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Abstract

Introduction

Pseudogenes are paralogues of functional genes historically viewed as defunct due to either

the lack of regulatory elements or the presence of frameshift mutations. Recent evidence,

however, suggests that pseudogenes may regulate gene expression, although the func-

tional role of pseudogenes remains largely unknown. We previously reported that MYLKP1,

the pseudogene of MYLK that encodes myosin light chain kinase (MLCK), is highly

expressed in lung and colon cancer cell lines and tissues but not in normal lung or colon.

The MYLKP1 promoter is minimally active in normal bronchial epithelial cells but highly

active in lung adenocarcinoma cells. In this study, we further validate MYLKP1 as an onco-

gene via elucidation of the functional role of MYLKP1 genetic variants in colon cancer risk.

Methods

Proliferation and migration assays were performed in MYLKP1-transfected colon and lung

cancer cell lines (H441, A549) and commercially-available normal lung and colon cells.

Fourteen MYLKP1 SNPs (MAFs >0.01) residing within the 4 kb MYLKP1 promoter region,

the core 1.4 kb of MYLKP1 gene, and a 4 kb enhancer region were selected and genotyped

in a colorectal cancer cohort. MYLKP1 SNP influences on activity of MYLKP1 promoter

(2kb) was assessed by dual luciferase reporter assay.

Results

Cancer cell lines, H441 and A549, exhibited increased MYLKP1 expression, increased

MYLKP1 luciferase promoter activity, increased proliferation and migration. Genotyping
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studies identified two MYLKP1 SNPs (rs12490683; rs12497343) that significantly increase

risk of colon cancer in African Americans compared to African American controls.

Rs12490683 and rs12497343 further increase MYLKP1 promoter activity compared to the

wild type MYLKP1 promoter.

Conclusion

MYLKP1 is a cancer-promoting pseudogene whose genetic variants differentially enhance

cancer risk in African American populations.

Introduction

Pseudogenes are a type of long non-coding RNA originally derived from paralogues of func-

tional genes. Historically, pseudogenes were considered non-functional genomic artifacts of

catastrophic pathways, due to either the lack of regulatory elements or the presence of frame-

shift mutations [1]. However, nucleotides within these pseudogenes are conserved suggesting

there is selective pressure to maintain the original genetic elements within the pseudogene [1].

Nearby regulatory elements regulate pseudogene transcription, and pseudogenes often share

elements of the original gene’s 5’ UTR and 3’ UTR regions allowing for differential regulation

across tissue types. Recent evidence further suggests that pseudogenes may also serve as micro-

RNA decoys leading to senescence susceptibility [2–4] and aberrantly regulate gene expression

in cancer tissues [5–7]. For example, PTENP1 [8] is a pseudogene of the tumor suppressor

gene PTEN [9, 10] that is downregulated via methylation in renal cell carcinoma with PTENP1
a competing non-endogenous RNA to suppress cancer progression [11]. Overall, pseudogenes

require additional functional exploration in both cancer and non-neoplastic processes [5, 6].

We previously reported the functionality of MYLKP1, a pseudogene partially duplicated

from MYLK on chromosome 3p13, with divergence from MYLK unique to higher hominids

[12]. MYLK encodes three variants of myosin light chain kinase (MLCK) [13, 14] that partici-

pate in regulating cytoskeletal elements involved in maintaining cell integrity, contractility,

motility, cell division [14, 15] and vascular barrier integrity [15, 16]. MYLK is associated with

signaling pathways that include Rho/ROCK and Ca2+ signaling, which participate in colon

cancer metastasis [17, 18]. MYLK downregulation is a hallmark of colon cancer metastasis,

and MYLK mRNA and smooth muscle MLCK (smMLCK) protein are dysregulated in lung

cancer [19, 20]. We previously demonstrated that genes influenced by MYLK expression are

associated with a poor prognosis in a variety of cancer [21].

Evolutionarily, exons 13 through 17 of MYLK have been subjected to interchromosomal

duplication, generating the partially duplicated MYLKP1 pseudogene [22]. MYLKP1 tran-

scribes a sense strand of MYLK that decreases MYLK RNA stability [15]. Despite strong

homology with the smMLCK promoter (~90%), the MYLKP1 promoter is minimally active in

normal bronchial epithelial cells but highly active as the smMLCK promoter in lung adenocar-

cinoma cells. Moreover, MYLKP1 and smMLCK exhibit differential transcriptional profiling

with MYLKP1 strongly expressed in cancer cell lines (cervix, leukemia, uterus, colon) and tis-

sues (colon, lymph node, vulva, bladder carcinoma), whereas smMLCK is highly expressed in

non-neoplastic cells (bone marrow stem, uterine fibroblast, airway smooth muscle) and tissues

(brain, breast, cervix, colon, liver, uterus, vein), tissues where MYLKP1 expression is virtually

absent. Thus, mechanistically, MYLKP1 over-expression dramatically inhibits smMLCK

expression in cancer cells and increases cell proliferation.

MYLKP1 and colon cancer in African Americans
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We have previously demonstrated that MYLK SNPs confer increased susceptibility to

inflammatory disease that drives disease severity and mortality, particularly in African descent

subjects with asthma and acute inflammatory lung injury [23, 24]. These results suggest the

possibility that SNPs in the conserved MYLKP1 promoter may exhibit higher minor allele fre-

quencies (MAFs) in colon cancer subjects. Selected MYLKP1 promoter SNPs were genotyped

in a colorectal cancer cohort and further assessed by luciferase reporter promoter activity

assays. Two known MYLKP1 SNPs, rs12497343 (C>G) and rs12490683 (G>A) [25], affected

MYLKP1 promoter activity and were significantly associated with colon cancer risk in African

Americans. These studies provide evidence for the functional involvement of MYLKP1 pseu-

dogenes in human carcinogenesis and suggest potential roles of MYLKP1 as a novel popula-

tion-specific diagnostic or therapeutic target in human colon cancer.

Methods

Primary cell cultures and cell lines

Beas-2b is a human bronchial epithelial cell line, H460 is a non-small cell lung cancer cell line,

and A549 is an adenocarcinoma cell line provided by American Type Culture Collection

(Manassa, VA, USA). All cell lines were grown according to the manufacturer’s protocol.

Beas-2b and A549 were used to assess promoter function in MYLKP1. Promoter activity was

measured using a standard luciferase assay that has been previously described [14, 15]. H23

non-small lung cancer cell-line, H441 adenocarcinoma, and H522 lung cancer were obtained

from American Type Culture Collection (Manassa, VA, USA), were grown according to the

manufacturer’s protocols, and were used to assess proliferation and migration.

MYLKP1 luciferase assay

MYLKP1 promoter (2kb) luciferase constructs were designed in a basic pGL4 vector contain-

ing each combination of the major and minor alleles of rs12497343 (C>G) and rs12490683

(G>A) (4 constructs in total). For dual luciferase reporter gene assays, cells grown in 12-well

plates were cotransfected with 1 μg of the firefly luciferase vector containing the MYLKP1 pro-

moter and 20 ng of TK-renilla luciferase vector (Promega, Madison, WI, USA) using Fugene

HD transfection reagent (Roche, Basel, Switzerland) as described previously [20].

Cell proliferation and migration

For proliferation assays, cells were transfected with pcDNA 3.1 control or pcDNA 3.1 with

MYLKP1 gene clone using Fugene 6 transfection reagent (Roche) [15]. Two days after trans-

fection, cells were selected with 400 μg/ml of Geneticin (G418; Sigma-Aldrich, St. Louis, MO,

USA) and maintained with 200 μg/ml of G418. Cells grown in a 12-well plate with initial num-

ber of 105 cells/well were harvested each day and counted using Countess Automated Cell

Counter (Invitrogen, Carlsbad, CA, USA) up to 5 days.

PCR differential detection

Total RNA was purchased from Agilent Technologies (Santa Clara, CA, USA) or isolated

using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s proto-

col. For a conventional RT-PCR, each reaction was carried out with 2 μl cDNA, 0.5 μM for-

ward (3bf) and reverse (3ar) primers, and 0.01 U Phusion DNA polymerase (Finnzymes,

Espoo, Finland). Three-step PCR was performed according to the manufacturer’s protocol as

previously described [15]. The signal was detected by ethidium bromide staining after being

run on a 2% agarose gel [15].

MYLKP1 and colon cancer in African Americans
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Colorectal cases and controls

Individuals with colorectal cancer (n = 853; 400 AAs and 453 whites) who underwent surgical

resection at the University of Chicago Department of Medicine between 1994 and 2008 were

retrospectively ascertained from the Cancer Center and Pathology Department databases.

Individuals known to have hereditary syndromes (familial adenomatous polyposis and Lynch

syndrome) or inflammatory bowel disease were excluded. Available baseline characteristics

including age, gender, race, colorectal tumor location, histological grade, depth of invasion,

nodal involvement and recorded metastases.

Cancer-free control samples (n = 498; 302 AAs and 196 whites) were ascertained through

our Pathology Department database (n = 305) and the University of Chicago Department of

Medicine TRIDOM biobank (n = 93). The pathology-based controls included cancer-free

individuals who had thyroidectomies and amputations and the biobank controls included can-

cer-free individuals visiting for a variety of bebign complaints. Controls were matched to cases

by age at diagnosis, 10-year birth cohort, gender and race as recorded in the database. The

details of sample collection and DNA preparation from archived surgical specimens have been

validated and described previously [26].

Genotyping

Using Tagger in Haploview, we selected a total of 14 SNPs with frequencies greater than 0.05

from the region spanning MYLKP1, the MLCK pseudogene. iPLEX assays for these 14 SNPs

and 100 ancestry informative markers (AIMs) were designed using the Sequenom Assay

Design software, and genotyped on the Sequenom MassARRAY platform. Selection and geno-

typing of the AIMs utilized have been published previously [27]. The methods for genotyping

were also described previously [26].

Genetic analysis

Utilizing AIMs information, the percent West African ancestry was estimated for each individ-

ual using STRUCTURE 2.1. Using prior population information from 60 Europeans and 131

West Africans, a model was run with K = 2 populations and a burn-in length of 30,000 itera-

tions followed by 70,000 replications [28]. We excluded from the genetic analysis any African

American subjects whose West African ancestry was < 0.25 (N = 10) and European American

subjects whose West African ancestry was>0.1 (N = 46). Percent West African ancestry for

heterozygotes and homozygotes was compared between controls and colorectal African Amer-

ican cases for each SNP genotyped. Percent West African ancestry was also compared via

Welch two sample t-test for the homozygotes of the major allele and the homozygotes of the

minor allele for controls and African American colorectal cancer cases. A p-value for false dis-

covery rate (FDR) was performed using the Bejamini-Hochberg adjustment in R and reported

with both unadjusted and adjusted p-values.

PLINK for utilized for the genetic analysis [29]. SNPs were tested for departures from

Hardy-Weinberg equilibrium (HWE) which excluded three SNPs with p values< 0.005. We

further removed any individual in which more than two SNPs were not successfully geno-

typed. After removal of poor quality DNAs, the average genotype rate in the remaining 11

SNPs was greater than 95%. We excluded SNPs with minor allele frequencies less than 0.05.

Association with colorectal cancer was tested in European and African Americans separately.

We tested association by calculation of the chi square statistic for the difference in allele fre-

quency between cases and controls and calculated odds ratios and 95% confidence intervals. A

p-value corrected for false discovery rate (FDR) was performed using the Benjamini-Hochberg

adjustment in R for all tests (Chi-squared, dominance, recessive, and additive). We further

MYLKP1 and colon cancer in African Americans
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tested dominant, recessive, and log-additive genetic models. Using logistic regression, p values

were adjusted for West African ancestry estimates, sex, and age. Nominal significance was p<

0.05. Haplotype analysis was performed with the haplo.stats package in R. A chi-squared test

was performed for each reported haplotype ([A,C], [A,G], [G,C], [G,G]) across African and

European control and case haplotype frequencies.

Results

Detection of MYLKP1 expression in human cancer cells and transfected

non-cancer cells

MYLKP1 contains a 72-base pair deletion compared with the MYLK gene (nt 342–413). PCR

primers designed to flank the region containing the deletion were used to simultaneously amplify

a segment of both MYLK and MYLKP1 via traditional PCR techniques [15]. PCR products on a

2% agarose gel revealed two bands with the lower band reflecting the amplified MYLKP1 mRNA

transcript and the upper band reflecting MYLK mRNA transcript (Fig 1). We employed this

method to detect MYLKP1 expression in several cell lines including human cancer cells (H23,

H460, H441) and non-cancer epithelial cells (Beas2b) transfected with the MYLKP1 plasmid (Fig

1). Genomic DNA (gDNA) showed both bands due to the presence of both amplicons in the

human genome and was used as a positive control. Non-cancer lung epithelial cells (Beas2b) dis-

played expression of only MYLK, however, these cells expressed both MYLKP1 and MYLK after

transfection with MYLKP1. Cancer cells (H23, H460, H441) displayed basal expression of both

MYLK and MYLKP1. After MYLKP1 transfection, cancer cells preferentially over-express the

smaller target, MYLKP1, indicating that MYLKP1 suppresses expression of MYLK (Fig 1).

MYLKP1 expression enhances cancer cell proliferation and migration

Histological staining demonstrated increased MYLKP1 expression in A549 lung cancer cells

(Fig 2A) corresponding with significant proliferation (Fig 2C) (p<0.05), consistent with our

previous report that MYLKP1 promotes proliferation in cancer cell lines and tissues [15]. Both

H441 and A549 cell lines demonstrated significantly increased cell migration following

MYLKP1 transfection compared to control (p<0.05) (Fig 2B).

MYLKP1 promoter SNPs increase colon cancer risk in african americans

We have previously shown MYLKP1 expression in cancer cell lines inhibits the expression of

MYLK in cancer cells [15]. To further test MYLKP1 as a potential oncogene, 11 MYLKP1 SNPs

Fig 1. Simultaneous detection of MYLK and MYLKP via PCR in non-cancer cells (beas2b) and cancer cells (H23, H460, and H441).

https://doi.org/10.1371/journal.pone.0200916.g001
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surviving QC filtering were evaluated for genetic association in a cohort of African American

and European American colorectal cancer subjects (Table 1). Only the MYLKP1 SNP

s12490683 achieved statistical significance in the analysis of European American colorectal

cancer cases and controls. In the allele frequency test, both rs12497343 (p = 0.047) and

rs12490683 (p = 0.023), present in the genomic region corresponding to the smooth muscle

MLCK promoter in exon 16 and intron 15 (Fig 3A), were nominally associated with colorectal

cancer risk in African Americans (Table 1). After adjustment for multiple testing (Benjamini

and Hochberg false discovery rate—FDR), no SNP achieved significance (Table 1), however,

these specific sites were selected for evaluation of potential functionality. We also tested domi-

nant and recessive genetic models and found rs12497343 and rs12490683 achieved smaller p

values in the recessive genetic model (0.018 and 0.002, respectively). After FDR correction,

rs12490683 retained a p value < 0.05 (0 = 0.030) in the recessive genetic model (Table 1). Per-

cent of West African heritage was compared between each SNP via chi-square test by genotype

and corrected for FDR (Figure A in S1 File). By logistic regression, we tested a log-additive

genetic model and adjusted for age, sex, and West African ancestry (Table 2). For rs7638312, a

significance (p = 0.001) was reported for percentage of West African Ancestry between geno-

types (Table 3), and rs7638312 was the only SNP with a significant difference in percentage

West African Ancestry between genotypes (Table 3). After adjusting for age and sex, p values

for rs12497343 and rs12490683 remained less than 0.05 but became insignificant after adjust-

ment for West African ancestry (p values >0.05) (Table 2). A single SNP (rs4677496) in exon

17 region that we previously identified to be essential for smooth muscle MYLK expression

[14] was excluded from the analysis due to a poor genotyping rate (Table 1). Haplotype analy-

sis for rs12497343 and rs12490683 was performed for each haplotype ([A,C], [A,G], [G,C], [G,

G]) across the four groups (European controls, European cases, African controls, and African

cases), and chi-square p-values are reported with none being significant (Table A in S1 File).

MYLKP1 SNPs associated with colon cancer risk alter MYLKP1 promoter

activity

After confirming the role of MYLKP1 in the H441 and A549 cell lines (Fig 2), we investigated

the role of two SNPs of interest, rs12490683 G>A and rs12497343 C>G, in regulation of

MYLKP1 promoter activity (Fig 3B). MYLKP1 promoter luciferase reporter assays were con-

ducted in a human adenocarcinoma cell line (H522) and a non-cancer cell line (Beas2b). The

wild type vector, utilizing the major allelic pairing (rs12490683-G and rs12497343-C) showed

MYLKP1 to be significantly upregulated in cancer cells (H522) over epithelial cells (Beas-2b)

(p<0.05) (Fig 3B). Furthermore, transfection of a MYLKP1 promoter luciferase reporter har-

boring the minor allelic pairing (rs12497343-G and rs12490683-A) into H522 cancer cells

resulted in significantly greater promoter activity (p<0.05) when compared to the major allelic

pairing in H522 cancer cells (Fig 3B).

Discussion

We and others have demonstrated that the pseudogene, MYLKP1, located on 3p12.3 (HGNC

ID:7591) representing an intrachromosomal duplication of exons 13 to 17 of MYLK copied

Fig 2. MYLKP increased cell proliferation and cell migration in lung cancer A549 and H441 cell lines. A. A549 and

H441 cells transfected with MYLKP migrated more through a porous membrane significantly, compared to controls

(�p<0.05). B. In A549 and H441 human lung adenocarcinoma cells, there was more proliferation in MYLKP
transfected cells compared to controls (�p<0.05). C. MYLKP was transfected into lung cancer A549 and H441 cell

lines, compared with cells transfected with empty vectors.

https://doi.org/10.1371/journal.pone.0200916.g002
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from 3q21.1 (HGNC ID:7590) [19, 30], is selectively expressed in cancer, regulates MLCK lev-

els, and increases cancer cell proliferation in vitro [15, 22]. While MYLKP1 and functional

MYLK share high levels of DNA sequence similarity (93%), MYLK is an intricate gene span-

ning over 270 kb and containing 34 exons which via alternative splicing [2], generates 9

Table 1. P values and odds ratios for associations with MLCKP1 polymorphisms in African and European American colorectal cancer.

SNP BP MA F_A F_U P_allele OR (95% CI) P_dom P_rec P_add OR_add (95% CI)

African Americans

rs10490780 75325508 G 0.140 0.148 0.687 0.94

(0.69,1.28)

0.761 0.694 0.698 0.94

(0.70,1.28)

rs9824516 75326959 A 0.132 0.124 0.657 1.08

(0.77,1.51)

0.575 0.845 0.663 1.08 (0.77,1.50)

rs7638312 75327606 C 0.061 0.057 0.775 1.07

(0.67,1.71)

NA NA 0.780 1.07 (0.68,1.69)

rs6796799 75328126 A 0.273 0.270 0.907 1.02

(0.79,1.30)

0.919 0.636 0.907 1.02 (0.79,1.30)

rs4677497 75328974 G 0.155 0.164 0.666 0.93

(0.69,1.27)

0.581 0.853 0.665 0.93 (0.69,1.27)

rs12490683 75329934 A 0.238 0.186 0.023 1.37

(1.04,1.80)

0.208 0.002 0.029 1.35 (1.03,1.76)

rs12497343 75330074 G 0.264 0.216 0.047 1.30

(1.00,1.69)

0.159 0.018 0.041 1.33 (1.01,1.74)

rs6801219 75332618 G 0.102 0.121 0.293 0.83

(0.59,1.18)

0.282 0.802 0.312 0.84 (0.60,1,12)

rs2091870 75333283 G 0.338 0.345 0.781 0.97

(0.77,1.22)

0.509 0.665 0.784 0.97 (0.77,1.22)

rs4552385 75336163 C 0.466 0.457 0.747 1.04

(0.83,1.29)

0.711 0.342 0.753 1.04 (0.83,1.28)

rs4677503 75338306 A 0.323 0.311 0.466 1.09

(0.86,1.39)

0.357 0.946 0.482 1.09 (0.86,1.36)

European Americans

rs6796799 75328126 A 0.134 0.124 0.623 1.10

(0.75,1.61)

NA NA 0.62 1.10 (0.75,1.61)

rs4677497 75328974 G 0.118 0.112 0.795 1.06

(0.70,1.59)

NA NA 0.80 1.05 (0.71,1.58)

rs12490683 75329934 G 0.381 0.364 0.603 1.07

(0.83,1.39)

0.831 0.432 0.58 1.08 (0.82,1.41)

rs12497343 75330074 C 0.393 0.382 0.714 1.05

(0.81,1.36)

0.609 0.964 0.69 1.06 (0.80,1.39)

rs2091870 75333283 A 0.368 0.339 0.374 1.13

(0.87,1.48)

0.728 0.165 0.35 1.14 (0.87,1.50)

rs4552385 75336163 T 0.305 0.300 0.882 1.02

(0.77,1.35)

0.724 0.304 0.88 1.02 (0.77,1.37)

rs4677503 75338306 G 0.333 0.311 0.470 1.11

(0.84,1.45)

0.963 0.109 0.47 1.10 (0.84,1.44)

P_allele is the p value obtained in the chi square test of allele frequency, and it is associated with odds ratio (OR) and 95% confidence interval (CI) in the adjacent

column; P_dom is the value obtained assuming a dominant genetic model; P_rec is the value obtained assuming a recessive genetic model. P_add is the unadjusted p

value obtained from a logistic regression assuming a log-additive genetic model, and it is associated with OR and 95% CI in the adjacent column. NA indicates that the

frequency of one of the genotypes was too low to perform the test of the model. For the nominally significant SNPs, rs12490683 and rs12497343, the lowest p values

obtained in the analysis are in bold. There are four fewer SNPs displayed in the European American part of the table because the minor allele frequency of the excluded

SNPs was less than 0.05.

BP, base pair position on chromosome 3, GRCh38; F_A, frequency of minor allele in colorectal cancer cases; F_U, frequency of minor allele in controls; MA, minor

allele; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pone.0200916.t001
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transcripts that encode 3 proteins including a 220 kDa non-muscle MLCK isoform

(nmMLCK), a 130 kDa smooth muscle MLCK isoform (smMLCK) [20], and a 20 kDa protein

isoform known as telokin [31]. MYLK encodes the multi-functional myosin light chain kinase

(MLCK) which is involved in diverse functions in multiple types of cancer.

Similar to other documented pseudogenes [30, 32, 33], we have shown that MYLK and

MYLKP1 have a pseudogene/parent gene crosstalk relationship. Due to high sequence similar-

ity to the functional gene, pseudogenes often pose a challenge for gene prediction programs

with frequent misidentification as real genes. For instance, initial interpretation of the

sequence data from human chromosome 22 indicated that 19% of the coding sequences are

pseudogenic [12]. More robust direct surveys of pseudogenes revealed that the estimated num-

ber of pseudogenes is ~20,000 [6, 14], a figure comparable to the number of protein-coding

genes in the human genome [17]. Despite the abundance of pseudogenes in the human

genome, the pathophysiological roles of pseudogenes remain poorly understood. Unlike dupli-

cated pseudogenes and retrotransposed pseudogenes [14, 15], other pseudogenes are poten-

tially transcriptionally active, expressing mRNAs utilizing their own promoters or adjacent

promoters [16, 18]. Duplicated pseudogenes including MYLKP1, generated by tandem dupli-

cation or unequal crossover events [34], produce antisense RNAs and inhibit functional gene

expression through antisense-sense mechanism [8] with functional effects on human disease

[5, 15, 35, 36].

We identified MYLKP1 as a pseudogene of MYLK that regulates levels of cellular MLCK

and is selectively expressed in cancer cells, a finding observed with other pseudogenes [5, 37,

38]. The pseudogene, PTENP1, acts as a microRNA decoy and thus helps maintain cellular lev-

els of PTEN, however, the PTENP1 locus is selectively lost in specific cancer cells, resulting in

decreased PTEN expression and increased proliferation [5]. Our studies indicate that MYLKP1
may function similarly to regulate levels of MLCK, a Ca2+/CaM-dependent enzyme that func-

tions as a critical regulator of cytoskeletal function [39], cell contraction, cytokinesis [10], cel-

lular motility [11, 40–42], mitosis [7], apoptosis [32], cell migration [31, 39] and inflammatory

cell trafficking [33]. Both the smMLCK and nmMLCK isoforms are essential participants in

many key pathophysiologic features of human diseases including essential hypertension [4, 20,

22], acute inflammatory lung injury, asthma [14, 43] as well as breast, pancreatic and non-

small cell lung cancer [44, 45]. MYLK expression is also increased in angiogenesis and in

tumors that exhibit increased invasiveness [1]. We have previously shown that nmMLCK is an

independent predictor of poor clinical outcome among cancer patients that was independent

of other clinic-pathologic factors [2]. Specifically, MLCK participates in migration, metastasis,

and increased cellular proliferation [6, 46–48].

Previously, we have shown that an upregulation in MYLKP1 mRNA expression produces a

functional transcript in multiple cancer cell lines [14, 15], and this corresponds with the down-

regulation of functional MYLK mRNA in cancer cell lines. MYLKP1 expression inhibits the

functional gene products of MYLK, including smMLCK protein expression. We attempted to

elucidate a potentially active biological role for MYLKP1 and to clarify its participation as a

candidate gene in cancer risk. We now show that MYLKP1 selectively transcribes mRNA in

cancer cells and dramatically decreases the expression of the functional MYLK (Fig 1). More-

over, expression of the pseudogene increases cell proliferation of normal and cancer cells (Fig

2A, Fig 2B), indicating an active role of MYLKP1 during carcinogenesis. We previously dem-

onstrated that MYLKP1 is selectively expressed in cancer cells, functions as a regulator of

MLCK levels, and increases cancer cell proliferation in vitro [14]. The potential for cross-talk

between the parent gene and the pseudogene (MYLK and MYLKP1) and nmMLCK’s potential

as a cancer biomarker provide unique targets for cancer therapeutics that have the potential to

affect cancer cell proliferation.
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The rate of colon cancer mortality among African Americans is significantly higher than

Caucasian Americans independent of socioeconomic status [49]. Mutations with a higher

Fig 3. Genetic variants of MYLKP significantly increased MYLKP promoter activity in cancer cells. A. Two genetic variants of MYLKP rs12497343 and rs12490683

located in promoter region of MYLKP gene. B. In H522 cancer cells, MYLKP promoter activity was significantly increased compared to ones in non-cancer Beas-2b cells

(�p<0.05). The haplotype G-A and C-A for two genetic variants of MYLKP rs12497343 C/G and rs12490683G/A was significantly increased MYLKP promoter activity

in H522 cancer cells, compared to haplotype C-G and G-G (�p<0.05).

https://doi.org/10.1371/journal.pone.0200916.g003
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MAF in African Americans with colon cancer could provide a particularly valuable therapeutic

target, and the unique regulation of the parent gene (MYLK) by its pseudogene (MYLKP1)

Table 2. P values and odds ratios for associations with MYLKP1polymorphisms in African and European American colorectal cancer, adjusted for age, sex, and

West African ancestry.

SNP BP MA P_adj1 OR_adj1 P_adj2 OR_adj2

African Americans

rs10490780 75325508 G 0.791 0.96 0.718 0.95

rs9824516 75326959 A 0.452 1.14 0.518 1.12

rs7638312 75327606 C 0.623 1.12 0.672 1.11

rs6796799 75328126 A 0.728 1.05 0.811 1.03

rs4677497 75328974 G 0.630 0.93 0.603 0.92

rs12490683 75329934 A 0.138 1.24 0.038 1.33

rs12497343 75330074 G 0.220 1.19 0.078 1.28

rs6801219 75332618 G 0.383 0.86 0.318 0.84

rs2091870 75333283 G 0.421 0.91 0.744 0.96

rs4552385 75336163 C 0.842 1.02 0.660 1.05

rs4677503 75338306 A 0.545 1.08 0.367 1.11

European Americans

rs6796799 75328126 A 0.610 1.11 0.558 1.12

rs4677497 75328974 G 0.809 1.05 0.781 1.06

rs12490683 75329934 G 0.601 1.08 0.579 1.08

rs12497343 75330074 C 0.673 1.06 0.685 1.06

rs2091870 75333283 A 0.354 1.14 0.347 1.14

rs4552385 75336163 T 0.869 1.03 0.915 1.02

rs4677503 75338306 G 0.496 1.10 0.494 1.10

P_adj1 is the p value for association adjusted for age, sex, and West African ancestry and its associated odds ratio (OR_adj1) is in the adjacent column. P_adj2 is the p

value for association adjusted for age and sex and its associated OR (OR_adj2) is in the adjacent column. There are four fewer SNPs displayed in the European American

part of the table because the minor allele frequency of the excluded SNPs was less than 0.05.

BP, base pair position on chromosome 3, GRCh38; MA, minor allele; SNP, single nucleotide polymorphism. Bolded are the two SNPs chosen for functional analyses

https://doi.org/10.1371/journal.pone.0200916.t002

Table 3. Percentage of West African Heritage by SNP for African American Colorectal Cancer Cases.

SNP Minor Allele West African Ancestry P-Value (Adjusted)a

rs10490780 G 0.838 0.926 (0.926)

rs9824516 A 0.826 0.186 (0.292)

rs7638312 C 0.826 0.001 (0.011)

rs6796799 A 0.815 0.596 (0.755)

rs4677497 G 0.809 0.821 (0.903)

rs12490683 A 0.784 0.068 (0.193)

rs12497343 G 0.788 0.040 (0.193)

rs6801219 G 0.836 0.154 (0.282)

rs2091870 G 0.807 0.136 (0.282)

rs4552385 C 0.817 0.618 (0.755)

rs4677503 A 0.804 0.070 (0.193)

West African Ancestry heritage for each SNP. FDR is calculated using the Benjamini and Hochberg adjusted p-values

via the R program p.adjust.

a Chi-squared p value calculated for each SNP.

https://doi.org/10.1371/journal.pone.0200916.t003
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provides a possible mechanistic explanation for the increased severity of colon cancer and its

development at younger ages in African Americans [49]. Two promoter SNPs (rs12497343

and rs12490683) in the MYLKP1 promoter region are promising candidates that could con-

tribute to the regulation of MYLKP1 in cancer. These SNPs were discovered to be significant

among populations of African descent and could contribute to health disparity in colon cancer

outcomes but require independent replication for confirmation of this potentially important

association. Improved reference panels that account for the unique diversity in African Ameri-

can genetic backgrounds and use of imputation to overcome obstacles with the homology

between the MYLK and MYLKP1 promoter regions, may reveal unique therapeutic targets for

cancer and elucidate mechanisms and pathways that contribute to greater colon cancer sever-

ity in African American populations [50]. Either next generation sequencing or imputation of

the MYLKP1 promoter could provide genotypes for the rs4677496 SNP, which was unable to

be genotyped.

Together, these studies, which provide further support for the functional involvement of

pseudogenes in human pathobiology, suggest MYLKP1 should be considered as a novel diag-

nostic or therapeutic target in human cancer.

Supporting information

S1 File. A file containing supplementary information (Table A) Haplotype frequencies for

African American and European American controls and cases were calculated via haplo.stats

package in R. A chi-squared test between groups were performed per haplotype, and raw p-

values were reported. (Figure A) A histogram of West African ancestry was plotted in R. The

plot includes both the ratio of West African ancestry in both African American colorectal can-

cer patients and controls.

(PDF)
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controls provided for open access.
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