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Abstract: Cancer remains the second leading cause of death all over the world. Aberrant expression
of miRNA has shown diagnostic and prognostic value in many kinds of cancer. This study aims
to provide a novel strategy to identify reliable miRNA signatures and develop improved cancer
prognostic models from reported cancer-associated miRNAs. We proposed a new cluster-based
approach to identify distinct cluster(s) of cancers and corresponding miRNAs. Further, with samples
from TCGA and other independent studies, we identified prognostic markers and validated their
prognostic value in prediction models. We also performed KEGG pathway analysis to investigate the
functions of miRNAs associated with the cancer cluster of interest. A distinct cluster with 28 cancers
and 146 associated miRNAs was identified. This cluster was enriched by digestive system cancers.
Further, we screened out 8 prognostic miRNA signatures for STAD, 5 for READ, 18 for PAAD,
24 for LIHC, 12 for ESCA and 18 for COAD. These identified miRNA signatures demonstrated
strong abilities in discriminating the overall survival time between high-risk group and low-risk
group (p-value < 0.05) in both TCGA training and test datasets, as well as four independent Gene
Expression Omnibus (GEO) validation datasets. We also demonstrated that these cluster-based
miRNA signatures are superior to signatures identified in single cancers for prognosis. Our study
identified significant miRNA signatures with improved prognosis accuracy in digestive system
cancers. It also provides a novel method/strategy for cancer prognostic marker selection and offers
valuable methodological directions to similar research topics.

Keywords: miRNA; cluster analysis; digestive system cancers; prognostic marker

1. Introduction

Cancer is the second leading-frequent cause of death worldwide. The global cancer
burden has risen up to 18.1 million new cases and 9.6 million deaths in 2018; the incidence
of cancer is expected to increase by 50% until 2040, with approximately 27 million new
cases per year [1]. The American Cancer Society estimates that there will be about 1,806,590
cancer cases diagnosed and 606,520 deaths from cancer in US in 2020 [2]. New diagnostic
tools and treatment guidelines have been extensively studied and developed; however,
the survival outcomes of some digestive tract tumors are not showing corresponding
improvement [3–5]. Therefore, it is still urgent to develop more reliable prognostic methods
for cancer treatment guidance, especially for some digestive tract cancers, which are often
asymptomatic at the early stages [6–10].

MicroRNAs (miRNAs) have been found to be important players in cancer devel-
opment. miRNAs are a class of noncoding RNAs of about 18–22 nucleotides (nt) in
length, which play key functions in the regulation of vital biological processes such as
cell division and death, cellular metabolism, intracellular signaling, immunity and cell
movement [11–13]. Rich evidence has confirmed the causal link between the dysregulation
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of miRNAs and cancer [14], and miRNA signatures for particular cancers have been identi-
fied by comparing tumor samples and healthy controls. Studies also suggested that the
pattern of miRNA expression is associated with cancer type, stage, and other clinical vari-
ables [15]. Furthermore, the prognostic value of miRNAs has been implicated in multiple
cancers including breast cancer [16], pancreatic cancer [17], hepatocellular carcinoma [18],
prostate cancer [19], lung cancer [20] and others. Moreover, valuable diagnostic and prog-
nostic biomarkers have been identified in several specific cancers by integrating datasets
from different studies [21,22].

Despite extensive studies on cancer-associated miRNAs have been conducted, most
attention has been paid on associations between miRNA expression aberration and individ-
ual cancer types. Evidence showed that several key miRNAs play similar and important
roles in a specific groups of cancers. For example, miR-21 is associated with the survival
outcomes of multiple cancers, including hepatocellular carcinoma, colon cancer and oth-
ers [23,24]. Furthermore, pancancer analysis also discovered similar miRNA alterations
among different cancers [25]. Therefore, we hypothesized that integrative analysis of
miRNA signatures based on cancer clusters will identify more systematic and reliable
biomarkers with improved prognostic power.

In this study, we provide a novel cluster-based approach to identify miRNA sets for
improved prediction of overall cancer survival. The detailed study design of our analysis is
displayed in Figure 1. With reported aberrantly expressed miRNAs, we identified a distinct
cluster including 28 cancers and associated 146 miRNAs. Digestive system cancers were
enriched in the identified cluster, including stomach adenocarcinoma (STAD), esophageal
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic adenocarcinoma
(PAAD), colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ). In this
study, we focused on these digestive system cancers and select prognostic miRNAs by
analyzing RNA-seq data from The Cancer Genome Atlas (TCGA). The prognosis value of
identified miRNA signatures was validated on data from independent studies.
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Figure 1. A flow chart of the study design. First, we utilized hierarchical clustering to identify clusters of cancers and
associated miRNAs. In this study, we focused on the digestive system cancer enriched in the identified cluster. Furthermore,
we conducted a functional enrichment analysis with cluster-associated miRNAs. Next, with data of tumor samples from The
Cancer Genome Atlas (TCGA) datasets, miRNA signatures were selected for prognosis of each cancer type of six digestive
system cancers. The predictive value of identified miRNA signatures was evaluated through ROC curves and validated
with independent Gene Expression Omnibus (GEO) datasets.
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2. Results
2.1. A Distinct Cluster of Association between miRNA Dysregulation and Cancer

With reported associations of 947 dysregulated miRNA with 131 human cancers
collected in the miRCancer database, we performed hierarchical clustering and identified
similar associations between cancers and miRNA dysregulation. Distinctly, a cluster
including 28 cancers and 146 associated miRNAs was identified (Figure 2). Among those
28 cancers within this cluster, digestive system cancers were enriched (n = 8, including
gastric cancer, hepatocellular carcinoma, rectum cancer, colon cancer, esophageal squamous
cell carcinoma, pancreatic ductal adenocarcinoma, pancreatic cancer, esophageal cancer),
followed by head and neck squamous cell carcinomas (n = 5), respiratory system cancers
(n = 4), genital system cancers (n = 4), nervous system-related cancers (n = 4) and others. In
this study, we focused on the cluster of digestive tract cancers in the following prognostic
signature model development. The eight digestive system cancers in this cluster were
mapped to six cancer types studied in TCGA, including STAD, ESCA, LIHC, PAAD,
COAD and READ. The basic demographic and clinical information of patients with these
interested cancers in TCGA were summarized in Supplementary Table S1.
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Figure 2. Clustering of miRNA-cancer associations. The clustering was based on the miRCancer
database, with 947 miRNA and 131 tumors collected from published peer-reviewed scientific articles.
The rows show miRNA and the columns show cancer types. The reported miRNA aberrations are
shown in red. A significant cluster with 28 cancers and146 associated miRNAs is shown in a blue box.
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2.2. Cluster Associated miRNAs Were Involved in Digestive System Related Pathways

We then investigated functions of those 146 miRNAs identified in the above distinct
cluster, which may provide new implications about important regulatory mechanisms
specifically for the cluster of cancers. KEGG pathway enrichment analysis identified
55 significant enriched pathways (FDR < 0.05, Supplementary Table S2). Among them,
mucin type O-Glycan biosynthesis was the most significant pathway (FDR = 1.97 × 10−12);
mucin type O-Glycan is the main component of mucins that are highly expressed on the
intestinal tract and correlated with intestinal homeostasis [26] and colorectal cancer [27].
Associated with digestive system cancers, many other glycan-related pathways such as N-
Glycan biosynthesis (FDR = 2.19 × 10−4), proteoglycans in cancer (FDR = 1.03 × 10−6) and
other types of O-glycan biosynthesis (FDR = 1.11 × 10−4) were also actively involved. In ad-
dition, we found metabolism-related pathways such as fatty acid biosynthesis (FDR = 0.03)
and key cancer signaling pathways such as TGF-β pathway (FDR = 2.85 × 10−5) were
also significantly enriched. These results indicate that miRNA signatures identified in this
cluster strongly link to digestive system cancers.

2.3. miRNA Signatures for Digestive System Cancer Prognosis

Filtering out miRNAs with a large proportion of missing data in TCGA samples
(see the Methods section), we identified 92 candidate signatures from those identified
146 cluster-associated miRNAs. Among the 92 candidate signatures, 35 in STAD, 6 in
READ, 48 in LIHC, 15 in ESCA, 47 in COAD and 49 in PAAD were found to be signifi-
cantly associated with survival by fitting univariate Cox proportional hazards regression.
86 miRNAs were shared by at least three tumors (Supplementary Table S3). Further, we
used a regularized regression method, elastic net, to select the most important signatures in
order to reduce the overfitting problem. Prognostic miRNAs were selected for each cancer
type, including 8 miRNAs for STAD, 5 for READ, 24 for LIHC, 12 for ESCA, 18 for COAD
and 18 for PAAD (Supplementary Tables S4–S9). For each cancer type, prognostic models
based on its specific miRNA signatures were trained using a multivariate Cox proportional
hazards regression, and PRS for each patient was calculated (see Methods section). Based on
the median of PRS, subjects with a particular cancer type were distinctly discriminated into
high-risk and low-risk groups, for all six cancers (Figure 3, STAD: p-value < 0.0001; READ:
p-value = 0.00019; LIHC: p-value < 0.0001; COAD: p-value < 0.0001; ESCA: p-value < 0.0001;
PAAD: p-value < 0.0001).

We also included the effects of covariates (age, gender and tumor stage) in the multi-
variate Cox proportional hazards regression models for all cancer types. Smoking history
and alcohol history were also taken into the consideration in the analyses of PAAD and
ESCA data. The estimated hazard ratios (HRs) and 95% confidence intervals (CIs) of
PRS and covariates showed that PRS is the most significant prognostic factor compared
with all other considered covariates (Figure 4, STAD: HR = 2.91; LIHC: HR = 2.62; PAAD:
HR = 2.48; ESCA: HR = 2.28; COAD: HR = 2.92). Including PRS in the model with age,
gender, tumor stage, smoking and alcohol history significantly improved the prognostic
power (ANOVA test, STAD: p-value = 1.15 × 10−6, READ: p-value = 2.78 × 10−6; COAD:
p-value = 8.29 × 10−14; LIHC: p-value = 1.41 × 10−14; PAAD: p-value = 2.58 × 10−9; ESCA:
p-value = 2.42 × 10−7). Consistent with previous results, the covariate adjusted analyses
also showed high discriminative power in Kaplan–Meier survival curves between the two
groups in all six digestive system cancers (p-value < 0.05, Supplementary Figure S1).
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Figure 3. Kaplan–Meier curve of the prognostic value of miRNA signature in six digestive system
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each cancer classified by prognostic models with identified miRNA signatures. All prognostic models
in six cancers show significantly discriminative power between high-risk and low-risk groups.
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Figure 4. Prognostic effects of risk score and covariates. In each cancer, hazard rations (HRs) and 95%
CIs estimated from Cox proportional hazards regression model were visualized in the forest plots.
For categorical data of gender, smoking and drinking histories, male, smoker, and drinking were
used as references respectively. Tumor stage were treated as a continuous variable in this analysis.
ANOVA test was applied to compare the full model including prognostic risk scores (PRS) and
covariates with the null model including covariates only. The full model showed significantly better
performance in all cancers.
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2.4. Cluster-Based miRNA Prognostic Signatures Are Superior to Cancer-Specific Signatures

To demonstrate the advantage of our new method (referred to as the “cluster-based
approach”) in selecting the prognostic miRNAs, we compared its prognostic ROC curves
with those selected from all reported miRNAs dysregulated in specific cancers (referred to
as “cancer-specific approach”). For the cancer-specific approach, 191 dysregulated miRNAs
in STAD, 150 in READ, 195 in LIHC, 85 in ESCA, 71 in COAD and 64 in PAAD were
identified from the miRCancer database. Similar to the cluster-based approach, univariate
Cox proportional hazards regression and the elastic net variable selection model were
applied, and we identified 9 prognostic miRNAs for STAD, 10 for READ, 21 for LIHC,
13 for ESCA, 19 for COAD and 16 for PAAD. Their prognostic value was also evaluated
using the same method with the cluster-based approach by the Kaplan–Meier (K-M)
survival curves (Supplementary Figure S2). We compared the ROC curves of survival
analysis for each cancer type using cluster-based signatures (Figure 5) and cancer-specific
signatures (Supplementary Figure S3). Significantly, the cluster-based prognostic model
showed higher or comparable 5-year area under receiver operating characteristic curve
(AUC) values than the cancer-specific prognostic model (STAD: 0.77 vs. 0.67; READ: 0.94
vs. 0.92; PAAD: 0.9 vs. 0.83; LIHC: 0.83 vs. 0.84; ESCA: 0.85 vs. 0.72; COAD: 0.77 vs.
0.74), indicating the novel miRNA signatures we selected through cluster-based approach
more accurately predicted the prognosis of digestive system cancers. After adjusting the
covariates including age, gender and tumor stage, cluster-based signatures consistently
showed high prognostic power with 5-year AUC values as 0.73, 0.98, 0.81, 0.82, 0.78 and 0.77
in STAD, READ, PAAD, LIHC, ESCA and COAD, respectively (Supplementary Figure S4).
We also selected signatures from the combination of candidate miRNA signatures of both
cluster-based and cancer-specific approaches, and compared the performances of three sets
of signatures (cancer-specific, cluster-based and combined) in Table 1. In LIHC and READ,
we observed similarly high AUC values for all three approaches. In other four cancers,
the cancer-specific signatures produced an obviously lower AUC value than signatures
identified from the cluster-based approach or the combined approach.

Table 1. Area under receiver operating characteristic curve (AUC) values of miRNA signatures
models in full datasets and cross-validation. With full dataset as training dataset, cancer specific
signatures showed lowest AUC values in all six cancers. The average AUC values of test sets with
repeats of 100 times were calculated for cross-validation. The highest AUC and close ones (less than
0.03 in difference) are shown in bold.

Cancer Method
Full Dataset Cross-Validation

AUC-3 AUC-5 AUC-3 AUC-5

STAD
cluster-based 0.67 0.77 0.62 0.67

cancer-specific 0.61 0.67 0.57 0.6
combined 0.73 0.72 0.67 0.66

PAAD
cluster-based 0.85 0.9 0.72 0.74

cancer-specific 0.82 0.83 0.67 0.64
combined 0.86 0.93 0.69 0.72

ESCA
cluster-based 0.88 0.85 0.74 0.7

cancer-specific 0.78 0.72 0.68 0.61
combined 0.86 0.81 0.73 0.68

COAD
cluster-based 0.82 0.77 0.69 0.61

cancer-specific 0.77 0.74 0.6 0.55
combined 0.82 0.79 0.67 0.61

LIHC
cluster-based 0.76 0.83 0.65 0.68

cancer-specific 0.78 0.84 0.7 0.76
combined 0.78 0.84 0.7 0.76
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Table 1. Cont.

Cancer Method
Full Dataset Cross-Validation

AUC-3 AUC-5 AUC-3 AUC-5

READ
cluster-based 0.91 0.94 - -

cancer-specific 0.9 0.92 - -
combined 0.92 0.91 - -

AUC-3: The 3-year AUC value; AUC-5: The 5-year AUC value.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 14 

 

 

 
Figure 5. ROC curve of the prognostic value of miRNA signature in six digestive system cancers. 

The value of these three sets of signatures (cancer-specific, cluster-based and com-
bined) was also assessed by cross-validation in each of five cancers (STAD, PAAD, ESCA, 
COAD and LIHC) (see Method). Cross-validation failed on READ due to its small number 
of death cases (n = 9). In four cancer types (STAD, PAAD, ESCA and COAD), both cluster-
based and combined-approach signatures showed similar or better performance than the 
cancer-specific signatures on the test data (Table 1). In LIHC, we did not observe such 
superior performance of cluster-based miRNA signatures. 

2.5. Validation of the Prognostic miRNA Signatures Using Independent Datasets 
The prognostic value of our identified miRNA signatures for digestive system can-

cers were validated with multiple independent datasets, including the GSE29622 dataset 
for COAD, the GSE31384 dataset for LIHC, the GSE43732 dataset for ESCA and the 
GSE62498 dataset for PAAD. The basic demographic and clinical information of the pa-
tients in these validation datasets are summarized in Supplementary Table S10 and the 
validation results are shown in the Table 2. For 3 (COAD, LIHC and PAAD) out of these 
four datasets, the cluster-based signatures showed significant prognostic power (COAD: 
high-risk vs. low-risk p = 0.0015, 5-year-AUC = 0.81; LIHC: high-risk vs. low-risk p = 9.58 
× 10−6, 5-year-AUC = 0.82; PAAD: high-risk vs. low-risk p = 0.0002, 5-year-AUC = 0.79), 
which were superior to that of cancer-specific signatures (COAD: high-risk vs. low-risk p 
= 0.0019, 5-year-AUC = 0.73; LIHC: high-risk vs. low-risk p = 0.0003, 5-year-AUC = 0.69; 
PAAD: high-risk vs. low-risk p = 0.2465, 5-year-AUC = 0.59). Likewise, the signatures 
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The value of these three sets of signatures (cancer-specific, cluster-based and combined)
was also assessed by cross-validation in each of five cancers (STAD, PAAD, ESCA, COAD
and LIHC) (see Method). Cross-validation failed on READ due to its small number of
death cases (n = 9). In four cancer types (STAD, PAAD, ESCA and COAD), both cluster-
based and combined-approach signatures showed similar or better performance than the
cancer-specific signatures on the test data (Table 1). In LIHC, we did not observe such
superior performance of cluster-based miRNA signatures.

2.5. Validation of the Prognostic miRNA Signatures Using Independent Datasets

The prognostic value of our identified miRNA signatures for digestive system cancers
were validated with multiple independent datasets, including the GSE29622 dataset for
COAD, the GSE31384 dataset for LIHC, the GSE43732 dataset for ESCA and the GSE62498
dataset for PAAD. The basic demographic and clinical information of the patients in these
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validation datasets are summarized in Supplementary Table S10 and the validation results
are shown in the Table 2. For 3 (COAD, LIHC and PAAD) out of these four datasets,
the cluster-based signatures showed significant prognostic power (COAD: high-risk vs.
low-risk p = 0.0015, 5-year-AUC = 0.81; LIHC: high-risk vs. low-risk p = 9.58 × 10−6,
5-year-AUC = 0.82; PAAD: high-risk vs. low-risk p = 0.0002, 5-year-AUC = 0.79), which
were superior to that of cancer-specific signatures (COAD: high-risk vs. low-risk p = 0.0019,
5-year-AUC = 0.73; LIHC: high-risk vs. low-risk p = 0.0003, 5-year-AUC = 0.69; PAAD:
high-risk vs. low-risk p = 0.2465, 5-year-AUC = 0.59). Likewise, the signatures based on
the combined approach (COAD: high-risk vs. low-risk p = 5.87 × 10−5, 5-year-AUC = 0.83;
LIHC: high-risk vs. low-risk p = 0.00014, 5-year-AUC = 0.75; PAAD: high-risk vs. low-risk
p = 0.00003, 5-year-AUC = 0.89) demonstrated better performance than the cancer-specific
signatures. No such prognostic power of the cluster-based signatures was observed in the
GSE43732 ESCA dataset. Consistently, all approaches showed relatively low AUC values
in ESCA. This is possibly because miRNAs in GSE43732 do not exactly match with the
TCGA data with “-3p” and “-5p” miRNAs unannotated.

Table 2. Validation of novel miRNA signatures in COAD, LIHC, PAAD and ESCA with GSE29622,
GSE31384, GSE62498 and GSE43732. With multivariate Cox proportional hazards model, we eval-
uated the discrimination power of newly identified miRNA signatures between the high-risk and
low-risk groups. The HR and p-value were shown. AUC was also used to evaluate and compare the
prognostic value of miRNA signatures identified from three approaches. The highest AUC and close
ones (less than 0.03 in difference) are shown in bold.

Cancer Method HR (95% CI) p-Value AUC-3 AUC-5

COAD
cluster-based 0.14 (0.04–0.47) 0.0015 * 0.76 0.81

cancer-specific 0.18 (0.06–0.52) 0.0019 * 0.77 0.73
combined 0.11 (0.04–0.32) 5.87 × 10−5 * 0.81 0.83

LIHC
cluster-based 0.22 (0.11–0.43) 9.58 × 10−6 * 0.82 0.82

cancer-specific 0.39 (0.23–0.65) 0.0003 * 0.66 0.69
combined 0.39 (0.24–0.63) 0.00014 * 0.73 0.75

PAAD
cluster-based 0.31 (0.17–0.58) 0.0002 * 0.74 0.79

cancer-specific 0.65 (0.32–1.34) 0.2465 0.59 0.59
combined 0.32 (0.18–0.59) 0.00003 * 0.81 0.89

ESCA
cluster-based 0.67 (0.42–1.06) 0.0871 0.57 0.58

cancer-specific 0.49 (0.31–0.79) 0.0034 * 0.65 0.65
combined 0.64 (0.40–1.01) 0.0583 0.61 0.62

* p-value < 0.05 was considered to be statistically significant. AUC-3: the 3-year AUC value; AUC-5: the 5-year
AUC value.

3. Discussion

In this study, we provide a new approach on improved identification of miRNA
signatures for cancer prognosis and we have applied this approach on a cluster of digestive
system cancers. Rather than analyzing differentially expressed miRNAs in a particular
cancer type, we for the first time identified prognostic miRNA signatures based on clusters.
In this study, we identified a digestive system cancers-enriched cluster including 28 cancers
and 146 associated miRNAs. These miRNAs identified important pathways in digestion
and metabolism were involved in this cluster of cancers.

The traditional cancer-specific approach suffers from power loss due to large hetero-
geneity, data noise, and bias in sampling and measurement, especially for those which
have not been studied transcriptome-wide and/or those are rare with small sample sizes.
Effectively, our new cluster-based approach makes greater advantage of the identified
miRNA dysregulation by extensive cancer research. Borrowing information from similar
cancers and miRNAs in a cluster, our approach extracts and utilizes valuable information
for cancers within the interested cluster(s), leading to improved identification of key miR-
NAs in corresponding cancers. As shown in this study, the new cluster-based method
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gained significantly enhanced power of prognosis. We also identified 18 prognostic miR-
NAs for PAAD, including 13 miRNAs whose prognostic value were previously reported,
whereas other 5 miRNAs (mir-140, mir-433, mir-217, mir-146b and mir-99b) have limited
evidence reported for the link. However, these five miRNAs have been confirmed to play
important roles in the prognosis of some other digestive cancers such as STAD [28–32],
thus our approach may provide deeper thoughts on the underlying associations between
different cancers. Furthermore, our approach is useful for inferring and complementing
missing/hidden associations. In this study, we successfully identified prognostic miRNAs
mir-340, mir-192, mir-100 and let-7 which were not curated in the database but have been
proposed by recent studies [33–36].

Our study identified new miRNA signatures for the survival of STAD, READ, LIHC,
ESCA, COAD and PAAD separately. Compared with the cancer specific model, most of
these prognostic miRNA signatures showed better performance in cancer prognosis in both
TCGA and validation GEO datasets. Still, our study has limitations. The prognostic power
of our model can be limited by the miRNA information we collected from the current
database. The model could be improved when more comprehensive and reliable databases
are available. Furthermore, taking more clinical prognostic factors and pathological factors
which are expected to be collected in future studies will improve the prognostic power. In
addition, the limited sample size of current datasets such as the TCGA datasets may influ-
ence the result of our investigation, especially in READ, which has small death numbers
(n = 9). A future large-scale and standardized study is desirable in validating the newly
identified miRNA signatures. Further functional experimental study is needed to dissect
the potential important roles played by these novel signatures. Despite these limitations,
our study identified novel miRNA signatures with significant prognostic value for diges-
tive system cancers and provided a new and valuable method for cancer research, which
has great potential to be extended to study other types of biomarkers in many different
human diseases.

4. Materials and Methods

All data management, statistical analyses and visualizations were accomplished using
R 3.6.2.

4.1. miRNA-Cancer Association

In total, 947 dysregulated miRNA in 131 human cancers were identified from the
miRCancer database [37], which collected cancer related miRNA signatures reported in
peer-reviewed scientific articles. The clusters of miRNA-cancer associations were obtained
by hierarchical clustering and visualized in heatmap using the R “pheatmap” package.
miRNAs in the related cluster were considered as candidate prognosis biomarkers shared
by cancers in this cluster.

4.2. miRNA and Clinical Data of Digestive System Cancers

The miRNA-seq data and clinical information were downloaded from the TCGA
website (https://portal.gdc.cancer.gov). In this study we focused on six digestive system
cancers, including STAD, ESCA, LIHC, PAAD, COAD and READ. Clinical variables in-
cluded the overall survival, age, gender, tumor stage, smoking history and alcohol history.
Independent miRNA expression datasets by microarray for validation of our prognostic
models were searched in PubMed and NCBI Gene Expression Omnibus (GEO) using the
key words “digestive system cancer” and “prognosis”. We initially identified 5 cohort stud-
ies with RNA-seq data for digestive system cancers we analyzed. After filtering out 1 study
with relatively small sample size (n = 44) and no basic clinical information such as age,
gender available, we finally identified 4 publicly available datasets including the GSE29622
dataset [38] for COAD, the GSE31384 dataset [39] for LIHC, the GSE43732 dataset for ESCA
and the GSE62498 dataset [40] for PAAD. The quantile normalization was performed to
normalize each of these microarray datasets.

https://portal.gdc.cancer.gov
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4.3. Identification and Evaluation of Prognostic miRNAs

We analyzed TCGA miRNA expression data and clinical information to identify
prognostic miRNAs from candidates obtained from above hierarchical clustering approach.
Reads per kilobase per million mapped reads (RPKM) values which represent the miRNA
expression levels were analyzed at the logarithmic scale with an offset of 1. For each
cancer type, any miRNA whose expression data were missing in over 30% samples was
removed and the missing values of the remaining miRNAs were imputed using the k
nearest neighbor (kNN) method. Further, we performed univariate Cox proportional
hazards regression to identify miRNAs significantly associated with the survival of each
cancer type. With these pre-elected miRNAs, an elastic net variable selection using the
R package “glmnet” was applied to select prognostic miRNA signatures. Then, we fit
the selected signatures in a multivariate Cox proportional hazards model to develop the
predictive model for each cancer type. The prognostic risk scores (PRS) were estimated
by PRS = ∑(β ∗ EXPi), where EXPi was the log(RPKM + 1) value of the i-th miRNA,
and β was the estimated regression coefficient for the corresponding miRNA from the
multivariate Cox hazards model. According to PRS, study samples were then categorized
into a high-risk group and a low-risk group by the median of PRS as the cutoff value.
The difference of the overall survival between the high-risk and low-risk groups were
evaluated by Kaplan–Meier (K-M) survival curves and log-rank test. The R package
“survival” was used to perform the survival analysis and p-values < 0.05 were considered
to be statistically significant. We also evaluated the prognostic performance of the miRNA
signature model by comparing the area under receiver operating characteristic curve
(AUC), using R package “survival ROC”.

4.4. Comparison between the Cluster-Based Approach and the Cancer-Specific Approach

We refer to aforementioned approach to identify cancer prognostic markers as the
cluster-based approach. Separately, we developed a cancer-specific approach for analysis
with each single cancer type. For the cancer-specific approach, cancer associated miRNAs
were considered as candidate prognostic miRNA for each individual cancer type. Next,
prognostic miRNA biomarkers were identified using the same method as that used in
the cluster-based approach. ROC curve was also used to evaluate the prognosis value of
miRNA signatures identified by the cancer-specific approach. Using the same strategy,
we also combined all candidate prognostic miRNA signatures from the cluster-based and
cancer-specific approaches, identified prognostic signatures, and evaluated their combined
prognostic value. The AUC values of 1-year, 3-year and 5-year from these three approaches
(cluster-specific, cancer-specific and combined) were compared.

4.5. Validation of Prognostic miRNAs

To validate the prognosis performance of selected signatures for each cancer type, a
cross-validation strategy was used. All samples were randomly split into a training dataset
(70% of all samples) and a test dataset (30% of all samples). The prognosis model was fit
on the training dataset and then the performance was assessed on the test dataset. With
repeats of 100 times, the AUC values of training and test sets were calculated and averaged
to evaluate the prognostic value.

The final prognostic miRNA signatures identified through the cluster-based approach,
the cancer specific approach and the combined approach were further validated in four
independent datasets, including GSE29622 for COAD, GSE31384 for LIHC, GSE43732 for
ESCA and GSE62498 for PAAD. For each independent validation dataset, multivariate Cox
hazards model was fit with prognostic miRNA signatures and PRS was calculated using
the estimated coefficients. Further, AUC values were calculated to evaluate the prognostic
value of these miRNA signatures in these four independent datasets, respectively.
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4.6. Pathway Enrichment Analysis

We used DIANA-TarBase v7.0 and DIANA-miRPath v3.0 [41] to further identify func-
tions and signal pathways involved by miRNAs associated with the interested cluster of
cancers. The enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
was assessed. A false discovery rate (FDR) <0.05 was considered statistically significant.

5. Conclusions

In conclusion, our study identified significant miRNA signatures with improved prog-
nosis accuracy in digestive system cancers through a novel cluster-based approach, which
can integrate miRNA information identified by extensive cancer research for developing
improved prognostic models and related research topics. Besides taking advantage of
information from similar cancers and miRNAs in a cluster, our approach can provide
valuable insights on cancer with limited studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/4/1529/s1. Table S1: Demographic and clinical information of patients with digestive
system cancer in the TCGA dataset. Table S2: KEGG pathway enriched by 146 miRNAs from the
distinct cluster. Table S3: Candidates signatures shared at least 50% of tumors analyzed. Table S4:
Univariate and multivariate Cox proportional hazard regression analyses of miRNAs in STAD.
Table S5: Univariate and multivariate Cox proportional hazard regression analyses of miRNAs in
PAAD. Table S6: Univariate and multivariate Cox proportional hazard regression analyses of miRNAs
in READ. Table S7: Univariate and multivariate Cox proportional hazard regression analyses of
miRNAs in LIHC. Table S8: Univariate and multivariate Cox proportional hazard regression analyses
of miRNAs in ESCA. Table S9: Univariate and multivariate Cox proportional hazard regression
analyses of miRNAs in COAD. Table S10: Demographic and clinical information of patients with
digestive system cancers in independent validation datasets from GEO. Figure S1: Kaplan–Meier
curves of high-risk and low-risk groups of patients from TCGA database in each cancer after adjusting
age, gender, stage of cancer. Figure S2: Kaplan–Meier curves of high-risk and low-risk groups of
patients classified by the cancer-specific approach from TCGA datasets in six digestive system cancers.
Figure S3: ROC curve of the prognostic value of miRNA signature identified by the cancer-specific
approach in six digestive system cancers. Figure S4: ROC curve of the prognostic value of miRNA
signature in six digestive system cancers after adjusting age, gender and tumor stage.
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