
Article
A Searchable Database of
 Crystallization Cocktails
in the PDB: Analyzing the Chemical Condition Space
Graphical Abstract
Highlights
d Provides an updatable Python script to extract details from

PDB free text fields

d Gives a standardized and searchable dataset of

crystallization chemical conditions

d Analyzes relationship between PEG MW and protein

secondary structure profiles

d Sparsity coupled with redundancy in chemical details make

data mining challenging
Lynch et al., 2020, Patterns 1, 100024
July 10, 2020 ª 2020 The Author(s).
https://doi.org/10.1016/j.patter.2020.100024
Authors

Miranda L. Lynch, Max F. Dudek,

Sarah E.J. Bowman

Correspondence
sbowman@hwi.buffalo.edu

In Brief

Free text formatted metadata from public

databases are difficult to extract and

leverage. We present a curated dataset of

experimental details from the PDB, the

primary repository of macromolecular

structures. We contribute a software tool

for parsing PDB free text fields for users

to generate updated or customized

datasets. Our parsing function handles

irregular free text information to produce

usable datasets with a controlled

vocabulary. We illustrate extracted

metadata use via analyses of

relationships between chemicals and

protein structure features.
ll

mailto:sbowman@hwi.buffalo.�edu
https://doi.org/10.1016/j.patter.2020.100024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2020.100024&domain=pdf


OPEN ACCESS

ll
Article

A Searchable Database of Crystallization
Cocktails in the PDB: Analyzing
the Chemical Condition Space
Miranda L. Lynch,1 Max F. Dudek,2 and Sarah E.J. Bowman1,3,4,*
1High-Throughput Crystallization Screening Center, Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
2University of Pittsburgh, Pittsburgh, PA 15261, USA
3Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, NY 14203, USA
4Lead Contact
*Correspondence: sbowman@hwi.buffalo.edu

https://doi.org/10.1016/j.patter.2020.100024
THE BIGGER PICTURE Determining structures of biological macromolecules is critical to advancing drug
discovery and medical research. The majority (�90%) of structures in the Protein Data Bank (PDB) derive
from X-ray crystallography. To obtain a crystal structure, the first thing you need is a crystal. A key bottle-
neck to crystallographicmethods is finding conditions in which a samplewill crystallize. In addition to three-
dimensional structural files, the PDB contains abundant metadata on crystallization details. Mining these
data could unlock the bottleneck and facilitate structure acquisition. Crucial metadata on crystallization
conditions are in free text fields in the PDB; parsing these data on a large scale is challenging. We have
developed a tool to facilitate extraction and standardization. We provide the extraction tool, a curated data-
set, and analyses of these metadata. This study enables PDB data mining by providing a customizable tool
capable of imposing a controlled vocabulary on free text PDB metadata.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Nearly 90% of structural models in the Protein Data Bank (PDB), the central resource worldwide for three-
dimensional structural information, are currently derived frommacromolecular crystallography (MX). A major
bottleneck in determining MX structures is finding conditions in which a biomolecule will crystallize. Here, we
present a searchable database of the chemicals associated with successful crystallization experiments from
the PDB. We use these data to examine the relationship between protein secondary structure and average
molecular weight of polyethylene glycol and to investigate patterns in crystallization conditions. Our analyses
reveal striking patterns of both redundancy of chemical compositions in crystallization experiments and
extreme sparsity of specific chemical combinations, underscoring the challenges faced in generating predic-
tive models for de novo optimal crystallization experiments.
INTRODUCTION

Structural biology is the study of the architecture of biological

macromolecules; these structures sit at the base of a wide range

of further scientific endeavors, from investigating enzymatic

mechanisms that drive our understanding of energy production

to the design of drugs capable of inhibiting disease progression.

The worldwide repository for structural biology information is the

Protein Data Bank (PDB), in which close to 160,000 structural
This is an open access article under the CC BY-N
models have been deposited since it was developed in

1971.1,2 Data from the PDB have a profound impact on an array

of scientific discovery and innovation. Indeed, in 2017, over 679

million downloads of data from the PDB were reported, which

averages to over 1.8 million structure data files downloaded

per day.3,4 Scientists from all manner of disciplines rely on the

wealth of information in the PDB to further their research pro-

grams. A recent analysis of the PDB found that 88% of the 210

new drugs that have been FDA approved between 2010 and
Patterns 1, 100024, July 10, 2020 ª 2020 The Author(s). 1
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Table 1. Subset of CDD Data Matrix

PDB

ID

Acetic

Acid /
PEG

4000 /
Zinc(II)

Sulfate Reference

1KHK 0 / 0 / 1 Le Du et al.18

« 1 1 «

2G0X 0 / 0 / 0 Aranda et al.19

« 1 1 «

3QG7 0 / 1 / 0 Kirchdoerfer et al.20

« 1 1 «

5WL7 1 / 0 / 0 Kaltenbach et al.21

The CDD is composed of 99,229 PDB IDs (row dimension) and 312

unique chemical compounds (column dimension), with a 0/1 indicator

of absence/presence of a given compound in that PDB ID cocktail. Rep-

resented here is a subset of four PDB IDs (with literature citations) as ex-

amples of data that appear in the CDD.
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2016 depended on structural information from close to 6,000

different structures deposited in the PDB,5 illuminating how

structural knowledge from the PDB empowers development of

therapeutics. Nearly 90% of the structures available in the PDB

are derived from experimental techniques requiring the sample

to be in a crystalline form (the most common is macromolecular

X-ray crystallography [MX], although electron crystallography

and neutron diffraction are techniques that also require crystals).

In these structural methods, a biomolecular crystal is exposed to

an excitation source and diffraction patterns from the crystal are

used to determine its structure. A critical step in this process is

generating crystals of the biomolecules, and determining which

conditions will drive crystal formation remains a central research

area in structural biology.6–9 The conditions that affect crystalli-

zation include the identity and amount of the chemical compo-

nents in the crystallization condition (cocktail), the sample and/or

cocktail pH, and the incubation temperature, among others.

Experiments on the crystallization process have even been

performed in space to investigate the role played by gravity.10

The crystallization parameter space is quite broad and is often

approached experimentally with trial-and-error screening of

different crystallization cocktail components. Once one or

more cocktail hits (evidence of a nascent biomolecular crystal)

are found in the initial crystallization screening, the conditions

are typically optimized to increase diffraction quality by varying

concentration and pH of component chemicals, as well as

modulating other parameters such as temperature. Despite the

extensive history and use of MX as a structural approach, the

process of crystallization for macromolecular structure determi-

nation is nontrivial, as crystallization remains mysterious, even

100 years after the discovery that crystals will diffract X-rays.11

Formation of a crystal, however, is driven by fundamental under-

lying physical principles. A key factor in unearthing those princi-

ples is gathering enough information to tease out the compli-

cated interactions between crystallization parameter space

and crystal formation.

The PDB is an incredibly rich source of data about successful

crystallization parameters, as it contains information on crystalli-

zation conditions in a free text field, ‘‘REMARK 280’’ in PDB

format or ‘‘exptl_crystal_grow.pdbx_details’’ in the more recently

developed mmCIF format. Mining this free text field for informa-

tion about crystallization cocktails can provide insights about

conditions in which macromolecular diffraction-quality crystals

have formed. Despite the presence of the crystallization details

inmany of the structures deposited in the PDB, however, it is diffi-

cult to analyze these details across the entire PDB dataset. One of

the difficulties in making extensive use of the crystallization con-

dition data is the lack of standardized reporting within the free

text field. Although the field has been available for depositing

experimental details since 2000,12 not all crystal-based structures

deposited in the PDB contain experimental crystallization infor-

mation. Additionally, there are inconsistencies in naming conven-

tions for compound identity (including typos and misspellings), in

punctuation and spacing, and in exactly what information is listed

(see specific examples in Tables S1 and S2). Efforts have been

made to parse the details in this free text field, which have enabled

assessment of which chemicals occur most frequently,12 estima-

tion of impact of sample isoelectric point and calculated value for

cocktail pH on successful crystallization,13 and, most recently,
2 Patterns 1, 100024, July 10, 2020
examination of correlations between protein sequence and crys-

tallization conditions.14 Analyses have been performed to assess

success rates (and number of screening conditions required)15 as

well as data mining to better predict which cocktails will lead to

positive crystallization outcomes.13,14,16,17 There has been long-

standing interest in developing ways to better understand which

parameters in the crystallization space enable biomolecular crys-

tallization, but it remains a fundamental challenge to predict crys-

tallization conditions that will be successful given details of the

biomolecular target.

Here, we report the development of a searchable and updat-

able database of crystallization conditions extracted from the

free text field containing crystallization details found in PDB en-

tries. Recently the PDB file format has shifted to mmCIF format

(mandatory submission of this type began in July 2019); both for-

mats contain the same information regarding crystal growth con-

ditions in a free text field. The crystallization database presented

here (obtained December 9, 2019) contains 99,229 PDB IDs with

crystallization details from the total 158,367 total structures

deposited in the PDB as of that date. A focus of this work is

investigation of the chemical patterns that occur within the

data about crystallization conditions that are available from the

PDB. A major goal is to investigate the parameter space of

chemical components that are most prevalent in successful

crystallization and which components are combined most

frequently with one another. Ultimately this information could

be used to develop amodel for predicting, testing, and screening

successful crystallization conditions. We summarize details

regarding the chemical compounds and incubation temperature

of successful crystallization experiments. Additionally, we have

used these data to specifically probe how interactions between

polyethylene glycol (PEG) and macromolecules enable crystalli-

zation by examining the relationship between average PEG mo-

lecular weight (MW) and the secondary structure composition for

PDB entries in our database.We examine redundancy, providing

examples of redundant proteins in the PDBwith different crystal-

lization conditions, to further illustrate the potential utility of the

database. The wealth of information about crystallization condi-

tions in the PDB is obfuscated by the difficulties in accessing the

information in standardized form. We have extracted and stan-

dardized information from the PDB to enable analyses of rela-

tionships that we believe contribute to understanding the



Table 3. Most Commonly Occurring Chemical Cocktail

Components in the CDD

Chemical

Component

No. of

PDB IDs

Chemical

Component

No. of

PDB IDs

PEG 3350 22,472 Sodium chloride 10,405

Ammonium

sulfate

18,552 PEG 8000 9,813

PEG 4000 13,230 Sodium citrate 9,694

Sodium acetate 13,003 MES 9,590

HEPES 12,921 Tris 9,185

The ten most frequently identified chemical compounds in the CDD from

the crystal growth detail free text field in the PDB and the number of the

99,229 PDB IDs in which these chemicals are found.

Table 2. Subset of SSD Data Matrix

PDB

ID

Helix

Count

Sheet

Count

Total

Count Helix % Sheet % Other %

1KHK 276 187 898 30.73 20.82 48.44

« « « «

2G0X 121 0 154 78.57 0 21.42

« « « «

3QG7 22 225 429 5.13 52.43 42.42

« « « «

5WL7 84 62 226 37.17 27.43 35.40

TheSSD iscomposedof97,782PDB IDswithcolumns representingcounts

of residues and percentage of each secondary structure component. Rep-

resentedhere is the samesubset of fourPDB IDsas those shown inTable 1.
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process of crystallization, and we make these data available for

the research community. This database represents a snapshot

of the parseable chemical conditions from the available PDB

IDs as of December 2019 and our analyses of these data. We

anticipate that additional research inquiries and analysis pipe-

lines will be enabled by this data snapshot and will be expanded

upon by making the data-extraction package easily updatable.

RESULTS

Generation of Searchable and Updatable Database of
Crystallization Conditions
Here, we present summaries and analyses of data downloaded

from the PDB. As of December 9, 2019, the PDB repository con-

tained 158,367 structures; details of how these data were parsed

and standardized are provided in Experimental Procedures. The

database we generate and analyze here contains 99,229 PDB

IDs with crystallization details (Crystallization Details Dataset

[CDD]). The CDD identifies 312 distinct chemical compounds;

when chemical components are found at very low frequency

within the PDB, they are less likely to appear in the final parsing.

As one goal of this investigation is assessment of patterns

among the chemical compounds and their combinations, the

compound dictionary is more limited in cases of chemicals that

appear with less frequency in the PDB. The PDB IDs that are

not included in the CDD have been excluded for a number of rea-

sons, including infrequent occurrence of chemicals and inability

of the detail parsing function to identify specific compounds due

to unexpected syntax, spacing, or punctuation. While it is

possible to generate a report directly from the PDB that contains

the crystallization condition details, in the CDD database pre-

sented here the details have been standardized and made

more ‘‘searchable.’’ Examples of both successful and unsuc-

cessful parsing for PDB entries show what works and reveal

some of the difficulties encountered (Tables S1 and S2). The

detail parsing function and manual parsing used to generate

the CDD address a multitude of errors and inconsistencies, but

some PDB IDs could not be parsed and some chemicals may

have been too ‘‘incorrect’’ to even identify.

Previous research has focused on generating an extensive

and full list of compounds that are used to crystallize macromol-

ecules,12,16 including the chemical identity and concentration.

Although we have extracted the concentration information for
these data, not all of the PDB IDswithin the CDD contain detailed

concentration information. For the purposes of the analyses

here, we do not make use of concentration information. As the

analytical goal of this work is to identify broad patterns of

behavior within the crystallization space, we have chosen to

focus on the most commonly appearing chemicals within the

PDB that are used in crystallization cocktails. These data have

been mapped onto a matrix of PDB ID and presence/absence

of each chemical compound (Table 1 shows a subset of the

CDD). CDD data are provided in Data S1.

We have also extracted secondary structure information from

the ss.txt file available from the PDB for a subset of 97,782 PDB

IDs with both crystallization details in the CDD and secondary

structure information (Secondary Structure Dataset [SSD]).

Table 2 shows an example subset of the SSD.We use these sec-

ondary structure data to examine the relationship between the

composition of secondary structural elements and PEGs.

Commonalities and Sparsity Observed in Crystallization
Conditions
Of the 312 chemical compounds in the CDD, themost commonly

appearing individual components include buffers, salts, and

PEGs (Table 3 shows the tenmost frequently occurring individual

chemicals). Comparatively few of the crystallization cocktails are

composed of only a single chemical compound (5.7%). The vast

majority of cocktails (75.1%) contain either two or three compo-

nents (Figure 1). The largest number of different chemical

compounds (found in two PDB IDs) has 12 components, and

only 5.9% of cocktails contain more than four different

components.

As temperature is another potential parameter of interest in the

crystallization parameter space, we have extracted experimental

incubation temperature for the CDD dataset. The majority

(89.2%) of the CDD had temperature data reported for the

crystallization conditions, ranging from 100 K to 328 K. Most

crystallization experiments reported 277 K, 298 K, or 293 K

(13.4%, 18.7%, and 29.8%, respectively, of those reporting a

temperature). These data are provided in Data S2.

Redundancy Is Prevalent in Crystallization Conditions
From a chemical component point of view, there is enormous

redundancy in the compositions of the different crystallization

cocktails used for generating crystals that are used to generate
Patterns 1, 100024, July 10, 2020 3
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The count of PDB IDs in the CDD associated with a

specific number of compounds in the crystallization

cocktail. Most cocktails contain only either two or

three components.
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structures in the PDB. Many crystallization components appear

in multiple cocktails; in addition, many cocktails are associated

with multiple PDB IDs. The top five chemical combinations are

shown in Table 4. The 99,229 PDB IDs in the CDD are associated

with 16,626 unique cocktails, in terms of chemical compound

identity (not concentration). Of these 16,626 combinations of

chemicals, 10,095 are found in only one PDB file, meaning that

just over 10% of MX structures in the CDD have a unique set

of chemical compounds that make up the crystallization cocktail.

The remaining 89,134 PDB IDs in the CDD share the composition

of crystallization cocktails with at least one other PDB ID in the

CDD and make use of only 6,531 unique cocktails. Of these

6,531 unique chemical sets, 2,281 are associated with only

one other PDB ID and a further 966 are associated with only

two other PDB IDs. The median number of PDB IDs for a crystal-

lization cocktail that is replicated elsewhere in the CDD is four.

Note that these do not consider the concentration of the chem-

ical components, only the chemical identity. Omitting concentra-

tion information is a limitation of the analyses with regard to ex-

amination of the entire crystallization parameter space. We have

chosen to restrict our analyses to the domain of chemical

component, as we found this to be the most efficient way to

extract patterns given the extreme sparsity induced in the data

when concentration is also included. Although some chemical

sets are frequently found, the majority of cocktails appear quite

sparsely within the PDB. In other words, more than 80% of the

unique cocktails are replicated three times or less in the entire

database and less than 20% of the unique cocktails account

for crystallization components in the remaining 81,674 PDB IDs.

These are striking numbers. These results reflect the bias to-

ward the available commercial crystallization cocktail screens,16

which is not surprising given that the commercial screens have

been generated in large part in response to what has worked

in the past.22,23 These results also highlight the extensive diffi-

culties in generating predictive algorithms for crystallization con-

ditions. It is a long-standing goal in the community to be able to

predict potential crystallization conditions for macromolecules,
4 Patterns 1, 100024, July 10, 2020
given certain parameters of the macromol-

ecule such as sequence and isoelectric

point. The results presented here reveal

the difficulties in developing these predic-

tive models, as typically these types of

predictive models require an extensive

amount of well-annotated data. With

such a combination of redundancy (of

chemical compounds and cocktail combi-

nations) and sparsity of the data, it is no

wonder that the field has encountered

problems in generating a predictive algo-

rithm and generalizable guidelines for
crystallization. Generating these types of predictions would

benefit from the development of new machine-learning tools

that can handle this type of sparsity.

Compositional Data Analyses Reveal the Relationship
between PEGs and Secondary Structure Components
Since the first report of the successful use of PEGs in protein

crystallization,24 PEGs have become one of the most common

components of crystallization cocktails. In our dataset, 68,498

of the 99,229 PDBs contain at least one form of PEG (69.0% of

all PDB files in the CDD), with 1,244 of those PDB IDs associated

with more than one form of PEG (to a maximum of five different

PEGs in the cocktail for two PDB IDs). The success of PEGs as

precipitants in crystallization screening trials has led to wide-

spread use of PEGswhen screening for crystallization conditions

as well as the development of PEG smears,25,26 which make use

of mixtures of PEG polymers. A number of mixtures are commer-

cially available; they are composed of different combinations of

PEGs and are designed to efficiently screen the PEG chemical

space for crystallization conditions. Often the PEG smears are

optimized after the initial crystallization conditions are identified,

although a variety of ‘‘PEG smears’’ occur in 86 PDB IDs that are

not parsed (and therefore are not part of the CDD; see Table S2

for an example of a PEG smear that has not been parsed). Addi-

tionally, we note that although the use of multiple PEGs is not

widespread in the final reported crystallization conditions,

1,244 of those PDB IDs in the CDD that have been parsed

contain multiple PEG components, representing �1.2% of the

total CDD data being examined here. Accounting for multiple

PEGs in this analysis is challenging, as it makes pinpointing the

contribution of the chemical components difficult, and for the

purposes of the compositional data analyses we have not

included PDB IDs containing multiple PEGs.

Adding PEGs to protein solutions affects the solubility of mac-

romolecules through a variety of mechanisms.27,28 Although the

underlying mechanisms by which PEGs promote crystallization

are still not fully understood,13 it appears likely that when PEGs



Table 4. Most Commonly Occurring Chemical Combinations in

the CDD

Chemical Components No. of PDB IDs

Ammonium acetate, sodium acetate,

PEG 4000

814

Ammonium sulfate 808

Bis-Tris, PEG 3350 726

Ammonium sulfate, sodium acetate 713

Ammonium sulfate, sodium citrate 599

The fivemost frequent combinations of the chemical compounds found in

the crystallization cocktails in the CDD.
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(inert, non-ionic, synthetic polymers) are included in solutions of

crystallization cocktails, the volume of solvent accessible to the

macromolecule is reduced, effectively increasing the net os-

motic pressure and the interactions between macromolecules

(Figure 2). One effect of PEG is therefore to decrease macromo-

lecular solubility and increase the potential for crystallization.

Solubility, including the effect of PEGs, has been modeled with

the osmotic second virial coefficient B22; a slightly negative B22

has been correlated with crystallization success in these solubi-

lity trials, although B22 is affected by a number of complex inter-

actions and factors.29,30 Here we investigate the question of

whether the solubility effects of PEGs, which vary relative to

average PEG molecular length and weight, affect the results on

crystallization in proteins with different secondary structure con-

tent. In a comparison of nuclear magnetic resonance and crystal

structure studies of the same macromolecules, Srivastava

et al.31 observed that crystallization cocktail components influ-

ence protein secondary structure composition and hypothesized

that PEGs are a driving factor for inducing secondary structure

formation. Although the biophysical properties of proteins in so-

lution have been explored with regard to impact of PEGMW,28 to

the best of our knowledge no investigation has been performed

with regard to protein secondary structure content. We are inter-

ested in determining whether secondary structure profiles for

each PDB ID are differentially related to PEGMW for those cock-

tails containing one PEG compound that appears in the SSD

(PEG-SSD). We performed regression analyses specific to

modeling proportional outcomes to explore this question. We

have as outcome data for each PDB ID multinomial counts of

residues falling into each class of secondary structure (helix,

sheet, and other) in the SSD. The counts of residues in each sec-

ondary structure class, bounded by total sequence length, give

rise to compositional profiles of secondary structure for each

PDB ID. A ternary plot illustrating a subset of the outcome data

is presented in Figure 3. Each point in a ternary plot represents

a three-way compositional proportion of helix, sheet, and other,

summing to 100%, and is plotted at the barycentric coordinates

on the ternary simplex.

We select a log-linear regression model of the Dirichlet multi-

nomial (DMN) count profiles on PEG MW as continuous, non-

zero predictor.32,33 The DMN distribution has been proposed

as an extension to the multinomial for estimating proportions

arising from count data in multiple categories, providing better

handling of overdispersion by modeling the multinomial proba-

bility parameter as arising from a Dirichlet distribution.34 PEGs
varied in MW from 200 to 35,000, with PEG 3350 and PEG

4000 appearing most often in cocktails (Table 3). The DMN

regression model fit to the full PEG-SSD dataset of 61,753

PDB IDs (data and fitted values are shown in Figure 4) demon-

strates a highly significant association (p << 0.00001) of the sec-

ondary structure profiles with PEG MW. In our analysis, both

b-sheet content and amount of other secondary structure have

positive model coefficients and thus show increasing relative

proportions with increasing PEG MW used in the cocktail.

Most of this increase in relative proportion occurs in the other

component. Helical content, however, has a negative coefficient;

thus, higher PEG MW is associated with decreasing amounts of

helical secondary structure content (see Figure S1 for a simpli-

fied plot of these trends). Regression on massive datasets can

show high significance even for small effects. The sheer size of

the dataset of PDB IDs being modeled has the potential to affect

numerical stability of the algorithms as well as abetting signifi-

cance determination for very small effects, so we present results

from the analyses on the full data, as well as from models run on

subsampled data, to understand the nature of the relation of PEG

MW with the secondary structure profiles. Subsampling is a

common strategy to provide inference, computational speed,

and stability in modeling massive datasets.35,36 To assess

whether the extreme significance we observe for the association

of PEG MW with compositional profile of secondary structure is

an artifact of the large sample size of our dataset, we also carried

out subsampling. These results are stable under the subsam-

pling analyses, with a high proportion of subsampled smaller da-

tasets retaining significance. More than 84% of randomly

sampled datasets of size n = 6,000 subsampled PDB IDs (less

than 10% of the full PEG-SSD dataset) show significance at an

alpha level of 0.05. Even when reducing the data size to n =

3,000 (less than 5% of the full PEG-SSD dataset), significance

is retained in more than 57% of subsampled models. These re-

sults highlight that although the overall effects are subtle, they

are consistently and strongly present in the data.

Investigating Protein Redundancy in the Chemical
Condition Dataset
An investigation of PDBmetadata examining the relationship be-

tween successful crystallization conditions and other parame-

ters requires us to also consider the potential redundancy in

the biomolecules that have been deposited in the PDB. There

are a number of structures in the PDB from the same protein

that have been solved by different groups, with different tech-

niques, in different space groups, at different resolutions, and

with different potential constructs, mutations, and small-mole-

cule compounds. One consideration with regard to redundancy

in the PDB is to define what it means to be a distinct deposited

structure of a biomolecule.37 Mappings between those struc-

tures deposited in the PDB and protein amino acid sequences

and annotations deposited in the UniProt Knowledgebase (Uni-

ProtKB) have been occurring since the Structure Integration

with Function, Taxonomy and Sequences (SIFTS) resource

was started in 2002.38 SIFTS enables annotations to be trans-

ferred between the protein sequence database (UniProtKB)

and the PDB. We have used these mappings to query how prev-

alent protein redundancy is within the PDB from the reference

point of UniProtKB accession numbers (ANs) and to examine
Patterns 1, 100024, July 10, 2020 5



A

B

Figure 2. Schematic of PEG Impact on Crys-

tallization Space

(A) PEGs are long-chain polymers where the num-

ber of ethylene oxide units typically varies but yields

an average molecular weight for a specific PEG (for

instance, PEG 4000 is a mixture of PEGs with an

average MW of 4,000 g/mol). PEGs have many de-

grees of freedom of rotation.

(B) The effect of PEGs (represented by red ovoids)

on two macromolecules (represented by two purple

spheres) is to enhance the interaction between the

molecules through an excluded volume effect.

PEGs affect macromolecular solubility, increasing

the potential for crystallization to occur.
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whether protein redundancy biases result from investigation of

crystallization conditions. For the 49,160 UniProtKB ANs with

mappings to PDB IDs, 23,859 map to one distinct PDB ID (with

a median of two distinct PDB IDs and an average of four distinct

PDB IDs for every unique UniProtKBAN). Evenwithin thesemap-

pings, however, it is difficult to define redundancy. In one

example of a protein with multiple mappings between both data-

bases, for instance, methyl-coenzyme M reductase fromMetha-

notorris formicicus Mc-S-70 has three distinct UniProt AN sub-

units (HIKXL5, HIKXL9, and HIKXL6) and was crystallized in

two different crystal forms, leading to two PDB IDs (5N28 and

5N2A).39 The protein sequences of the two PDB IDs are identical,

but the crystallization conditions are different (and, indeed, share

no components with one another except the presence of the pro-

tein itself). For the purposes of investigating crystallization chem-

ical conditions, we would want to handle these two PDB IDs of

identical biological molecules as two distinct entities.

To further investigate questions of redundancy with regard to

the crystallization conditions within a subset of structures for

the same macromolecule, we have examined hen egg white

lysozyme (HEWL), which is a commonly used protein standard

for crystallization studies.40 A search of the PDB for structures

of HEWL deposited (UniProtKB AN P00698) yields 851 PDB en-

tries (the maximum number of PDB IDsmapping to a single Uni-

ProtKB AN). Of these 851 HEWL structures, 846 (99.4%) are

from studies using crystals or powder precipitate (821 MX

structures, 10 electron crystallography structures, 2 neutron

diffraction structures, and 13 powder diffraction structures).

For the purposes of probing the subset of the chemical condi-

tions successful for crystallizing lysozyme, we consider HEWL

structures for which details have been successfully parsed, re-

sulting in 471 PDB IDs in the CDD out of the 851 structures. For

these 471 HEWL structures, there are 113 different crystalliza-

tion cocktails. Seventy of the HEWL PDB IDs have distinct

cocktails (found in only one PDB ID). Forty-three of the 113
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different cocktails are duplicated at least

once, with the most frequently occurring

cocktail in this subset associated with

145 different HEWL PDB IDs. The HEWL

subset of data is the most numerous of

the UniProtKB ANs that have multiple

PDB IDs, and even within this relatively

large redundant set the most frequently

occurring cocktail is only in 145 PDB
IDs. This represents less than 0.15% of the entire CDD dataset.

Notably, this summary of the subset of HEWL PDB IDs does not

consider differences due to mutations or from different ligands

bound (180 ligands are found in the 851 PDB IDs). Therefore,

due to the extremely small amount of protein redundancy

with regard to distinct chemical cocktails, we made the deci-

sion to not remove the small proportion of redundant proteins

with the same crystallization conditions in our analyses. We

note these details to alleviate any potential concern regarding

bias introduced by redundancies in our analyses of the entire

CDD and SSD dataset.

DISCUSSION

In this work, we have developed and made available a search-

able and updatable database of chemical components in

crystallization cocktails mined from the PDB. As more struc-

tures are deposited in the PDB every year, more details about

conditions that promote macromolecular crystal growth

become available. Here, we present a snapshot of the data

for crystallization conditions from December 9, 2019. The

dataset presented contains 99,229 PDB IDs; the software

for generating these data from the PDB is publicly available.

As data science approaches expand and we step more firmly

into the big data era, it is becoming more necessary to make

data available in parseable formats; the dataset we provide

here serves as a bridge to a usable version of the crystal

growth metadata available in the PDB. Much of the PDB is

extractable with queries of interest, but the challenge with re-

gard to crystal growth conditions lies in the nature of it being a

free text field in the PDB database (and all of the attendant dif-

ficulties that go with text mining). As we believe these data will

serve as the basis for much further research, we plan to main-

tain this software and to update it as needed, as well as up-

dating the parsed dataset links on a regular basis, further



Figure 3. Ternary Plot of Secondary Struc-

ture Profiles for a Subset of PDB IDs

Each mark on the ternary plot represents the sec-

ondary structure composition of a single PDB ID in

the subset of data. For illustration purposes, 400

points were randomly sampled and plotted from

each group of PDB IDs with PEG 400 (black plus

sign) and PEG 20000 (red cross). The plot shows

800 points of the 61,753 PDB IDs in the PEG-SSD

dataset. In structures with a higher composition of

helices (upper triangle, above the 60% mark for the

H-ness axis on the left of the simplex), the points

located in that sector are more likely to be black

rather than red (associated with the low MW PEG

instead of the high MW PEG). For the other domi-

nated structures (triangle on the bottom left corner,

above 60% mark on the bottom O-ness axis), the

points are more likely to be red rather than black

(associated with the high MW PEG instead of the

low MW PEG). This gives a visual representation of

the nature of the data used for modeling and un-

derscores the model results.
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enabling analyses of the protein crystal growth metadata from

the PDB. In this work, we have performed a formal analysis

answering a complicated question using high-level modeling,

but these data would be exploitable for many types of ques-

tions. These results can therefore be a significant resource

for the protein structure community and will enable further an-

alyses of the conditions that give rise to successful crystalliza-

tion experiments.

Our analyses provide a window onto the simultaneous

redundancy and extreme sparsity of crystallization cocktail in-

formation. It would be an encouraging step for depositions to

the PDB to more fully incorporate naming conventions,

controlled vocabularies, and standardized method descrip-

tions in the crystal growth detail data field.41 Furthermore,

we have specifically analyzed this dataset to examine the rela-

tionship of PEG MW with the secondary structure profiles of

crystallized proteins with structures in the PDB. Our analyses

demonstrate a strong association between PEG MW and sec-

ondary structure composition, with higher PEG MW associ-

ated with decreasing proportions of helical content for a given

PDB ID. We speculate that the biophysical mechanism of this

association might be related to a reduction in solvent-acces-

sible surface area, which might drive stabilization of second-

ary structure; these correlations and potential mechanisms

need to be more fully explored and serve as an intriguing di-

rection for future research work. Given the bottleneck to the

crystallization process of finding conditions to achieve macro-

molecular crystal growth, it is encouraging to observe rela-

tionships between features of the crystallization space and

the structural outcomes.
We make these data and scripting avail-

able to enable further investigations. For

instance, researchers interested in exam-

ining the previously successful crystalliza-

tion conditions for a given set of PDB IDs

(perhaps of the same protein from a

different species, or a different construct
of the same protein from the same species) could use the CDD

data directly to probe the successful crystallization space. Simi-

larly, if one were interested in how many times lysozyme crystal-

lized when calcium is part of the crystallization cocktail, the CDD

could be used to investigate that question very easily. Other pa-

rameters of interest to researchers can be extracted with the

scripting provided. For example, if one were interested in exam-

ining the relationships between chemical crystallization space

and MW of structures or the asymmetric unit cell, these addi-

tional parameters could be extracted from the PDB with the

scripting provided. Finally, these data could be used as an

example dataset for computational research in developing ma-

chine-learning methods and tools for extremely sparse data;

we hope that the unique features of these data prompt compu-

tational tool building.

Finally, we note that our conclusions rely on the successful

crystallization experiments that are reported in the PDB. What

is missing from these analyses is an investigation of the chemical

space that was explored: which cocktails generated crystals but

were not further pursued, which chemical combinations were at-

tempted, and which ones did not produce crystals? We believe

that these data would contribute necessary information to

more fully search the crystallization space for patterns. We hy-

pothesize that to generate a predictive algorithm for successful

crystallization conditions, information regarding the entire chem-

ical search space and the outcomes (positive and negative) will

need to be included. We hope, however, that the results pre-

sented here highlight the richness of information present in the

PDB and emphasize the specific unique features that make it

such a valuable resource.
Patterns 1, 100024, July 10, 2020 7



Figure 4. Scatterplot of Secondary Structure

Profiles by PEG MW and Model Fitted Values

Each PDB ID has a secondary structure profile,

which contains the relative percentage of helix

(pink), sheet (green), and other (blue). Each profile is

plotted at the PEG MW in that PDB ID cocktail,

which gives a scatterplot of the data (data points

jittered). These data illustrate the non-uniform dis-

tribution of PEG MW and reveal that the number of

PDB IDs associated with each PEG MW is highly

variable. Overlaid on the scatterplot are the DMN

regression model fitted values computed using

model coefficients. These results show the rela-

tionship between each secondary structure class

and PEG MW. For instance, the helix fitted regres-

sion line (pink) shows a clear decrease as PEG MW

increases.
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EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Sarah E.J. Bowman, PhD. sbowman@hwi.buffalo.edu.

Materials Availability

This study did not generate any new unique reagents or materials.

Data and Code Availability

Code and script annotations generated for extracting the data from the PDB are

available at https://github.com/Hauptman-Woodward/crystallizationDatabase.

The code on the github site will enable anyone to generate an updated database

(as the PDB is updated on a weekly basis, the ability to update the data for

future study is important). The github repository Structures directory also con-

tains links to github large file storage to directly download the December 9,

2019 data scrape of the PDB (https://github.com/Hauptman-Woodward/

crystallizationDatabase/tree/master/Structures). Additionally, we have provided

flat file dataset versions of the CDD and the CDD-Kelvin data used in the ana-

lyses here (Data S1 and S2).

Generating the Crystallization Details Dataset

Data about crystallization conditions, sequences, and PDB IDs were down-

loaded with Python42 using the PDB API server for every structure that had in-

formation in that field. As of December 9, 2019, there were 158,367 PDB struc-

ture files in the PDB. Of these, 133,737 PDB IDs contain some crystallization

condition information in the free text field. These data were standardized

into a list of structures with associated information and stored as a list of Py-

thon objects serialized to binary file.

The detail parsing function extracted the raw plain English details in the free

text field containing crystal growth details into a consistently formatted list of

chemical compounds and concentrations, as well as temperature, when pro-

vided. A compound dictionary was manually generated to map the most com-

mon chemical compound names to a set of 312 unique standardized names,

followed bymanual checking of each compound name for potential synonyms.

There is an application available to dynamically build and improve the dictio-

nary to update the data with less frequently occurring chemical compounds

as well as enabling updates to the database as the PDB is updated.

The source code, a thorough explanation of the data extraction, and a full

description of all decisions made about the data from the PDB is publicly avail-

able at https://github.com/Hauptman-Woodward/crystallizationDatabase.

Using the Python source code took less than 24 h to download these data

as of December, 2019. The code can be used to update the database or

extract a full set of new data from the PDB, and includes descriptions of

how to add additional parameters of interest in the scripting. The data

extracted December 9, 2019 are available in the Structures directory on the
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github site for large file storage (the raw data file is

available as a.pkl file for download: structures.pkl,

n = 133,737) as well as the parsed file in.pkl, .xml,
and .csv formats (sensible_structures.pkl/.xml/.csv, n = 99,229); links are pro-

vided in Data Code and Availability. As the data files are updated, we will up-

date the links to these files. Data in the sensible_structures.xml file were also

extracted and placed into a flat data file (Data S1), with a matrix containing

PDB IDs (row dimension) and 312 unique chemical compound names (column

dimension) with a 0/1 indicator of absence/presence of a given compound in

each PDB ID row.

Generating the Secondary Structure Dataset

Secondary structure data were downloaded from the PDB (December 9, 2019)

as a ss.txt file, a FASTA-formatted file with amino acid sequences and second-

ary structure information generated using DSSP.43 A separate dataset was

generated from this file with the total length of the coordinates of each PDB

ID sequence, the total number of residues defined as ‘‘H,’’ ‘‘G,’’ or ‘‘I’’ (helix),

the total count of residues defined as ‘‘B’’ or ‘‘E’’ (sheet), and added across

chains (if multiple chains were in the PDB file). All residues not defined as helix

or sheet are considered other for the purposes of these analyses. When resi-

dueswith no secondary structure prediction fromDSSP occur within the struc-

tural sequence, we have assigned those residues to other. Secondary struc-

ture data were checked and then merged with the 99,229 PDB IDs in the

CDD for which we have chemical information from the free text crystal growth

detail field, yielding an SSD of 97,782 for further analyses of the secondary

structure information.

Statistical and Computational Methods

We extracted basic summary statistics regarding temperature, chemical

component frequency, and chemical combinations in the CDD. For more

detailed investigation, we probed the relationship between secondary struc-

ture composition and PEGs, as one of the primary components of crystalliza-

tion cocktails, using Dirichlet Multinomial regression models with PEG MW as

predictor variable. The data in the SSD provide a prediction of secondary

structural identity on a per-residue basis. We used the number of residues in

each secondary structure class (helix, sheet, and other), bounded by the total

sequence length for each PDB ID, as multinomial outcome variable in the

models. Parameter estimation for regression models was carried out using

the MGLM software package version 0.2.0,44 implemented in the statistical

computing environment R version 3.5.1.45MGLMprovides an efficient compu-

tational algorithm that increases stability of estimates and provides inference

via likelihood ratio and Wald tests of model parameters. For all regression an-

alyses, the constraints of the Dirichlet distribution required removing any ob-

servations that contained zero residue counts in any secondary structure

class, resulting in 89,653 PDB IDs. Of these, 61,753 had cocktails containing

one PEG compound available for use in the regression analysis (PEG-SSD).

To examine model stability, we also performed regression on subsets of the

mailto:sbowman@hwi.buffalo.edu
https://github.com/Hauptman-Woodward/crystallizationDatabase
https://github.com/Hauptman-Woodward/crystallizationDatabase/tree/master/Structures
https://github.com/Hauptman-Woodward/crystallizationDatabase/tree/master/Structures
https://github.com/Hauptman-Woodward/crystallizationDatabase
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full 61,753 PEG-SSD data. Subsampling was carried out by randomly sam-

pling the available data with replacement, in batches of 1,000 samples of sizes

n = 3,000 each (approximately 5% of the total PEG-SSD data) or n = 6,000

each (approximately 10% of the total PEG-SSD data), then carrying out model

fits for each sampled dataset in the batch. Model parameter estimates from

each model run on a subsampled dataset were extracted and stored, as

well as likelihood values and significance levels. Ternary plots of the secondary

structure profiles were created using the Ternary package version 1.0.2 in R.46

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100024.
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