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Simple Summary: In this study, we explore the emergence of oscillatory behavior similar to the
signals of brain activity observed in electroencephalograms (EEGs) using a network of synaptic
relations mingling excitatory and inhibitory neuron nodes. We identify abrupt variations on that
activity brought about by swift synaptic mediations. These changes are originated by the slowdown
of the activity of inhibitory neuron populations due to synaptic depression. The latter generates an
imbalance between excitation and inhibition causing a quick explosive increase of excitatory activity,
which turns out to be a (first-order) phase transition among different oscillatory states. Interestingly
enough, near this transition, our model system exhibits oscillatory activity with a strong component
in the delta-theta domain that coexist with fast oscillations and happens to be similar to the observed
delta-gamma and theta-gamma modulation in actual brains. Our findings here help to understand actual
brain activity data in terms of nonequilibrium phase transitions theory.

Abstract: We here study a network of synaptic relations mingling excitatory and inhibitory neuron
nodes that displays oscillations quite similar to electroencephalogram (EEG) brain waves, and identify
abrupt variations brought about by swift synaptic mediations. We thus conclude that corresponding
changes in EEG series surely come from the slowdown of the activity in neuron populations due to
synaptic restrictions. The latter happens to generate an imbalance between excitation and inhibition
causing a quick explosive increase of excitatory activity, which turns out to be a (first-order) transition
among dynamic mental phases. Moreover, near this phase transition, our model system exhibits
waves with a strong component in the so-called delta-theta domain that coexist with fast oscillations.
These findings provide a simple explanation for the observed delta-gamma and theta-gamma modulation
in actual brains, and open a serious and versatile path to understand deeply large amounts of
apparently erratic, easily accessible brain data.

Keywords: EEG time series; synaptic plasticity; modulations and explosive transitions in brain waves

1. Introduction

Today one successfully associates most brain activity with events in which large
sets of neurons cooperate mediated by an extensive range of variations of their synaptic
relations [1]. These complex dynamic processes broadcast signals throughout, and EEG
exploration on the cerebral cortex has thus become a relatively simple, convenient and
inexpensive way of analyzing consequences of such an intriguing collaboration [2–5].
In fact, EEG studies deliver some overall image of the brain activity with good time
accurateness that complements other exploratory methods of better spatial resolution,
such as magnetic resonance imaging. Specifically, EEGs watch over frequencies and often
distinguish δ, θ, α, β and γ “rhythms” —subsequently along the range 0.5 Hz to 35 Hz and
more—, which are loosely associated with different states of consciousness such as say,
deep sleep, anesthesia, coma, relax, and attention, and to different mental and congnitive
processes that the brain can perform [6].
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Indeed, EEGs now provide a main noninvasive tool to deepen on the brain perfor-
mance under both normal and pathological conditions [3,7–10]. Moreover, with the recent
development of Machine Learning and Deep Learning techniques, EEG data have regained
significance in recent years, as it has demonstrated to be of great convenience in the imple-
mentation of high-accuracy automated systems for detecting and diagnosing a broad range
of neuropathologies [11], a task that generally requires the supervision of highly trained ex-
perts. It is therefore convenient to deepen further on the interpretation of all of those brain
waves phenomena. Actually, several prototypes have already addressed the origin and
nature of observed brain oscillatory behavior, e.g., [2,12–15]. Recently, following a hint [12]
that α rhythms might come out from the filtering of cooperative signs by interactions with
noisy signals from different parts of the nervous system, it was explained the emergence
of a wide spectrum of brain waves within a simple computational framework [16]. More
specifically, this study has shown that a neural module can exhibit waves in a variety of
frequency bands just by tuning the intensity of a noisy input signal. We interpret this result
as suggesting the existence of a possible unifying mechanism for a range of oscillations. In
fact, existing literature by now has described [1] various well-defined (let us say) dynamic
phases, as well as transitions among them—typically, from states with a low and incoherent
activity to others that show a high synchrony—where weak signals are processed efficiently
despite the presence of significative levels of noise. This potential faculty of neural net-
works has its origins in a large susceptibility developed in the vicinity of a phase transition,
due to a mechanism generally known as stochastic resonance [17].

The picture in previous theoretically oriented and computational EEG works, in-
cluding [16], is mostly phenomenological and generally adopts a uniform and stationary
description of the neuron relations efficiency, thus forgetting the actual possibility that
synapses perform dynamically during the neuron cooperation processes [1,18–20]. Nev-
ertheless, synaptic relations certainly vary with time at short time scales while affecting
essentially both the neuron network global behavior and the ensuing capacities to transmit
information [1,20–25]. It was reported, for instance, that such short-term synaptic plasticity
may induce in the human cortex bursting followed by asynchronous activity [20], as well
as instabilities prompting transitions among the attractors of the network dynamics, which
allow for effective memory searching [25], in addition to a form of ‘up-and-down states’ re-
ported to occur in cortical neuron populations [26]. Additionally, a sort of sudden synaptic
facilitation can allow for transient persistent activity after the removal of a stimulus [24],
which may be the basis for working memory.

Aware of these and similar facts, we mathematically recast and generalize here both
the more mesoscopic description in [2] and the algorithmic model in [16], perfecting
them with detailed dynamic synapses and other realistic features including more ran-
dom topologies (see additional study in Supplementary Materials). We thus show how
certain levels of short-term depression of the synaptic links induce transitions between
states of synchronized activity in excitatory and inhibitory neuron populations and global
states of incoherent behavior. It follows that one may speak of kind of sharp phase
transitions, clearly displaying metastability and hysteresis, that have been experimen-
tally observed [27]. Furthermore, near such “explosive transitions”, our model exhibits
oscillations with a prominent component in the δ − θ band along with high frequency
activity, namely the δ− γ and θ − γ modulations already perceived in actual brain EEG
recordings [28,29], which have been associated with fluid intelligence [30]. Even more, we
here associate such intriguing sharp variations with disruptions of the balance among
excitation and inhibition produced by depression of excitatory inputs arriving to inhibitory
neurons. This reduces the inhibitory activity thus prompting a sudden excitation increase
that further reduces inhibition. Interestingly, enough, a lack of the excitation-inhibition
balance in the actual human brain could be crucial to understand the essentials of some
recurrent neurological disorders such as epilepsy, autism and schizophrenia, e.g., [31,32].

Moreover, the present EEG model constitutes a realistic, highly configurable neural
network capable of reproducing a wide range of dynamical behaviors akin to those ob-
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served in actual measurements in normal and pathological conditions, and could also be
used to detect phase transitions in actual EEG recordings. We believe that further work
along the present lines will surely benefit a much more useful interpretation of (easily
available) EEG data.

2. Materials and Methods

The simplest version of our model aims to capture the essentials of the cerebral
cortex operation allowing for a network with excitatory (E) and inhibitory (I) neurons, the
former occurring four times the latter. Furthermore, the amplitude of the corresponding
postsynaptic responses follow the opposite ratio, i.e., the response evoked by any I is
four times larger than that by any E. This is supposed to correspond to a realistic cortex
balanced state [33,34]. We then represent a region of the cerebral cortical tissue with a large
2-dimensional square of N nodes with periodic boundary conditions and fulfilling such a
balance, in which each I node influences a set of 12 neighboring E’s and it is influenced
by 32 adjacent E’s as illustrated in Figure 1 Left. As in previous work [12,16], we will not
consider here E-E or I-I feedbacks, in fact, preliminary simulations of our system show
that including local recurrent excitatory or inhibitory connectivity does not significantly
alter our main results (see the additional study in Supplementary Materials). Moreover,
from the various familiar types of existing neuron dynamics, we refer to the celebrated
integrate-and-fire case [1,35]. Specifically, the cell membrane acts as a capacitor subject
to several currents, which results in a potential V for each neuron changing with time
according to.

Figure 1. Schemes representing the network topologies used in the present study. (Left) The standard
network topology used for the generation of brain waves in a E/I balanced cortical neuron population
module as in Refs. [12,16]. The neuron coupling scheme represented in the panel is such that the
small circle contains 12 E neurons (open red circles) that receive synaptic inputs from the inhibitory
neuron (filled blue circle) in its center. On the other hand, the large circle contains 32 E neurons that
excite the inhibitory neuron in its center. (Right) To see the robustness of the reported results in our
study we also use a more complex small-world topology rewiring the given E-I and I-E connections
in the network with some rewiring probability pr (see Supplementary Materials for the associated
study). In the illustrated example in the figure, one of the inhibitory connections of an I neuron to a
given E neuron within its influence circle (as explained in the left panel) is exchanged with probability
pr by a new inhibitory connection into other excitatory neuron in a random position in the network.

τ
dV
dt

= −V + Vin + Vnoise. (1)

Here, as in previous works [12,16], the time constant τ is set equal to τ1 (τ2) when
the membrane cell voltage is above (below) a certain resting potential, which we set to
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zero. The last two terms in (1) correspond to the voltage induced by the sum of all currents
through the membrane, which we separate here in two main contributions. Vin is the sum
of inputs from adjacent neighbors that influence the given cell, while Vnoise accounts for
any input from neurons in other regions of the brain. Assuming lack of correlations [36],
we represent Vnoise as a Poisson signal characterized by a noise level parameter µ.

It is well established that in human brains, synapses linking neurons may undergo
variations in scales from milliseconds to minutes, in addition to more familiar long-term
plastic effects. In particular, one observes short-term depression (STD), in which the
synaptic efficacy decreases due to depletion of neurotransmitters inside the synaptic button
after heavy presynaptic activity [18]. In addition, the presence of a short-term facilitation
process is generally reported, characterized by an increase of the efficacy strength [37–39],
which results from a growth of the intracellular calcium concentration after the opening
of the voltage gated calcium channels due to successive arrival of action potentials to
the synaptic button. It seems that in general, these two short-term mechanisms may
compete [1,23] but, for simplicity, we only consider here synapses endowed of STD, and
describe this using the release probability U and the fraction of neurotransmitters at time
t ready (to be released) after the arrival of an action potential xt [22]. In this case, each
time a presynaptic spike occurs, a constant portion U of the resources xt is released into
the synaptic gap, and the remaining fraction 1− xt becomes available again at rate 1/τrec.
Therefore,

dxt

dt
=

1− xt

τrec
−Uxtδ

(
t− tsp

)
(2)

where the delta function imposes that the second right-hand term only occurs for t = tsp,
the time at which a presynaptic input spike arrives. Assuming also the amplitude of the
response to be proportional to the fraction of neurotransmitters released after the input
spike, the STD effect can be expressed, for E and I neurons respectively, as follows

Vin,d
t = Vd

0 Uxtsp

[
Θ
(
t− tsp

)
−Θ

(
t− tsp − tmax

)]
(3)

Vin,h
t = Vh

0 Uxtsp Θ
(
t− tsp

)
e
−(t−tsp)

τ2 (4)

where Θ(X) denotes the Heaviside step function. The form of these inputs generated
by E and I neurons are chosen so that the response produced on the postsynaptic neuron
membrane matches data; see, for instance, [16]. Thus, for simplicity, we model the excitatory
synaptic input by a square pulse of width tmax and maximal amplitude Vd

0 , as described
by Equation (3), and the inhibitory input with a maximum amplitude Vh

0 followed by
an exponential decay with time constant τ2, as in Equation (3). In addition, to account
for synaptic strength variations that depend on presynaptic history, we multiply these
input functions by a factor U·xtsp , thus ensuring that the amplitude of the synaptic input is
proportional to the amount of neurotransmitters released right after a presynaptic spike,
which is an activity dependent factor through dynamics in Equation (2). Please note that
there is no synaptic variability present when U·xtsp = constant occurring for τrec → 0.
Furthermore, to prevent the membrane potential in (1) from reaching physiologically
unrealistic levels, we impose upper and lower limits of Vsat = 90 mV and Vmin = −20 mV,
respectively, around the resting membrane potential, Vrest = 0 as said. This is achieved by
multiplying the different excitatory and inhibitory inputs by the terms (Vsat −V)/Vsat and
(Vmin −V)/Vmin, respectively.

Equations (1)–(4) fully describe the dynamics of the membrane potential in our basic
model below a firing threshold, which is in principle set Vth = 6 mV above the resting
membrane potential for both E and I neurons. Additionally, after the generation of a spike
at t f , we assume an absolute refractory period (ta) during which the neuron is unable to
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fire again, and a subsequent relative refractory in which the ability to produce new spikes
is constrained. Therefore, we set

Vth(t) =

{
Vsatt f < t < t f + ta

6 + (Vsat − 6)e−κ(t−t f−ta)t > t f + ta.

That is, the threshold is first set to Vsat (during 100 time steps, which gives ta = 4 ms)
to impede any further spike generation during ta. Then, it decays exponentially to its
resting value of 6 mV with a time constant κ−1 = 0.5 ms that mimics the existence of a
relative refractory period.

3. Results

In absence of STD, the present model has previously been successful to accurately
reproduce relevant features of different type of brain waves in actual EEG recordings as,
for instance, the power spectrum of α-waves in thalamus and their steady-state voltage
distribution (see Refs. [12,16]). Moreover, we already reported in [16] a unifying framework
for the generation of different brain rhythms just by tuning the level of uncorrelated excita-
tory inputs that a cortical neural population received from other brain areas, reproducing
oscillatory behavior in the α, β, γ and ultrafast bands, as observed in actual EEGs.

Using this clear-cut realistic model, we numerically analyzed how synaptic STD
affects eventually emergent waves by carefully monitoring the network dynamics for
adiabatically increasing values of the noise parameter µ. Figure 2 depicts the resulting
average membrane potential of the E population versus µ, which clearly illustrates the
mentioned sharp transitions, i.e., in the absence of STD (top panel in each column), the
well-defined nature of waves does not vary with the external noise amplitude within µ ∈
(0.5, 100), as already reported in [16]. This regime corresponds to the simplest and most
familiar brain waves. However, when STD is on—specifically, when the parameter τrec is
large enough so that synaptic efficacies vary noticeably with system activity—an ‘explosive’
transition may show up as µ increases. This occurs at lower τrec the lower the maximal
excitatory postsynaptic amplitude Vd

0 is. It is said ‘explosive’ in the sense that the transition
shows hysteresis, from well-defined synchronized behavior to a state of high excitation
and low coherence, as we vary µ adiabatically forwards (purple line) and backwards
(green line). One may also name this a first-order phase transition by simple analogy with
thermodynamics, though with the warning that the present setting is a nonequilibrium
one [40]. These findings, i.e., the explosive transition and the emergence of hysteresis,
are robust to size increases (see additional analysis in Supplementary Materials), so it is,
therefore, likely to occur even for populations with a considerable number of neurons.

The resulting phase diagram in the (µ, τrec) space is illustrated in Figure 3. The
solid quasi-vertical line, for µ ≈ 0.5, describes a (continuous or second-order) phase
transition between a near silent phase A, with asynchronous sporadic spikes at low rate
(corresponding to the asynchronous down state actually observed in the brain), and an
oscillatory phase B, where brain waves emerge with increasing frequency as µ increases
(see Figure 2). As τrec increases in the system, Figure 3 indicates that the brain waves
disappear at a (first-order) transition (dashed line), where a new phase D of waves with
high excitation and low coherence emerges. This sharp transition becomes smooth above a
say ‘tricritical point’ (1.4, 268) (short quasi-vertical solid line on top). The small region C
shows metastability as revealed by hysteresis. Please note that when µ is large this region
C narrows as noise level increases. In addition, region B contains (red and blue) areas in
which brain waves sharply emerge with high values of the firing rates (>100 Hz) for E and
I neurons.

Trying to deepen the understanding of the sharp transition, here we monitored
(Figure 4) the change with the level of synaptic depression of both the mean firing rate and
the mean amplitude of the oscillations in E and I neuron populations (for µ = 3). This shows
that as STD increases, a decline in the excitatory efficacy induces I neurons to decrease
their activity as the system approaches the transition point, where they become silent.
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A feedback induced by this decay of the I activity promotes the E’s firing activity until
reaching (at the transition point) its maximum possible, from where they remain firing
tonically. This induces important effects on the ensuing oscillations: the average membrane
potential of the inhibitory neurons jumps to zero at the transition point (corresponding to a
complete absence of firing), and the average membrane potential of the Es neurons decays
to a very low value below Vth.

Figure 2. Evidence for sharp changes in emergent EEG-like waves as the noise level µ varies
adiabatically and when synaptic depression is set on. Purple line corresponds to the adiabatically
forward (positive) variation of the noise level µ whereas green line corresponds to a backward
(negative) adiabatic variation. Columns correspond, from left to right, to Vd

0 = 8, 10 and 12 mV,
respectively. In all cases Vh

0 = −4Vd
0 , U = 0.5, τ1 = 16 ms, τ2 = 26 ms and the amplitude of the

external depolarizing inputs is Vd
o = 5.48 mV. This corresponds to a module with 196 E’s and 49 I’s.

Additionally interesting is how the nature of the emerging waves changes with STD.
For a relatively low noise, e.g., µ = 0.8, the network’s response remains nearly unchanged,
while the amplitude of the oscillation decays until no well-defined oscillatory behavior is
observed as STD is increased (Figure 5, case µ = 1). Please note that this transition from a
state with synchrony to an incoherent one become abrupt as described above for a level of
noise µ > 1 (see Figure 5).

For higher values of µ (e.g., µ = 3 in Figure 6), the power spectrum of the response
shows significant changes. First, its peak frequency notably increases for higher levels
of STD, becoming up to twice as great as for the static case (τrec = 0), thus, inducing
waves in the β and γ regimes. This STD-induced transition from low to high frequency
bands confirms that synaptic plasticity could be an important mechanism involved in
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modulating the nature of the oscillations from cortical neuronal populations. In addition,
we observe that an increase of τrec can produce secondary, low-frequency peaks coexisting
with the main peak in the power spectrum of the emergent waves. This phenomenon is
most evident near the explosive transition point, where a prominent component in the δ/θ
bands emerges, accompanied by a general enhancement in the amplitude of the oscillations,
as can be seen in the time series presented in Figure 6. This effect seems to occur for all
relatively high levels of noisy, namely µ > 1.

Concerning the effect of the E/I balance on emergent behavior, it is of interest to study
how it affects the incidence of δ(θ)− γ modulations around the transition, and how the
appearance of this is affected by the level of synaptic depression. Figure 7 illustrates some
effects of changing the ratio between the E and I synaptic efficacies. We observe that when
Vd

0 /Vh
0 decreases and the inhibitory synapses become relatively more influential, the low-

frequency δ/θ component becomes more significant for oscillatory behavior (see Figure 7,
top-right and bottom-left panels) while when this ratio increases, the low frequency band
components (δ and θ) tend to disappear (Figure 7, top-left and bottom-right panels).
Additionally, an increase of Vd

0 /Vh
0 , which implies more excitation, makes the oscillations

frequency more susceptible to changes on synaptic depression (see Figure 7, top-left and
bottom-right panels), while a stronger inhibition tends to maintain the frequency of the
emergent waves nearly unchanged against depression increases (Figure 7, top-right and
bottom-left panels), thus leading to a homeostatic effect.

Figure 3. Diagram (µ, τrec) illustrating the different dynamical phases in our system. For low noise
(region A), random sporadic excitatory firing events emerge, which are unable to depolarize the I
neurons. Region B shows well-defined rhythms ranging from α to γ bands, while a higher depression
induces a cease of the inhibitory activity and a consequent absence of synchronicity and coherence in
region D. Metastability, as illustrated in Figure 2, characterizes the region C. Red and blue colored
areas in B indicate emerging waves with high values of the firing rates (>100 Hz) for E and I neurons,
respectively. Dashed lines illustrate first-order phase transitions, while continuous lines denote
second-order transitions.
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Figure 4. (Left) Average firing rates for E and I neurons as the level of STD is increased until the
explosive transition occurs, for an external depolarizing noise level µ = 3. (Right) Corresponding
average synaptic current amplitudes 〈| U·xtsp |〉 . This illustrates how the transition occurs because
of a cease of firing of I’s due to the heavy synaptic depression of E’s. Beyond the transition point,
excitatory neurons fire ceaselessly, further increasing their synaptic depression level.

Figure 5. Emergence of “α rhythms” (around 10 Hz) in the model for noise levels µ = 0.6, 0.8 and
1.0, respectively, from left to right. Although the power of the main frequency peak of the waves
decays as STD increases, the case of µ = 1.0 clearly illustrates how these waves details are not
dramatically affected by synaptic depression for this noise level and the α band regime remains until
τrec ≈ 260 ms, where the waves disappear (note that this transition becomes explosive for µ&1 as
shown in Figure 6).

Figure 6. (Left) Power spectra of the system response as a function of the recovery time τrec for µ = 3.
(Right) time series of the emergent oscillations for particular levels of synaptic depression, namely
τrec = 0, 145, 230 and 265 ms, respectively, from top to bottom. The associated power spectra for each
of these series are highlighted (with the same color) in the surface plot of the left panel.
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Figure 7. Effect of varying the E/I amplitude ratio as depression increases. (Top) Increasing the
amplitude of I’s while leaving the E’s unchanged enlarges the δ/θ component of the δ(θ)− γ modu-
lation around the phase transition (τrec ≈ 230 ms). (Bottom) Increasing the E’s while maintaining the
I’s moves the transition point to higher levels of depression and makes the frequency of the emergent
oscillations more sensitive to synaptic depression.

4. Conclusions

Summing up, we present in this work a very simple computational model of brain
waves that, recasting previous EEG related work, has two significant features. One is that
it provides a well-defined set-up to undertake a systematic study and interpretation of
apparently erratic brain EEG data. These are easily accessible today and, as suspected
(according to our outline here), happen to carry important information concerning the
brain’s activity. Furthermore, this model is convenient to admit complements that one may
expect to be relevant in these scenarios such as, for instance, other synaptic mechanisms,
complex synaptic networks and more realistic neurons. In addition, and perhaps even more
transcendental within this context, the framework presented here precisely illustrates how
the concept of a (nonequilibrium) phase transition [40] may be essential for an accurate
description of the brain properties. Lastly, the EEG model here presented constitutes
a realistic, highly configurable neural network capable of reproducing a wide range of
dynamical behaviors akin to those observed in actual measurements, and could therefore
be of use in the task of training artificial neural networks for extracting features from brain
activity in normal and pathological conditions.
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