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Purpose: To reduce scan time, methods to accelerate
phase-encoded/non-Cartesian MR fingerprinting (MRF) acquisitions for vari-
able density spiral acquisitions have recently been developed. These methods
are not applicable to MRF acquisitions, wherein a single k-space spoke is
acquired per frame. Therefore, we propose a low-rank inversion method to
resolve MRF contrast dynamics from through-plane accelerated Cartesian/ra-
dial measurements applied to quantitative relaxation-time mapping on a 0.35T
system.
Methods: An algorithm was implemented to reconstruct through-plane aliased
low-rank images describing the contrast dynamics occurring because of the
transient-state MRF acquisition. T1 and T2 times from accelerated acquisitions
were compared with those from unaccelerated linear reconstructions in a stan-
dardized system phantom and within in vivo brain and prostate experiments on
a hybrid 0.35T MRI/linear accelerator.
Results: No significant differences between T1 and T2 times for the accelerated
reconstructions were observed compared to fully sampled acquisitions (p = 0.41
and p= 0.36, respectively). The mean absolute errors in T1 and T2 were 5.6% and
2.9%, respectively, between the full and accelerated acquisitions. The SDs in T1

and T2 decreased with the advanced accelerated reconstruction compared with
the unaccelerated reconstruction (p = 0.02 and p = 0.03, respectively). The qual-
ity of the T1 and T2 maps generated with the proposed approach are comparable
to those obtained using the unaccelerated data sets.
Conclusions: Through-plane accelerated MRF with radial k-space coverage
was demonstrated at a low field strength of 0.35 T. This method enabled 3D T1

and T2 mapping at 0.35 T with a 3-min scan.
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1 INTRODUCTION

Quantitative MRI (qMRI), whose rationale and applica-
tions are thoroughly reviewed in Gulani and Seiberlich,1
has been demonstrated to be profoundly useful for the
objective identification, characterization, and assessment
of disease response to treatment. Quantitative tissue prop-
erties such as the longitudinal and transverse magnetiza-
tion relaxation rates (T1 and T2, respectively) have been
used for a variety of applications including assessment
of liver cirrhosis severity,2 classifying pancreatic lesions,3
assessing the severity of renal and prostate cancers,4,5 and
assessing the response of brain tumors to treatment.6–9

Unfortunately, quantifying T1 and T2 times with high
degrees of precision is challenging due to excessively long
scan times. Magnetic resonance fingerprinting (MRF)10,11

is a novel approach to qMRI that allows for the rapid
and reliable estimation of T1 and T2. Given its efficiency
compared with conventional relaxometry methods,12 MRF
has been proposed for the serial monitoring of response
to radiation therapy treatment on integrated MRI/linear
accelerator (MR-linac) devices.13,14

These hybrid imaging and treatment devices are not
always equipped with high-performance hardware seen
on diagnostic systems. One such example is the 0.35T
MR-linac (MRIdian; ViewRay, Oakwood Village, OH),15

in which the inherently low SNR and weak gradient
system (18-mT/m maximum strength) limits the use
of the commonly adopted variable-density spiral read-
out for MRF. Therefore, radial k-space coverage is used
to keep the TR—and thus the scan time—short for a
fixed MRF pattern length.14 Although low-rank inver-
sion methods have proven to be exceptionally useful for
recovering MRF contrast dynamics from a single k-space
spoke per point along the MRF pattern,13,16,17 no methods
have been proposed to date that recover contrast-resolved
images from through-plane accelerated radial MRF acqui-
sitions. Having such a capability would enable substan-
tially shorter scan times, thereby minimizing the chance
of patient motion corrupting the multiparametric qMRI
measurements, while also enabling more efficient integra-
tion into the standard radiation therapy workflow where
high-frequency imaging is possible (eg, daily or weekly).

On top of the already highly in-plane accelerated MRF
acquisitions (eg, 48 times below the Nyquist limit10), sev-
eral approaches exist to further accelerate MRF along
the through-plane direction. For simultaneous multi-
slice (SMS) 2D MRF, the flip-angle pattern of several
simultaneously excited slices can be controlled indepen-
dently, and a pattern-matching algorithm has been used
to separate the aliased slices without the use of paral-
lel imaging methods.18 Another SMS 2D-MRF approach
first applies a parallel-imaging algorithm to separate the

heavily undersampled images from each slice before per-
forming a conventional MRF dictionary–matching proce-
dure.19 For 3D-MRF acquisitions using variable-density
spiral readouts, controlled aliasing in parallel imag-
ing (CAIPI or CAIPIRINHA) uniform undersampling
along the phase-encoded direction can be used.20 Fol-
lowing an inverse Fourier transform along the under-
sampled phase-encoded direction, through-plane aliasing
is present, although its effects are minimal due to the
destructive interference of all but one of the aliased slice
locations. In this approach, dictionary matching can accu-
rately recover volumetric quantitative parameter maps
despite no parallel-imaging algorithms being used here.
For applications in which 3D phase-encoded radial (ie,
“stack of stars”) k-space coverage is necessary as described
previously, this approach will be limited in use due to the
extreme in-plane undersampling levels used when only
acquiring a single k-space spoke per MRF frame. To recon-
struct such an MRF acquisition, one potential solution
includes a combination of CAIPIRINHA through-plane
sampling and temporal low-rank constraints to adequately
resolve the contrast dynamics in each voxel.

In this work, a low-rank inversion method to resolve
MRF contrast dynamics from through-plane accelerated
acquisitions using the CAIPIRINHA technique will be
implemented. The focus will be on uniformly accelerated
3D-MRF acquisitions, although this algorithm will gen-
eralize to SMS 2D approaches. The overall goal of this
work is to demonstrate that similar T1 and T2 times can
be obtained from through-plane accelerated MRF with
in-plane radial k-space coverage when compared with
those that are fully sampled along the through-plane
dimension and reconstructed with a previously validated
MRF pipeline on a low-field (ie, 0.35 T) MRI-guided radi-
ation therapy system.

2 METHODS

2.1 Reconstruction formulation

A k-t undersampling scheme can be seen for an acceler-
ation factor of two (R = 2) in Figure 1. After perform-
ing k-t sampling along the phase-encoding direction of a
hybrid Cartesian/radial (ie, stack of stars) MRF acquisi-
tion and applying a frame-by-frame inverse Fourier trans-
form along the undersampled dimension, the result is a
slice-dependent phase that is modulated throughout the
MRF train. For SMS imaging, as demonstrated by Yutzy
et al, this phase modulation can be exploited to improve
the reconstruction of the aliased slices.21 When a uniform
through-plane acceleration factor R is used, the R aliased
2D+ contrast images that are to be reconstructed are given
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by x ∈ CN⋅N⋅R×T , where N is the in-plane matrix size and
T is the number of contrasts. The condition of the inverse
problem to recover x is improved when constraining the
images to span a low-dimensional temporal subspace𝚽 ∈
CT×K with K ≪ T. Thus, we aim to recover 𝜶 ∈ CN⋅N⋅R×K

by minimizing the cost function shown in Eq. 1 as follows:

min
𝜶

||S𝚯F𝚽C𝜶 − y||22 + 𝜆
∑

r
‖r(𝜶)‖∗ , (1)

where, C represents a multiplication with the coil sensitiv-
ities; F is the nonuniform fast Fourier transform operator;
𝚯 is the non-Cartesian CAIPIRINHA21 phase modulation
operator that takes into account the frame-by-frame phase
differences imparted by the k-t undersampling pattern;
and S is an operator that sums over the aliased slice loca-
tions. In practice, the gridding weights as part of F are
combined with the subspace projection matrix 𝚽 into a
single sparse matrix, as described in detail in Assländer
et al.16 The nuclear norm term (|| ⋅ ||∗) imposes locally low
rank (LLR) regularization as described in detail by Tamir
et al, to improve the conditioning of the inverse problem.22

In this term,r extracts a patch from each subspace coef-
ficient image at position r and rearranges the patch as a
column of a matrix.

2.2 Data collection

All experiments in this work were performed on a
clinical low-field (0.35 T) MRI-guided radiation therapy
system (MRIdian). An adiabatic inversion-prepared fast
imaging with steady-state precession MRF sequence was
implemented with stack-of-stars k-space coverage and a
512-point flip-angle pattern shown in our previous work.14

Coronal stack-of-stars MRF data were acquired in the
National Institute of Standards and Technology/Interna-
tional Society for Magnetic Resonance in Medicine sys-
tem phantom23 using a 12-channel torso coil array with
a matrix size of 128× 128× 32 and spatial resolution of
1.64× 1.64× 5 mm. To match in vivo data, slice oversam-
pling of 25% was used, bringing the total number of slice
phase-encoding partitions to 40. The TR was 12 ms, and
a 3-s delay was included between subsequent repetitions
of the MRF pattern to allow longitudinal magnetization
relaxation toward thermal equilibrium. Relaxation occur-
ring during the 3-s delay between repetitions was taken
into account during the calculation of the dictionary. A sin-
gle radial k-space spoke was acquired in each MRF frame.
Fully partition-encoded (R = 1) MRF was acquired along
with a prospectively 2-times accelerated (ie, R = 2) MRF
scan with through-plane reduction factor of R = 2. The
scan times for each of these acquisitions were 6 min and
3 min, respectively.

Fully partition-encoded in vivo MRF data sets were
acquired in healthy volunteers in the axial orienta-
tion in the brain and pelvis of an institutional review
board–approved study. The 10-channel head/neck coil
was used for signal reception for the brain scan, and
the 12-channel torso array was used for the pelvis
scan. An in-plane matrix size of 256× 256 with FOV
of 300× 340 mm were used for the brain and head/-
neck scans, respectively. The brain and pelvis data were
acquired with 40 phase-encoding partitions and 3-mm
slice thickness. This included 25% oversampling to elim-
inate aliasing from imperfect slab-selective excitation
pulses. Timing parameters were the same as in the
phantom experiments. A single radial k-space spoke was
acquired per frame. The fully sampled data sets were
retrospectively undersampled along the phase-encoding
dimension to R = 2.

2.3 Reconstruction implementation

The inverse problem in Eq. 1 is solved via an alternat-
ing direction method of multipliers24 algorithm in Python
on a standalone laptop. An alternating direction method
of multipliers solver with LLR regularization has been
studied in the context of MRF.25 The algorithm was imple-
mented using PyTorch functions to facilitate running
the reconstructions on a GPU. The subspace-constrained
nonuniform Fourier transform was implemented using a
modified version of the torchkbnufft library26 following
methodologies by Assländer et al.16 The source code to per-
form these reconstructions along with some sample data
has been made publicly available at https://github.com/
nmickevicius/mrfCaipiNLM_MRM. The MRF flip-angle
pattern used in these studies has been described in detail
previously14 and is available for download from this repos-
itory. Coil sensitivity maps were estimated with ESPIRiT27

using the SigPy library.28 The dimensionality of the tem-
poral subspace was experimentally set to K = 5. The R = 1
data sets were reconstructed using 20 iterations of a linear
conjugate gradient algorithm (ie, without regularization),
as this was previously demonstrated to agree well with
ground-truth spin-echo measurements at 0.35 T.14 The
R = 2 reconstructions were performed using eight alter-
nating direction method of multipliers iterations, five con-
jugate gradient iterations, LLR patch sizes of 8× 8 pixels,
and 𝜆 = 1 × 10−4. These parameters were all chosen exper-
imentally. To mitigate additional parallel-imaging noise
arising from the nondiagnostic quality RF coil arrays on
the low-field system, a nonlocal means (NLM) denois-
ing algorithm29 was applied slice-wise to the R = 2 sub-
space coefficient images with a patch size of 3× 3 pix-
els and neighborhood search size of 32× 32 pixels. The

https://github.com/nmickevicius/mrfCaipiNLM_MRM
https://github.com/nmickevicius/mrfCaipiNLM_MRM
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F I G U R E 1 k-t undersampling scheme for accelerated stack-of-stars MR fingerprinting (MRF). At each MRF Index, n, along the
variable flip-angle pattern, a unique spoke angle is acquired by incrementing the angle by a tiny golden-angle increment. For 2-times
through-plane accelerated acquisition as shown here, the phase-encoding index (kz) alternates between the nearest even and odd sampling
index for a given repetition. Within each MRF index, uniform k-space sampling along kz is achieved. The shift in kz index between
repetitions imparts a phase modulation according to the Fourier shift theorem that non-Cartesian controlled aliasing in parallel imaging
(CAIPIRINHA) reconstruction methods exploit to improve image quality

NLM was implemented in C with a MATLAB (The Math-
Works, Natick, MA) mex interface. A dot product-based
dictionary-matching procedure was performed to map T1
and T2 using the dictionary from Mickevicius et al14 while
ignoring B+1 variations. although the objective of this work
is to ensure that the proposed accelerated MRF processing
pipeline yields the same results as the previously validated
linear R = 1 reconstructions, the R = 1 data sets were also
reconstructed using LLR regularization and NLM denois-
ing. These data are shown in the Supporting Information.
Reconstruction times were recorded for a 2.3-GHz 4-Core
i7 CPU (Intel, Santa Clara, CA) and a 12GB K80 GPU
(NVIDIA, Santa Clara, CA).

2.4 Data analysis

For each of the phantom reconstructions, the mean and SD
of the T1 and T2 times estimated in each contrast sphere
in the NiCl2 contrast plate of the phantom. Paired t-tests
were used to test for significant differences in the mean
and SDs of the T1 and T2 times between R = 1 and R = 2
MRF data sets following Kolmogorov–Smirnov tests for
normality. The mean absolute percent error in T1 and T2
was also calculated. Correlation values between the full
and accelerated T1 and T2 values were calculated. For the
in vivo data sets, T1 and T2 times were extracted within
freely drawn regions of interest (ROIs) containing between
14 and 25 voxels from white matter, gray matter, central
zone of the prostate, musculoskeletal tissue, and the bone
marrow from the in vivo MRF R = 1 and R = 2 data sets.

T1 and T2 times from the R = 1 and R = 2 reconstructions
from all anatomical ROIs were pooled for further analy-
sis. Correlation coefficients between R = 1 and R = 2 data
sets were calculated, and a paired t-test was used to test for
significant differences between the full and accelerated T1
and T2 times in vivo following a Kolmogorov–Smirnov test
for normality.

3 RESULTS

Numerical results from the phantom MRF experiments are
shown in Figure 2. The means of the T1 and T2 values from
the R = 2 reconstructions were found to be very similar to
those from R= 1, as evidenced by the proximity of the scat-
ter plot points to the identity line. In general, for R = 2,
low T1 times (eg, < 1000 ms) and low T2 times (< 500 ms)
exhibited better agreements with R = 1 values, with lower
variability (reduced within-vial SDs) than higher T1 and
T2 times. Quantitatively, near-perfect correlations between
the fully sampled and accelerated MRF acquisitions were
observed for both the T1 (0.997) and T2 (0.999) times. The
use of a parametric t-test was found to be appropriate via
the Kolmogorov–Smirnov test, and no significant differ-
ences between the R = 1 and R = 2 acquisitions were
observed (p = 0.41 for T1 and p = 0.36 for T2). The mean
absolute percent error in T1 and T2 were 5.6% and 2.9%,
respectively, between R= 1 and R= 2 reconstructions. The
SDs in T1 and T2 time estimates for R = 2 reconstructions
were significantly lower than those from the linear R = 1
reconstructions (p = 0.02 and p = 0.03, respectively). On



844 MICKEVICIUS and GLIDE-HURST

F I G U R E 2 Differences in T1 and T2 between the fully partition-encoded (R = 1) stack-of-stars MRF and the two-times accelerated
(R = 2) data sets. The mean values are shown along with SD within each sphere of the National Institute of Standards and
Technology/International Society for Magnetic Resonance in Medicine system phantom. The identity line is plotted for reference

F I G U R E 3 Brain and pelvis in vivo results for fully sampled (R = 1) linear reconstruction and accelerated (R = 2) locally low rank
(LLR) regularized reconstructions with nonlocal means (NLM) denoising. The singular value (SV) images are shown for each data set. Note
that each image is windowed individually. T1 and T2 maps fit via matching of the SV images and the dictionary are shown on the right

average, the noise within the R = 2 reconstructions for T1
and T2 were 4.4 times and 3.4 times lower, respectively,
than the noise within the R= 1 reconstructions. It took 58 s
(CPU) or 22 s (GPU) to perform a linear reconstruction for
a single slice from the R = 1 data sets, and 215 s (CPU) or
50 s (GPU) to perform the alternating direction method of
multipliers reconstruction for a pair of slices from the R= 2
data sets.

The singular-value (SV) images from the subspace con-
strained reconstruction as well as T1 and T2 maps for
a single slice of the 3D brain and pelvis in vivo experi-
ments are shown in Figure 3. The R = 2 SV images, which
incorporated LLR regularization and NLM denoising, are
visually comparable to the linear R = 1 reconstructions.
The T1 maps were less noisy for the proposed R = 2
reconstruction than the linear R = 1 reconstruction, with
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F I G U R E 4 Axial, sagittal, and coronal views of the 3D T1 and T2 maps from the R = 1 and R = 2 MRF acquisitions. Comparable image
quality of the T1 and T2 maps can be seen between R = 1 and R = 2 reconstructions

SDs in a white-matter ROI of 59.6 ms and 36.1 ms for
R = 1 and R = 2, respectively. Likewise, SDs in T2 of
25.1 ms and 12.7 ms for R = 1 and R = 2, respec-
tively, demonstrate that the proposed approach produces
T2 maps less noisy than the established linear R = 1 recon-
struction. Figure 4 shows a slice of the natively acquired
axial plane and reformatted sagittal and coronal planes
of the T1 and T2 maps for the brain and pelvis data sets.
These data demonstrate the capability of the R = 2 recon-
struction to yield high-quality T1 and T2 maps visually
comparable to those from the established linear R = 1
reconstruction.

The quantitative results from the in vivo MRF data sets
are shown in Figure 5. The top row of Figure 5A,B shows
the T1 and T2 values for R = 2 against those from R = 1.
Strong correlations between R = 1 and R = 2 relaxometry
estimates were observed from these data, with correlation
coefficients of 0.83 and 0.85 for T1 and T2, respectively. The
mean relaxation times within each ROI were then calcu-
lated and used for statistical comparison (Figure 5C,D). No
significant differences were observed between R = 1 and
R = 2 measurements with p = 0.12 for T1 and p = 0.58
for T2.

4 DISCUSSION

This work describes a method to reconstruct
through-plane accelerated MRF quantitative parameter
maps. Phantom and in vivo experiments demonstrated
that the proposed through-plane accelerated MRF recon-
struction with acceleration factors of R= 2 yield similar T1
and T2 estimates as linear reconstructions from unacceler-
ated MRF data sets. The overall image quality of the R = 2
reconstructions produced with LLR regularization and
NLM denoising were less noisy than those produced using
a previously validated linear reconstruction for R = 2 data
sets while maintaining mean T1 and T2 relaxation times.

The proposed reconstruction pipeline for R = 2
included LLR regularization to improve the conditioning
of the inverse problem and the additional NLM denoising
step. T1 and T2 times mapped from these reconstructions
were compared with a simple linear reconstruction for
R = 1. This was done because only the linear reconstruc-
tion had been previously validated14 and demonstrated to
be accurate relative to ground-truth measurements. The
image quality of the R= 1 reconstructions improves if regu-
larization and NLM denoising was used. A demonstration
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F I G U R E 5 In vivo T1 and T2 time comparison between fully sampled (R = 1) and accelerated (R = 2) data sets within regions of
interest (ROIs) in white matter (WM), gray matter (GM), musculoskeletal (MSK) tissue, the central zone (CZ) of the prostate, and in the hip.
The top row (A,B) shows the T1 and T2 values from every voxel within all ROIs. The bottom row (C,D) shows the mean T1 and T2 values
along with their SDs within each of these ROIs

of this can be seen in Supporting Information Figures S1
and S2.

In the phantom and in vivo experiments, it was
observed that tissues with longer T2 times exhibit larger
SDs. This effect may limit the applicability of MRF—in
its present implementation at 0.35 T—for the character-
ization of long-T2 tissues such as CSF and edema.10,30

Optimizing the flip-angle pattern and timing of the MRF
acquisition to minimize the variance in the estimation
of T1 and T2 for a range of expected relaxation times
may reduce the uncertainty and improve the reliability of
MRF.17,31,32 Although this effect is present in the both the
accelerated and unaccelerated acquisitions, improving the
optimality of the MRF experiment at 0.35 T remains an
active area of investigation to reduce uncertainty in the
characterization of long-T2 tissues. Every effort to mini-
mize uncertainty in quantitative parameter mapping with

MRF will be made to ensure its reliability when using
qMRI to characterize, predict, or assess a tumor’s response
to treatment on low-field MR-guided radiation therapy
systems.

We were successful in reducing the scan time required
for MRF by a factor of 2 in this work, resulting in 3-min
scans to quantify T1 and T2 relaxation times. Although
further reducing scan time would have the benefit of min-
imizing the likelihood of patient motion during the MRF
scans, pushing the rates higher (ie, R >=3) results in
unusable quantitative maps due excess noise enhance-
ment from the ill-conditioned reconstruction. While the
exact source of the noise enhancement is unknown, future
will work will investigate whether this failure to generalize
to higher acceleration factors is due to (1) the lower SNR
caused by the acquisition of fewer data samples, (2) the
modest RF coil encoding (ie, 10–12 channels), or (3) the
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reliance on exact spoke-dependent phase differences in the
CAIPIRINHA phase operator. Thoroughly assessing the
capabilities of this method for acceleration factors greater
than 2 at 0.35 T will be a topic of future investigation. The
proposed method, however, may be applicable to scan-
ning with higher acceleration rates on higher-field systems
with inherently higher SNR and that are equipped with
state-of-the-art RF coil arrays that have a higher channel
count.

This initial technical study on a novel algorithm for
through-plane accelerated MRF demonstrated for the
acquisition of volumetric T1 and T2 maps in only 3 min
on a 0.35T MR-linac system. The benefits observed at
low magnetic field strength with radial k-space coverage
here may also extend to MRF acquisitions made with
more-common spiral trajectory and higher magnetic field
strengths. The technologies proposed here will allow for
the acquisition of longitudinal multi-parametric quanti-
tative imaging throughout the course of radiation therapy
treatment, while minimizing the burden of excessive scan
times.

ACKNOWLEDGMENT
The authors thank the Bentson Foundation and the
University of Wisconsin–Madison Bentson Translational
Research Fellowship.

ORCID
Nikolai J. Mickevicius https://orcid.org/0000-0003-
3826-6667

REFERENCES
1. Gulani V, Seiberlich N. Quantitative MRI: Rationale and Chal-

lenges. Vol 1. Academic Press; 2020, pp. xxxvii-li.
2. Cassinotto C, Feldis M, Vergniol J, et al. MR relaxometry in

chronic liver diseases: comparison of T1 mapping, T2 mapping,
and diffusion-weighted imaging for assessing cirrhosis diagnosis
and severity. Eur J Radiol. 2015;84:1459-1465.

3. Wang L, Gaddam S, Wang N, et al. Multiparametric mapping
magnetic resonance imaging of pancreatic disease. Front Phys-
iol. 2020;11:8.

4. Yu AC, Badve C, Ponsky LE, et al. Development of a com-
bined MR fingerprinting and diffusion examination for prostate
cancer. Radiology. 2017;283:729-738.

5. Adams LC, Bressem KK, Jurmeister P, et al. Use of quantitative
T2 mapping for the assessment of renal cell carcinomas: first
results. Cancer Imaging. 2019;19:1-11.

6. Hattingen E, Jurcoane A, Daneshvar K, et al. Quantitative
T2 mapping of recurrent glioblastoma under bevacizumab
improves monitoring for non-enhancing tumor progression and
predicts overall survival. Neuro Oncol. 2013;15:1395-1404.

7. Lescher S, Jurcoane A, Veit A, Bähr O, Deichmann R, Hat-
tingen E. Quantitative T1 and T2 mapping in recurrent
glioblastomas under bevacizumab: earlier detection of tumor
progression compared to conventional MRI. Neuroradiology.
2015;57:11-20.

8. Haslbauer JD, Lindner S, Valbuena-Lopez S, et al. CMR imaging
biosignature of cardiac involvement due to cancer-related treat-
ment by T1 and T2 mapping. Int J Cardiol. 2019;275:179-186.

9. Nejad-Davarani SP, Zakariaei N, Chen Y, et al. Rapid mul-
ticontrast brain imaging on a 0.35T MR-linac. Med Phys.
2020;47:4064-4076.

10. Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance finger-
printing. Nature. 2013;495:187-192.

11. Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR finger-
printing using fast imaging with steady state precession (FISP)
with spiral readout. Magn Reson Med. 2015;74:1621-1631.

12. Leitão D, Teixeira RPAG, Price A, Uus A, Hajnal JV, Malik SJ.
Efficiency analysis for quantitative MRI of T1 and T2 relaxome-
try methods. Phys Med Biol. 2021;66:15NT02.

13. Bruijnen T, van der Heide O, Intven MPW, et al. Technical feasi-
bility of magnetic resonance fingerprinting on a 1.5T MRI-linac.
Phys Med Biol. 2020;65:22-23.

14. Mickevicius NJ, Kim JP, Zhao J, Morris ZS, Hurst NJ, Hurst
CKG. Toward magnetic resonance fingerprinting for low-field
MR-guided radiation therapy. Med Phys. 2021;48:6930-6940.

15. Mutic S, Dempsey JF. The ViewRay system: magnetic
resonance-guided and controlled radiotherapy. Semin Radiat
Oncol. 2014;24:196-199.

16. Assländer J, Cloos MA, Knoll F, Sodickson DK, Hennig J,
Lattanzi R. Low rank alternating direction method of multi-
pliers reconstruction for MR fingerprinting. Magn Reson Med.
2017;79:83-96.

17. Assländer J, Lattanzi R, Sodickson DK, Cloos MA. Optimized
quantification of spin relaxation times in the hybrid state. Magn
Reson Med. 2019;82:1385-1397.

18. Jiang Y, Ma D, Bhat H, et al. Use of pattern recognition
for unaliasing simultaneously acquired slices in simultane-
ous multislice MR fingerprinting. Magn Reson Med. 2016;78:
1870-1876.

19. Ye H, Cauley SF, Gagoski B, et al. Simultaneous mul-
tislice magnetic resonance fingerprinting (SMS-MRF) with
direct-spiral slice-GRAPPA (ds-SG) reconstruction. Magn Reson
Med. 2017;77:1966-1974.

20. Ma D, Jiang Y, Chen Y, et al. Fast 3D magnetic resonance
fingerprinting for a whole-brain coverage. Magn Reson Med.
2018;79:2190-2197.

21. Yutzy SR, Seiberlich N, Duerk JL, Griswold MA. Improvements
in multislice parallel imaging using radial CAIPIRINHA. Magn
Reson Med. 2011;65:1630-1637.

22. Tamir JI, Uecker M, Chen W, et al. T2 shuffling: sharp, multi-
contrast, volumetric fast spin-echo imaging. Magn Reson Med.
2017;77:180-195.

23. Stupic KF, Ainslie M, Boss MA, et al. A standard system
phantom for magnetic resonance imaging. Magn Reson Med.
2021;86:1194-1211.

24. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed opti-
mization and statistical learning via the alternating direction
method of multipliers. Found Trends Mach Learn. 2010;3:1-122.

25. Lima da Cruz G, Bustin A, Jaubert O, Schneider T, Botnar RM,
Prieto C. Sparsity and locally low rank regularization for MR
fingerprinting. Magn Reson Med. 2019;81:3530-3543.

26. Muckley MJ, Stern R, Murrell T, Knoll F. TorchKbNufft: a
high-level, hardware-agnostic non-uniform fast Fourier trans-
form. Proceedings of the ISMRM Workshop on Data Sampling
& Image Reconstruction; 2020.

https://orcid.org/0000-0003-3826-6667
https://orcid.org/0000-0003-3826-6667
https://orcid.org/0000-0003-3826-6667


848 MICKEVICIUS and GLIDE-HURST

27. Uecker M, Lai P, Murphy MJ, et al. ESPIRiT-an eigenvalue
approach to autocalibrating parallel MRI: where SENSE meets
GRAPPA. Magn Reson Med. 2014;71:990-1001.

28. Ong F, Lustig M. SigPy: a python package for high perfor-
mance iterative reconstruction. Proceedings of the 27th Annual
Meeting of ISMRM; 2019, p. 4819.

29. Manjón JV, Carbonell-Caballero J, Lull JJ, García-Martí G,
Martí-Bonmatí L, Robles M. MRI denoising using non-local
means. Med Image Anal. 2008;12:514-523.

30. Panda A, Mehta BB, Coppo S, et al. Magnetic resonance
fingerprinting—an overview. Curr Opin Biomed Eng.
2017;3:56-66.

31. Zhao B, Haldar JP, Liao C, et al. Optimal experiment design for
magnetic resonance fingerprinting: Cramér-Rao bound meets
spin dynamics. IEEE Trans Med Imaging. 2019;38:844-861.

32. Jordan SP, Hu S, Rozada I, et al. Automated design of
pulse sequences for magnetic resonance fingerprinting
using physics-inspired optimization. Proc Natl Acad Sci.
2021;118:e2020516118.

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1. Brain and pelvis in vivo results for fully sam-
pled (R = 1) reconstruction and accelerated (R = 2) recon-

struction. Both reconstructions use locally low rank (LLR)
regularization with non-local means (NLM) denoising.
The singular value (SV) images are shown for each dataset.
Note that each image is windowed individually. T1 and T2
maps fit via matching of the SV images and the dictionary
are shown on the right
Figure S2. Axial, sagittal, and coronal views of the 3D T1
and T2 maps from the R = 1 and R = 2 MR fingerprinting
(MRF) acquisitions. Comparable image quality of the T1
and T2 maps can be seen between R = 1 and R = 2 recon-
structions. Both reconstructions used LLR regularization
and NLM denoising

How to cite this article: Mickevicius NJ,
Glide-Hurst CK. Low-rank inversion reconstruction
for through-plane accelerated radial MR
fingerprinting applied to relaxometry at 0.35 T.
Magn Reson Med. 2022;88:840-848. doi:
10.1002/mrm.29244


	Low-rank inversion reconstruction for through-plane accelerated radial MR fingerprinting applied to relaxometry at 0.35 T 
	1 INTRODUCTION
	2 METHODS
	2.1 Reconstruction formulation
	2.2 Data collection
	2.3 Reconstruction implementation
	2.4 Data analysis

	3 RESULTS
	4 DISCUSSION

	ACKNOWLEDGMENT
	ORCID
	REFERENCES
	Supporting Information

