci having a minimum
of 2.7 to a maximum of 100% heterozygous genotypes
(Supplementary Table S1). The 334 S0 genotypes were either rela-
tively fixed (0.08% of heterozygous loci) or fairly heterozygous
(41% of heterozygous loci), and half the population was heterozy-
gous for at least 29% of the loci (Supplementary Table S1). The ef-
fective population size of the PCT27 measured based on the LD
among the 334 S0 was Ne ¼ 40. Pairwise LD in the population
across the 12 chromosomes was rather large with an average r2

of 0.59 for distance between 0 and 25 kb (Supplementary Table
S2). The LD decreased to 50% of its initial value at a slow rate
(300–400 kb; Supplementary Figure S3). No structure was found
in the population, as illustrated by the neighbor joining grouping
based on similarity distances (Supplementary Figure S4).

Appendix B: Analysis of the year and genera-
tion effect

For the 334 S0 families of the PCT27 used in this work, the genera-

tion S0:2 was phenotyped in 2017 and the generation S0:3 in 2018. To

measure the year effect disconnected from the generation effect, 50

families (temporal checks) from the same PCT27 were observed in

2017 and 2018 as generation S0:2. Similarly, to evaluate the extent of

the generation effect that would result from inbreeding, the same

50 temporal checks were observed as S0:2 and S0:3 in 2018. This was

done for all traits. An alpha-lattice design with eight unbalanced

blocks and three replicates was used for each trial.
To reduce the block effect resulting from the sampling of tem-

poral checks, each block was enhanced with two spatial checks
(SC), one plot of IR64 (indica mega variety) and one plot of L23
(tropical japonica inbred line from the CIAT-Cirad upland breed-
ing program) and so centered the block value on the SC mean
value.

To assess the year effect, the following mixed model was ap-
plied by site to the data of the 2 years for the 50 temporal checks
at generation S0:2 and the two spatial checks.

Y ijklmf g ¼ lþ y if g þ r yð Þ ijf g þ SC yð Þ ikf g þ b r yð Þð Þ ijlf g þ g mf gþ yg imf g
þe ijklmf g, the fixed part of the model was composed of the inter-
cept l, the year effect y, the replicate effect r and the SC variable,
which discriminates the two spatial checks from each other and
from the PCT27 lines k ¼ fPCT27; IR64; L23g. The random part
was composed of the line (genotype) effect g with distribution

g � 0; Ir2
g

� �
, the line by year interaction gy with distribution yg �

0; Ir2
yg

� �
and the error e with distribution e � 0; Ir2

e

� �
.To assess

the generation effect, the following model was applied to the
data of the 50 temporal checks at generation S0:2 and S0:3 and the
two spatial checks in 2018.

Y ijklmf g ¼ lþ r if g þ b rð Þ ijf g þ SC Gð Þ klf g þ g mf g þ Gg jmf g þ e ijklmf g

The parameter annotation was the same as for the analysis of
the year effect, with additionally G as the fixed effect of the gen-
eration and Gg as the random interaction between the line and

the generation with distribution Gg � 0; Ir2
Gg

� �
.

The results can be seen in Supplementary Table S4.
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Appendix C: Phenotypic data preparation

In PAL, where the number of plants was known, any single plot

with <14 established plants was identified and the data were

removed if it strongly differed from the other two replicates.

After this first round of cleaning, a mixed model was applied to

each trial separately with the intention to discard the plot pheno-

typic scores of progenies with inconsistent records among the

repetitions within a site, either as a result of poor crop establish-

ment or unexpected problem on the specific plot. Within each

trial, the plots with a residual in absolute value at more than four

standard residuals were labeled as outliers and removed. The

model used to remove outliers was formulated as follows and
was the same for each trial:

Yijk ¼ lþ ri þ b rð Þij þ gk þ eijk

where l is the general intercept, r is the fixed effect for the repli-
cates, b is a random block effect nested in r with distribution

b � N 0; Ir2
b

� �
, g is the random genotype effect with distribution

g � N 0; Ir2
g

� �
, and e is the random error term with distribution

e � N 0; Ir2
e

� �
. This model, as well as all the following mixed mod-

els was fitted using ASReml-R v3.0 (Butler et al. 2007).
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