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Objective: Head and neck squamous cell carcinoma (HNSCC) is one of the most
common and lethal malignant tumors. We aimed to investigate the HNSCC cell
differentiation trajectories and the corresponding clinical relevance.

Methods: BasedonHNSCCcell differentiation-relatedgenes (HDRGs) identifiedbysingle-cell
sequencing analysis, the molecular subtypes and corresponding immunity, metabolism, and
stemness characteristics of 866 HNSCC cases were comprehensively analyzed. Machine-
learning strategieswereused todevelopaHNSCCcell differentiation score (HCDscore) in order
to quantify the unique heterogeneity of individual samples. We also assessed the prognostic
value and biological characteristics of HCDscore using the multi-omics data.

Results: HNSCCs were stratified into three distinct molecular subtypes based on
HDRGs: active stroma (Cluster-A), active metabolism (Cluster-B), and active immune
(Cluster-C) types. The three molecular subtypes had different characteristics in terms of
biological phenotype, genome and epigenetics, prognosis, immunotherapy and
chemotherapy responses. We then demonstrated the correlations between HCDscore
and the immune microenvironment, subtypes, carcinogenic biological processes, genetic
variation, and prognosis. The low-HCDscore group was characterized by activation of
immunity, enhanced response to anti-PD-1/PD-L1 immunotherapy, and better survival
compared to the high-HCDscore group. Finally, by integrating the HCDscore with
prognostic clinicopathological characteristics, a nomogram with strong predictive
performance and high accuracy was constructed.

Conclusions: This study revealed that the cell differentiation trajectories in HNSCC
played a nonnegligible role in patient prognosis, biological characteristics, and immune
responses. Evaluating cancer cell differentiation will help to develop more effective
immunotherapy, metabolic therapy, and chemotherapy strategies.

Keywords: head and neck squamous cell carcinoma, cell differentiation trajectory, single-cell sequencing,
molecular subtype, immunotherapy response
org December 2021 | Volume 12 | Article 7916211

https://www.frontiersin.org/articles/10.3389/fimmu.2021.791621/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.791621/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.791621/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.791621/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.791621/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:huchaoznyy@126.com
mailto:guhuiyun99@sina.com
mailto:wls0821@126.com
https://doi.org/10.3389/fimmu.2021.791621
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.791621
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.791621&domain=pdf&date_stamp=2021-12-24


Huang et al. Molecular Subtypes in HNSCC
INTRODUCTION

Head and neck squamous cell carcinomas (HNSCCs) are derived
from the mucosal epithelium in the oral cavity, oropharynx, and
larynx, and they are mainly associated with tobacco and alcohol
consumption (1). HNSCC is the sixth and eighth leading cancer
worldwide in terms of incidence rate and mortality rate,
respectively, and about two-thirds of HNSCC patients with stage
III or IV HNSCC have no evident signs and symptoms (2). There
are high recurrence and metastasis rates even after surgical
resection due to invasion and metastasis, and the 5-year survival
rate of HNSCC patients is only about 40–50%. Chemotherapy,
radiation, and combination therapy have been used for the clinical
management of HNSCC, but long-term survival rates for most
patients with advanced HNSCC remain low. Notably,
immunotherapy, such as PD-1 inhibitors and CXCR1/2
inhibitors, has become one of the most promising treatments for
HNSCC (3). Studies of HNSCC have shown that the tumor
microenvironment (TME) plays an important role in the effects
of immunotherapy, as the TME can regulate tumor growth and
immune surveillance (4). However, only a minority of HNSCC
patients exhibit a positive response to immunotherapy. Multiple
factors have been discovered to be involved in the efficacy of PD-1/
PD-L1 blockade therapy, such as tumor immunogenicity, T cell
function, PD-L1 expression, and intratumor heterogeneity. Thus,
more research on molecular subtypes is needed to help accurately
determine the heterogeneity subtype of HNSCC patients to
identify which patients will respond to immunotherapy (5).

Multiple cells in different developmental states or with
distinctly differentiated fates are mixed together when
performing bulk RNA-seq, obscuring potential critical molecular
events and signals taking place in cell subpopulations. Recent
advancements in single-cell RNA sequencing (scRNA-seq)
methodologies allow researchers to examine the sequence
information from individual cells and have been used to reveal
the heterogeneity of cells, dynamic cell differentiation processes,
and tumor prognosis (6). Tumor cells exhibit highly
heterogeneous, ranging from undifferentiated cells to the cells
resembling normal ones. ScRNA-seq method can be used to
determine the different states differentiation trajectories of tumor
cells to assess how much progress each individual cell has made
(7). Recent studies have shown that there is a strong correlation
between the cell differentiation trajectories and the heterogeneity
of tumor cells in the TME (8). Therefore, the combination of
scRNA-seq and bulk-seq technology could help to assess the
difference in prognosis between HNSCC patients from the
perspective of cell differentiation trajectories. Traditional
prognostic indicators include TNM staging and pathological
grade, which are mainly based on the clinical pathological
characteristics and have limited success in accurately predicting
patient prognosis and immunotherapy responses (9). A recent
study has shown that molecular subtypes based on TME
recognition have provided new insights for customizing
immunotherapy regimens for individual cancer patients (10).
Thus, it is still necessary to further explore the role of cell
differentiation trajectories for predicting immunotherapy
responses and survival among HNSCC patients.
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In this study, we comprehensively evaluated three distinct
molecular subtypes related to cell differentiation trajectories by
combining scRNA-seq with bulk RNA-seq, and identified the
immune, metabolism, and stemness characteristics among the
subtypes. In addition, a prognostic HNSCC cell differentiation
score (HCDscore) was developed based on machine-learning
models to quantify the differences among individual patients.
Our study integrated multi-omics analyses involving genomics,
epigenomics, and transcriptomics, which could precisely predict
patient prognosis and provide new insights into immunotherapy,
metabolic therapy, and chemotherapy.
METHODS AND MATERIALS

Acquisition and Processing of
scRNA-Seq Data
The scRNA-seq expression profiling and clinical data of 18
HNSCC cases including 5902 cells were obtained from the
GSE103322 dataset in the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) database. The “Seurat” R
package (11) was used to initially process the scRNA-seq
expression data. The percentage of mitochondrial genes was
calculated by the PercentageFeatureSet function of the “Seurat”
R package, and the relationship between sequencing depth and
mitochondrial gene sequences was calculated by correlation
analysis. Quality control was performed for cells with a gene
number <100, sequencing number <50, and mitochondrial gene
content >5%. Log transformations were then used to normalize
the scRNA-seq expression data, and the top 1500 genes with high
variability were selected by the variableFeatures method.

Dimensionality Reduction and Single-Cell
Trajectory Analysis
Significant dimensions with P<0.05 were selected using the
principal component analysis (PCA) algorithm, and then the t-
distributed stochastic neighbor embedding (t-SNE) algorithm was
employed for dimension reduction. The principal components for
performing cluster classification analysis across all cells.
Differential expression analysis for each cluster with the cutoff
criteria of log2[fold change (FC)]>1 and adjusted P-value <0.05
was then performed using the “limma” package (12). The top 10
marker genes with the most significant differences in each cluster
were used to create a heatmap. Clusters were determined and
annotated using the “SingleR” R package (13) based on the
composition patterns of the marker genes.

The functions of “pseudotime” and “trajectory” in the
“Monocle” R package (14) were employed to analyze HNSCC
cells, with cutoff criteria of log2[fold change (FC)]>1 and adjusted
P-value <0.05. Differential expression analysis was performed
between branches using the “Monocle” R package, and genes
with differential expression levels were designated HDRGs.

Acquisition and Processing HNSCC
Datasets of Bulk RNA-Seq Data
Level 4 gene expression data [Fragments Per Kilobase of
transcript per Million mapped reads (FPKM)] from TCGA-
December 2021 | Volume 12 | Article 791621
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HNSC samples were downloaded from the UCSC Xena browser
(GDC hub: https://gdc.xenahubs.net). GSE65858 and GSE41613
microarray data on HNSCC samples were downloaded from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/). The gene
expression data of the TCGA-HNSC cohort were transformed
into transcripts per kilobase million (TPM) values, which are
more comparable to microarray data. Batch effects due to non-
biological experimental factors were reduced using the “ComBat”
function in the “sva” R package.

We also obtained clinical data of the TCGA-HNSC, GSE65858,
and GSE41613 cohorts, including overall survival (OS), age,
gender, smoking status, human papillomavirus (HPV) infection
status, TNM stage, cancer stage, and histological type from the
UCSC Xena browser and GEO database. Genomic mutation data
of the TCGA-HNSC cohort including somatic mutation and copy
number variation (CNV) were also obtained from the UCSC Xena
database. The “maftools” R package (15) was used to visualize the
mutation landscape of the HNSCC cases. For CNV analysis, the
Genomic Identification of Significant Targets in Cancer (GISTIC)
tool was used to identify significant amplifications and deletions.
The CNV gain or loss burden was calculated as the total number of
genes with CNV at the focal and arm levels using GenePattern
(https://cloud.genepattern.org).

Unsupervised Clustering of HNSCC
Samples Based on HDRGs
Unsupervised clustering analysis was used to determine each
patient’s molecular subtype based on HDRGs. The cases were
classed based on k-means, with k from 2 to 9, using the
“ConsensusClusterPlus” R package (16), with 1000 repetitions
to ensure classification stability. The optimal selection of clusters
was determined by the consensus matrix and cumulative
distribution function (CDF) curve.

Proportions of Immune Cells Infiltrating
in the TME
To quantify the proportions of immune cells in each HNSCC
sample, we utilized seven immune cell infiltration estimation
algorithms, comprising CIBERSORT (17), MCP-counter (18),
EPIC (19), TIMER (20), xCell (21), quanTIseq (22) and IPS (23).

Specifically, CIBERSORT is the most well-recognized
method for detecting 22 immune cells based on gene
expression by employing linear support vector regression. The
microenvironment cell populations (MCP)-counter algorithm
evaluated the absolute abundance of eight immune and two
stromal cells. The EPIC method detects the fractions of eight
immune and cancer cells based on transcriptomic data. The
TIMER algorithm provides robust estimation of the infiltration of
six immune cells comprising B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells in the TME. The xCell
algorithm is a gene signature-based method that estimates the
abundance scores of 28 immune cell types. The quanTIseq
method quantifies the absolute fractions of 10 immune cell types
based on bulk RNA-seq data. The IPS algorithm assesses the
expression of 28 tumor-infiltrating lymphocytes and
subpopulations. In addition, the “ESTIMATE” algorithm (24) was
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used to comprehensively evaluate the TME components, including
the ImmuneScore, StromalScore and tumor purity, for each sample.

Gene Set Variation Analysis (GSVA)
GSVA was used to quantify activation of signaling pathways by
using the “GSVA” R package (25). We obtained biological
signatures from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database, the Hallmark gene set v7.1 from
the MSigDB database (https://www.gsea-msigdb.org/gsea/
msigdb/), 114 metabolism-related gene signatures from a
previous study (26), and a typical tumor-related biological
process gene set from the “IMvigor210CoreBiologies” R
package (27). Finally, GSVA was performed to calculate
patient-specific GSVA scores that quantified the pathways or
biological processes.

Gene Function Annotation and Gene Set
Enrichment Analysis (GSEA)
Gene function annotation was conducted using the
“clusterProfiler” R package (28) with q<0.05 as the cutoff. We
also identified gene sets and pathways that were up- and
downregulated using GSEA (29). These background gene sets
were obtained from the KEGG and MSigDB databases.
Upregulated pathways were defined based on enrichment score
(ES)>0, while downregulated pathways were defined based on
ES<0. Enrichment P values were based on 10,000 permutations
and subsequently adjusted using the Benjamini–Hochberg
method to control the false discovery rate (FDR).

Analysis of the TME, Prognosis-Related
Metabolic Pathways, and Stemness
Indices
The cell infiltration regarding 22 immune cell types inferred
from the CIBERSORT algorithm in each HNSCC sample was
visualized using the “igraph” R package. Regarding metabolic
pathways, GSVA was used to determine the scores for 114
metabolic signatures for each HNSCC sample. To select the
prognosis-related metabolic pathways, survival data and
univariate Cox regression implemented by the “survival” R
package were used, with P<0.05 as the cutoff. We further used
the randomSurvivalForest (RSF) algorithm to rank the importance
of the prognosis-related metabolic pathways (nrep = 100, which
indicates that the number of iterations in the Monte Carlo
simulation was 100; nstep = 5). A one-class logistic regression
(OCLR) algorithm was used to calculate six stemness imndices
(mDNAsi, EREG-mDNAsi, DMPsi, ENHsi, mRNAsi, and EREG-
mRNAsi) for each sample (30). We analyzed the differences in
stemness indices between the clusters to evaluate the tumor
dedifferentiation potential.

Weighted Gene Co-Expression Network
Analysis (WGCNA)
We used the WGCNA algorithm to identify immunity/
metabolism/stemness phenotype-related genes by using the
“WGCNA” R package (29). HDRGs were selected and then
used for the WGCNA. Biweight midcorrelation was used to
assess similarity between samples in the WGCNA. A scale-free
December 2021 | Volume 12 | Article 791621
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network was used to select the most suitable b parameter for
converting the adjacency matrix into a scale-free topology (soft
threshold power b=5, R2 = 0.90). A soft-thresholding power of 5
was set for network construction and module detection. In a
module–trait analysis, the module eigengene was related, with
P<0.05 as the cutoff, to the following three phenotype features:
Immunity (ImmuneScore), metabolism (most important
metabolic pathways selected from RSF analysis), and tumor
stemness (mRNAsi index).

Analysis of Genomic and Epigenetic
Regulation of HNSCC
DNA methylation data from the TCGA-HNSC cohort, obtained
using Illumina Infinium Human Methylation 450K BeadChip
technology, were downloaded from the UCSC Genome Browser.
b-values ranging from 0 to 1 represent the methylation level of
each site. Next, a series of quality control algorithms were
implemented. Samples with >70% CpG sites missing were
excluded. The k-nearest neighbors imputation procedure was
used to impute missing data. CpGs located in sex chromosomes
and single-nucleotide polymorphisms were removed. We
prioritized CpGs in promotor regions (defined as 2 kb
upstream to 0.5 kb downstream of transcription start sites).
Thereafter, we identified the differential methylation sites
(Padj<0.05 and |log2FC|>0.15) between different molecular
subtypes and visualized them using the “limma” and
“pheatmap” R packages.

The DNA damage levels were assessed, including
homologous recombination deficiency (HRD), intratumor
heterogeneity (ITH), loss of heterozygosity (LOH; number of
segments with LOH events, and fraction of bases with LOH
events), and aneuploidy score (AS) between different subtypes
(31). N6-methyladenosine (m6A) methylation is the most
common and abundant RNA epigenetic modifications. A total
of 18 m6A regulators comprising 7 writers (METTL3,
METTL14, RBM15, RBM15B, WTAP, VIRMA, CBLL1, and
ZC3H13), 9 readers (YTHDC1, YTHDC2, YTHDF1, YTHDF2,
YTHDF3, IGF2BP1, HNRNPA2B1, HNRNPC, FMR1, LRPPRC,
and ELAVL1) and 2 erasers (FTO and ALKBH5) were
investigated to observe the level of m6A methylation.

Construction of HCDscore Based
HDRG Signature
We constructed a scoring system to evaluate the impact of
individual HNSCC cell differentiation patterns as follows. First,
univariate Cox proportional hazards regression was used to
identify the significant HDRGs by using the “survival” R
package. Genes with P<0.05 were selected as the candidates,
which were subjected to LASSO regression to reduce the
numbers of predictors. The minimum value of lambda was
selected from 1,000 cross-validations in the LASSO regression
analysis. A multivariate Cox regression model was established
using prognostic HDRGs selected by LASSO-COX regression
analysis. The HCDscore was calculated accurately as follows:
HCDscore = Sn

i=1 Coefficient ∗Exp, where Exp is the expression
value of each selected gene.
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Next, the optimal cutoff was determined using the
“survminer” R package based on the correlation between
HCDscore and survival. The samples were then divided into
high- and low-HCDscore groups.

Immunotherapy Response Prediction
First, we compared the expression of 15 immune checkpoint-
related genes, which was used to assess the response potentials to
immunotherapy in the HNSCC patients. Next, we used the
Tumor Immune Dysfunction and Exclusion (TIDE) algorithm
(32) to predict responses to immune checkpoint blockade by
integrating the expression signatures of T cell dysfunction and T
cell exclusion. Besides, an 18 gene “tumor inflammation
signature” (TIS) which quantifies an activated immune
response in TME, was used to predict response of anti-PD-1
(33). In general, the lower the TIDE score or the higher the TIS
score, the better the immunotherapy response. We compared the
difference in TIDE and TIS scores between the high- and low-
HCDscore groups and the correlation between HCDscore and
TIDE, TIS scores.

We also used the subclass mapping (SubMap) method (34) to
analyze the similarities of the expression profiles, comparing the
identified molecular subtypes with an independent dataset of 47
anti–PD-1 antibody-treated melanoma patients from a
longitudinal cohort treated with sequential immune checkpoint
blockade (CTLA-4 blockade followed by PD-1 blockade at
progression) (35). The lower the P value, the higher the
similarity. The “complexHeatmap” R package was used to
depict the results.

Chemotherapy Response Prediction
We predicted the chemotherapy response for each HNSCC
sample by training a predictive model on cell line data from
the largest publicly available pharmacogenomics database
[Genomics of Drug Sensitivity in Cancer (GDSC), https://
www.cancerrxgene.org/]. A lower half-maximal inhibitory
concentration (IC50), estimated by ridge regression, indicates a
better sensitivity to a given drug. The prediction process was
performed using the “pRRophetic” R package (36). Specifically,
the batch effect was removed using “ComBat”, tissue type was set
to “allSoldTumours”, and duplicate gene expression was
summarized as the mean value.

Construction of Nomogram and
Verification of Hub Proteins
A nomogram was constructed using the “rms” R package and
calibration plots were used to assess the prognostic accuracy
of the nomogram. The predicted and actual outcomes of
the nomogram were presented in a calibration curve, with the
diagonal representing perfect prediction. In addition, the
calibration of the prediction model refers to the concordance
between the predicted and observed probabilities. Moreover, a
GiViTI calibration belt (37) was also constructed to test the
goodness of fit of the prediction model. 95% CIs were calculated
and displayed in a dark gray area in the plot. More precisely,
P>0.05 indicates good model fit. The protein expression of the
hub genes in HNSCC and normal paracancerous tissues was
December 2021 | Volume 12 | Article 791621
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verified using immunohistochemical data from the Human
Protein Atlas (https://www.proteinatlas.org/).

Statistical Analysis
The correlations of the TME-infiltrating immune cells were
computed using Spearman correlation analyses. One-way
analysis of variance (ANOVA) and the Kruskal–Wallis test
were used to compare three or more groups. An alluvial
diagram was used to visualize the changes in the attributes of
individual patients in different clusters. Survival analysis was
performed using the “survival” R package. The predictive value
of HCDscore for clinical traits and survival was reflected by an
ROC curve and the AUC. All P values were two sided and data
processing was conducted in R 4.0.1 software.
RESULTS

Quality Control and Normalization of
scRNA-Seq Data
A flow chart was designed to systematically describe the study
design (Figure 1A). A single-cell RNA-seq dataset from the
GSE103322 was subjected to quality control processing and the
normalization to exclude nonconforming cells (Figure 1B).
There was no correlation between mitochondrial gene
sequences and sequencing depth (Figure 1C). A significant
positive correlation between sequencing depth and total
intracellular sequences was observed (R=0.93, Figure 1C).
Among 23,690 genes, 1,500 genes showing high variation were
selected for subsequent analysis (Figure 1D).

Identification of HNSCC Cell
Trajectory Subsets
PCA method for dimensionality reduction did not lead to clear
separations among the HNSCC cells (Figure S1A). The top 15
principal components with P<0.05 were selected for further
analysis (Figure S1B). Next, HNSCC cells were classified into
19 distinct clusters based on the t-SNE algorithm (Figure 1E). A
total of 5058 marker genes from the 19 clusters were identified by
differential analysis, and the top 10% of marker genes in each
cluster are shown in a heatmap (Figure S1C). These cell clusters
were annotated in Figure 1F. Subsequently, trajectory analysis
was used to project all HNSCC cells onto one root and three
branches. The results showed that clusters 6/12/14 were in
branch I, mainly containing epithelial cells; clusters 2/10/15
were in branch II, consisting of B cells, monocytes and T cells;
and clusters 5/7/8 were in branch III, composed of endothelial
cells, smooth muscle cells, and tissue stem cells (Figures 1G, H).
A total of 811 HNSCC cell differentiation-related genes
(HDRGs) were ultimately identified in HNSCC. We further
performed functional annotations of the HDRGs from the
three distinct cell differentiation branches, and the significantly
enriched biological processes are summarized in Figure 1I.
Enrichment analysis showed that they are involved in immune
processes and tumor metastasis-related signaling, such as PD-L1
expression and the PD-1 checkpoint pathway.
Frontiers in Immunology | www.frontiersin.org 5
Identification of HDRG-Based Molecular
Subtype and Biological Characteristics
We identified 159 prognosis-related HDRGs using univariate cox
regression analysis (Table S1). The TCGA-HNSC, GSE65858,
and GSE41613 cohorts were employed. The numbers of samples
and the clinical baseline and endpoint data of each HNSCC
sample are summarized in Table S2. Based on the expression of
the prognostic-related HDRGs, three distinct molecular subtypes
were identified and designated as Cluster-A, Cluster-B, and
Cluster-C (k=3, Figures 2A, B). Figure S2A shows the top10
representative genes in each cluster.

Kaplan–Meier survival analysis demonstrated that Cluster-C
exhibited the best survival, whereas Cluster-A had the worst
prognosis (p<0.001, Figure 2C). In addition, we further verified
the effectiveness of unsupervised clustering. First, PCA plot
showed that the HNSCC samples were completely
distinguished into three clusters (Figure 2D). Second, the
TCGA-HNSC, GSE65858, and GSE41613 cohorts (as the
validation datasets) were employed to perform the clustering
analysis with the same algorithm, respectively. As expected, the
same trends occurred, indicated the suitability of k=3 (Figure
S2B). Notably, obvious differences in survival among the three
molecular subtypes were observed in the TCGA-HNSC,
GSE65858, and GSE41613 cohorts, respectively (Figure S2C).

Next, we used the “GSVA” algorithm to explore the biological
characteristics of the three distinct molecular subtypes
(Figure 2E). Cluster-A was markedly enriched in stromal
activation pathways such as extracellular matrix receptor
interaction and glycosaminoglycan biosynthesis signaling
pathways. Cluster-B was enriched in pathways associated with
metabolic activation including the activation of tryptophan
metabolism, fatty acid metabolism, and drug metabolism
involving cytochrome P450. Cluster-C was prominently related
to immune activation, including T cell receptor, B-cell receptor,
and Toll-like receptor signaling pathways. Subsequently,
comparing carcinogenic-related biological processes and
immune signatures among the three clusters (Figure 2F), we
found that Cluster-A, as the stromal activation subtype, was
markedly enriched in carcinogenic activation pathways related to
epithelial–mesenchymal transition (EMT), transforming growth
factor-b (TGF-b), and Wnt-target pathways. CD8+ effector T
cells, antigen processing machinery, and immune checkpoint
were prominently upregulated in Cluster-C, as the immune-
activation group. In addition, we found that Cluster-C exhibited
the highest levels among the three clusters of the biological
processes of ferroptosis and proptosis.

Immunity, Metabolism, and Stemness
Characteristics of the Three Clusters
We further explored the molecular changes, including changes in
the TME, metabolic processes, and stemness, underlying the
three distinct molecular subtypes (Clusters-A, -B, and -C). We
used the ESTIMATE algorithm to calculate the overall fraction of
immune cells (ImmuneScore) and stromal cells (StromalScore)
in the three molecular subtypes. Figures 2G and S2D show
that Cluster-C exhibited the highest ImmuneScore and lowest
December 2021 | Volume 12 | Article 791621
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E F
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FIGURE 1 | Identification of HDRGs using scRNA-seq analysis. (A) Flow diagram of this study’s systematic analysis and validation. (B) Quality control including the
number of unique genes, the number of total molecules, and the percentage of reads that map to the mitochondrial genome. (C) Low correlation of mitochondrial
genes across cells and high correlation of gene expression across cells. (D) The variance diagram shows 1500 highly variable genes in HNSCC cells. The red dots
represent highly variable genes, and the black dots represent non-variable genes. (E, F) The t-SNE algorithm was applied for dimensionality reduction with the 19
principal components, and 9 cell clusters were annotated. (G, H) Pseudotime and trajectory analysis shows three subsets of HNSCC cells with distinct differentiation
patterns. (I) GO and KEGG enrichment analysis of HDRGs.
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FIGURE 2 | Unsupervised clustering analyses and biological characteristics of each cluster. (A) The clustering heatmap corresponding to the consensus matrix for
k=3 obtained by consensus clustering. (B) CDF plot displays consensus distributions for k=2 to 9. (C) Kaplan-Meier curves with Log-rank test shows survival
differences for the three clusters including cluster-A, cluster-B and cluster-C based on TCGA-HNSC, GSE41613 and GSE65858 cohorts. (D) Principal component
analysis for the transcriptome profiles of among three clusters. (E) GSVA enrichment analysis shows the activation states of biological pathways among distinct three
clusters. The heatmap was used to visualize these biological processes, and yellow represented activated pathways and blue represented inhibited pathways.
(F) Differences in immune-related and carcinogenic-related signatures among three distinct clusters. The asterisks represented the statistical p value (*P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant). (G, H) Violin plot shows the difference of ImmuneScore and StromalScore from ESTIMATE algorithms in
three clusters. (I) Heatmap for immune cell and stromal cell infiltration based on CIBERSORT, MCPcounter, xCell, EPIC, TIMER, quanTIseq and iPS algorithms
among three clusters. (J) The interaction among immune cells. The circle size represented the significance level of P values calculated by Log-rank test. Favorable
factors for overall survival are indicated in green, and risk factors indicated in purple. The lines connecting represent immune cells interactions estimated by
Spearman correlation analysis, positive correlation is showed in pink and negative correlation in blue. (K) 20 prognosis-related metabolic pathways ranked by RSF
algorithm. variables with positive variable importance coefficient (blue bars) and variables with zero or negative variable importance coefficient (red bars) are indicated.
The absolute value of these importance coefficients (called the variable relative importance) as the horizontal coordinate. (L) Grouped boxplot shows the levels of
stemness indices in three clusters. The asterisks represented the statistical p value (**P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant).
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tumor purity among the three clusters. Figure 2H shows that
Clusters-A and -C had a higher StromalScore than Cluster-B,
which reflected the characteristic of immune activation in
Cluster-C and the abundant stromal components in Cluster-A.
To investigate the differences in immune cell infiltration among
the three clusters, seven TME cell deconvolution algorithms were
used. As shown in Figure 2I, Cluster-C had the most abundant
anti-tumor immune cell infiltration levels, such as CD8+ T cells,
macrophages, Th1 cells, NK cells, dendritic cells (DCs), and
Th17 cells. Cluster-A had abundant endothelial cells and
fibroblast recruitment. Figure 2J shows that the TME cell
network involved a comprehensive landscape of tumor cell and
immune cell interactions and cell lineages, and the Figure shows
the effects on the OS of patients with HNSCC.

We also determined the prognostic power of various
metabolic pathways. First, 20 prognosis-related metabolic
pathways were selected and displayed in Table S3. The
correlation between those pathways and prognosis was
independently analyzed in Cluster-A, Cluster-B, and Cluster-C
using the univariate cox regression (Table S4). Subsequently, 20
metabolic pathways were ranked by importance, and the
tryptophan metabolic pathway was considered to be the most
important prognosis-related metabolic pathway in HNSCC
(Figure 2K). ScRNA-seq technology supports the cancer stem
cell theory that posits that cancer stem cells are an important
factor in the cause of tumor heterogeneity. Thus, survival
analysis was performed and showed that the level of stemness
had an important prognostic value in HNSCC (Figure S2E).
Differences in stemness potential were observed using six
stemness indices among the three molecular subtypes
(Figure 2L). Notably, compared to the other two clusters,
Cluster-B had the highest degree of oncogenic dedifferentiation
regarding six stemness indices.

Genomic and Epigenetic Features of Three
Clusters Based on HDRGs
To further explore the differences in genome abnormalities
among the three distinct molecular subtypes based on HDRGs,
somatic mutations, copy number alterations, and CNV burden
(BCNV) were analyzed. The top 20 mutated genes were plotted
in Figure S3A. The most significant mutation types were
missense mutations, nonsense mutations, and frameshift
deletions. In addition, C > T was observed most frequently in
single-nucleotide variants. TP53, TTN, and FAT1 were identified
as the most commonly mutated genes, with mutation rates of
66%, 35%, and 21%, respectively. We further compared the
distributions of somatic mutations among the three molecular
subtypes, as shown in Figure 3A. Cluster-B had the highest
mutation rate (96.26%), followed by Cluster-A (95.09%) and
Cluster-C (83.1%). The Tumor Mutation Burden (TMB)
quantification analyses showed that Cluster-C was associated
with a markedly lower TMB level (Figure S3B).

We further observed that the three clusters exhibited CNV
amplifications and deletions. Figure 3B shows the distribution of
the G-score and amplification/deletion frequencies across all
chromosomes in the three clusters. Focal amplifications and
Frontiers in Immunology | www.frontiersin.org 8
deletions in various chromosomal regions were detected for
Clusters-A (Figure 3C), -B (Figure 3D), and -C (Figure 3E).
We further identified significant amplifications at 31 loci and
significant deletions at 34 loci in Cluster-A (q<0.05, Table S5),
significant amplifications at 32 loci and significant deletions at 32
loci in Cluster-B (q<0.05, Table S6), and significant
amplifications at 19 loci and significant deletions at 24 loci in
Cluster-C (q<0.05, Table S7). In addition, compared to Clusters-
A and -B, Cluster-C had the lowest gain (p<0.05) BCNV both at
the arm- and focal-level (Figure 3F).

Epigenetic processes, including DNA methylation and
various RNA-mediated processes, influence gene expression at
the level of transcription. We mainly focused on DNA
methylation and m6A methylation, which is one of the most
common RNAmodifications. We first identified 1630 differential
CpG methylation sites among the three clusters and found that
Cluster-C had the highest DNA methylation level (Figure S3C).
We also collected 18 m6A modification regulators to assess the
m6A methylation modification level, and we found that Cluster-
B had lower levels of the m6A regulators (Figure 3G).

As characteristic genomic scar signatures, LOH, HRD, ITH,
and AS were analyzed among the three subtypes. We found that
LOH, HRD, ITH, and AS were substantially lower in Cluster-C
than the others (Figure 3H). In summary, the differences in
tumor immunogenicity among the three clusters were
significant. Our analysis revealed that certain genomic
alterations and epigenetics may drive the differences among
the three molecular subtypes.

Responses to Immunotherapy and
Chemotherapy Among Three Clusters
Although blocking immune checkpoints, such as PD-1 and PD-
L1, represents a promising approach to treating cancer, some
patients are resistant to immunotherapy. We determined which
subtype was associated with the largest clinical benefit of
immunotherapy. First, we investigated the association between
the subtypes and the expression of 15 immune checkpoint-
related genes. Figure 4A indicates that Cluster-C exhibited
higher expression of immune checkpoint genes (except for
TBX2) than Clusters-A and -B. Notably, Cluster-C had higher
expression of PDCD1, CD274, and CTLA4 than Clusters-A and
-B. SubMap algorithm further demonstrated that Cluster-C was
more likely to respond to anti-PD-1 antibody treatment (both
nominal and Bonferroni-corrected p<0.05) (Figure 4B). We
assessed the response of the three clusters to 138 chemotherapeutic
drugs. Finally, we identified 32 drugs that may be advantageous in
Cluster-A (Figure 4C), 9 in Cluster-B (Figure 4D), and 28 in
Cluster-C (Figure 4E).

Identification of Phenotype Related Genes
and Clusters
To further investigate the specific phenotype-related genes among
the HDRGs, WGCNA was performed to identify biologically
relevant modules of highly correlated genes. The clustering
dendrograms of samples show the module distribution determined
by Dynamic Tree Cut and Merged Dynamic (Figure S4A).
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FIGURE 3 | Genomic and epigenetic features and predicting response to immunotherapy. (A) The oncoPrint plot shows tumor somatic mutation landscape among
three clusters. The upper barplot shows TMB, the number on the right indicated the mutation frequency in each gene. (B) Copy number profiles for three clusters,
gains were showed in red and losses in blue. Gene segments are placed according to their location on chromosomes, ranging from chromosome 1 to chromosome
22. (C–E) Detailed cytoband with focal amplification (left) and focal deletion (right) in the Cluster-A (C), Cluster-B (D) and Cluster-C (E), respectively. (F) Distribution
of and focal and broad (arm-level) copy number alterations in three clusters. (G) The difference of expression for m6A regulators among three clusters. Wilcoxon test
was used to test statistical difference, *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant. (H) Difference of genomic scar signatures including
aneuploidy, DNA damage including homologous recombination deficiency (HRD), loss of heterozygosity (LOH; number of segments with LOH events, and fraction of
bases with LOH events) and intratumor heterogeneity (ITH) were estimated in among clusters.
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The ImmuneScore (based on the ESTIMATE algorithm),
tryptophan metabolic pathway (most important metabolic
pathway selected from RSF algorithm), and mRNAsi were
selected to define the immunity, metabolism and stemness
phenotypes. Five modules were obtained and a heatmap
Frontiers in Immunology | www.frontiersin.org 10
showed the modules associated with these specified
phenotypes, that is, MEturquoise for immunity, MEyellow for
the metabolic processes, and MEblue for stemness (Figure 5A).
Ultimately, we identified 310 immune phenotype-related genes,
60 metabolic phenotype-related genes, and 239 stemness
A

B C

D E

FIGURE 4 | Immune checkpoint inhibitor therapy and chemotherapy responses for each cluster (A) Differences in the expression of immune checkpoint genes
among three clusters. The statistical difference of clusters was compared using the Wilcoxon test. **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant.
(B) Submap analysis shows that Cluster-C group could be more respond to anti-PD-1/PD-L1 treatment (Bonferroni corrected P-value = 0.01). (C–E) Sensitivity
analysis of common chemotherapy drugs in Cluster-A (C), Cluster-B (D) and Cluster-C (E) groups.
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phenotype-related genes (Table S8). To explore the underlying
biological behaviors of phenotype-related subtypes, a consensus
clustering algorithm was used based on the immune, metabolic,
and stemness phenotype-related genes to further classify the
samples into corresponding subtypes. Like the clustering results
regarding the three molecular subtypes based on HDRGs, three
distinct phenotypes based on the immune, metabolism, and
stemness characteristics, designated Immunity A–C,
Metabolism A–C, and Stemness A–C, respectively, were
identified (Figure S4B).

We further explored the different characteristics in the
three Immunity, Metabolism, and Stemness subtypes,
respectively. In terms of Immunity subtypes, the Immunity-C
group had strong infiltration of anti-tumor immune cells,
including CD8+ T cells, DCs, and Th1 cells (Figure 5B) with
better survival (Figure S4C). In contrast, the Immunity-A group
had the opposite trend, with weak infiltration of antitumor
immune cells and worse survival (Figure S4C). To further
investigate the characteristics of the Metabolism A–C subtypes,
114 key metabolism-associated signatures were chosen, based on
the results of a previous study (26), and investigated using the
GSVA algorithm. Figure S4D shows that the Metabolism-B
group had significantly higher metabolic processes (especially
in terms of amino acid metabolism and fatty acid degradation)
than the Metabolism-A and -C groups, and the Metabolism-B
group exhibited higher expression related to stromal-related
metabolic processes (glycosaminoglycan biosynthesis and
hexosamine biosynthesis).

Next, we explored the differences among the three stemness
subtypes in terms of biological characteristics. First, we found
that the EMT and pan-fibroblast TGF-b response signaling
pathways were prominently upregulated in the Stemness A
group, while the Stemness B group exhibited strong
enrichment of DNA damage repair, DNA replication, and
mismatch repair (Figure 5C). We also observed differences in
mRNAsi, with Stemness B group having the highest level of
mRNAsi among the three stemness subtypes (Figure 5D).
Specifically, the Stemness-A group mainly featured activation
of stromal-related processes and the Stemness-B group
predominantly featured DNA repair.

Construction of the HCDscore Based on
HDRGs
Given the unique heterogeneity among individuals belonging to
the three subtypes, a combination of machine-learning algorithm
analysis and Cox proportional hazards regression was used to
calculate a score for the cell differentiation pattern of each HNSCC
patient, which we designated the HCDscore. To establish the
HCDscore, 159 prognosis−related HDRGs were regarded as
candidate genes for LASSO regression analysis (Figure 5E).
Then, 22 HDRGs selected by LASSO regression were used to
construct a Cox proportional hazards regression model. Finally, 12
hub genes were identified, and HCDscore were calculated (Table
S9). Subsequent analysis further explored the performance of the
12 hub genes. In addition, immunohistochemical staining
demonstrated the differences in significant hub HDRGs selected
by multivariate Cox analysis between HNSCC and normal tissues
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(Figure 5F). Figure 5G showed the expression levels of 12 hub
HDRGs in 19 clusters identified by scRNA-seq analysis.

Figure 5H reveals significant differences in HCDscore among
Clusters-A, B, and C. Cluster-A had the highest HCDscore while
Cluster-C had the lowest HCDscore, which indicated that low
HCDscore was closely linked to immune activation-related
processes. To further elucidate the biological significance of
HCDscore, we analyzed the correlations of HCDscore with
immune, metabolic, and typical biological processes
(Figure 5I). We found that EMT, pan-fibroblast TGF-b
signaling pathways, and DNA damage repair processes were
prominently positively correlated with HCDscore, while
HCDscore had a strong negative correlation with anti-tumor
immune activation, angiogenesis, and immune checkpoint
signaling pathways. This suggested that HCDscore may be a
risk factor for HNSCC patients.

To quantify the capacity of this scoring system to predict
survival, a receiver operating characteristic (ROC) curve was
used to observe its predictive accuracy. The HCDscore had a
higher area under the curve (AUC) value (0.744) than other
clinical parameters (age, gender, HPV infection, TMN stage,
cancer staging, smoking status, and histological type), which
indicated that the HCDscore had the best predictive ability
(Figure 5J). We then investigated whether the HCDscore
could be used as an independent predictor of HNSCC
prognosis by univariate and multivariate Cox regression
analyses. As shown in Figure S4E, multivariate Cox regression
analysis demonstrated that HCDscore was a robust and
independent predictor of patients’ prognosis compared to age,
gender, HPV infection, TN stage, cancer staging, smoking status,
and histological type.

Identification of the Biological
Characteristics of HCDscore
Based on the aforementioned biological processes related to
HCDscore, we further determined the clinical outcomes and
biological characteristics of patients with different HCDscore
levels. First, patients were divided into low- (408 cases) or high-
(458 cases) HCDscore groups based on the optimal cutoff value.
We found that the low-HCDscore group had better survival
(Figure 6A). Concurrently, the prognostic value of the
HCDscore was validated in the TCGA-HNSC cohort (P<0.001,
Figure S5A), as well as the GSE65858 and GSE41613 cohorts.
The distribution of HCDscore, patterns of survival status and OS,
and expression of the 12 hub genes are shown in Figure S5B.

Next, to explore the differences in biological behaviors
between the high- and low-HCDscore groups, we performed
GSVA. As shown in Figure 6B , the high-HCDscore
group was markedly enriched in stromal and carcinogenic
activation pathways such as ECM receptor interaction and
glycosaminoglycan biosynthesis. The low-HCDscore group was
enriched in pathways associated with metabolism activation.
Typical metabolic signatures were further selected to further
identify the differences in the metabolic processes between the
high- and low-HCDscore groups. The low-HCDscore group was
mainly enriched in fat metabolism and amino acid metabolism
(Figure S5C). GSEA also indicates gene sets associated with
December 2021 | Volume 12 | Article 791621

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Molecular Subtypes in HNSCC
A B

C D

E F

G

H

J

I

FIGURE 5 | Construction of HDRG signatures and biologic characteristics of HCDscore. (A) Correlations between the six gene modules and three clinical traits.
Each cell shows the correlation between the gene module and the clinical traits. (B) The boxplot shows the difference in the level of 28 immune cells infiltration in the
three ImmunityClusters. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant). (C) The boxplot
shows the difference of immune-related and carcinogenic-related signatures in the three ImmunityClusters. (D) Violin plot shows differences in mRNAsi stemness
indices among three StemnessClusters using Kruskal–Wallis test. The statistical difference of clusters was compared using the Kruskal–Wallis test. (E) LASSO Cox
regression model construction. l selection by 10-fold cross-validation. The partial likelihood deviance with changing of log (l) was plotted. (F) Heatmap shows that
expression levels of 12 hub genes in 19 clusters. (G) The representative protein expression in HNSCC tissue and normal tissue. Data was obtained from the human
protein atlas (https://www.proteinatlas.org/). Statistical analysis of these protein expression according to the staining scores of HNSCC and normal tissues.
(H) Differences in HCDscore among three clusters in HNSCC cohorts. The Kruskal-Wallis test was used to compare the statistical difference. (I) Correlations
between HCDscore and immune cells, immune-related, metabolic-related, carcinogenic-related or tumor cell death-related signaling pathways. (J) The ROC
curves comparing the prognostic values of HCDscore and clinical parameters.
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FIGURE 6 | Immunotherapy response prediction and nomogram construction. (A) Survival analyses for the low- and high-HCDscore groups using Kaplan–Meier curve
and Log-rank test. (B) GSVA enrichment analysis shows the activation differences of biological pathways in low- and high-HCDscore groups. The heatmap visualized
these biological pathways, and red represented activated pathways and blue represented inhibited pathways. (C) GSEA plots show the activated and suppressed gene
signatures between the low- and high-HCDscore groups. (D) The boxplot shows the difference of the fraction of TME cells and ImmuneScore in low- and high-HCDscore
groups. The statistical difference was compared using the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant. (E) Submap analysis shows that
low-HCDscore groups could be more sensitive to anti-PD-1/PD-L1 treatment (Bonferroni corrected P-value = 0.04). (F, G) Differences in TIS score and TIDE score
between low- and high-HCDscore groups (p < 0.001, Wilcoxon test). (H) The oncoPrint plots show tumor somatic mutation in low- and high-HCDscore groups. (I) The
proportion of HNSCC clinical histopathological type in different clusters. (J) A prognostic nomogram predicting 1-, 2-, and 3-year overall survival of HNSCC. (K) The
calibration curve shows the probability of HNSCC patients in the train group and validation group.
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tumor promoting effects enriched in the high-HCDscore group
(Figure 6C), including EMT, TGF-b signaling, angiogenesis, and
hypoxia. Subsequent analysis of the TME indicated that the low-
HCDscore group had a higher ImmuneScore and was
remarkably associated with anti-tumor immune cell infiltration
such as CD8+ T cells, DCs, and cytotoxic cells (Figure 6D).

Given the difference in immune cell infiltration between the
low- and high-HCDscore groups, especially regarding CD8+ T
cells, we further investigated whether HCDscore could predict
patients’ responses to immunotherapy. Figure 6E shows that the
low-HCDscore group was more likely to respond to anti-PD-1
antibody treatment (both nominal and Bonferroni-corrected
P=0.04). We found that the low-HCDscore group had a higher
TIS score (Figure 6F) and a lower TIDE score (Figure 6G) than
the high-HCDscore group. Correspondingly, HCDscore was
significantly positively correlated with TIDE score (P<0.01),
and negatively correlated with TIS score (Figure S5D).

We next investigated the distributions of somatic alterations
in the low- and high-HCDscore groups. By analyzing the
mutation annotation files of the TCGA-HNSC cohort, we
identified the top 20 mutated genes and displayed them in
Figure 6H. The mutational landscapes showed that the high-
HCDscore group had higher overall somatic mutation rates than
the low-HCDscore group. In addition, the most significantly
different mutations are listed in a forestplot (Figure S5E).

Correlation Between HCDscore and
Histological Subtype, and Nomogram
Construction
The histological subtypes of HNSCC in the TCGA-HNSC,
GSE65858, and GSE41613 cohorts mainly included oral
squamous cell carcinoma (OSCC, 510 cases), oropharyngeal
cancer (150 cases), laryngeal cancers (160 cases), and
hypopharyngeal cancer (43 cases). The attribute changes of
individual patients were displayed in an alluvial diagram in
Figure S5F. Cluster-C was linked to a low HCDscore and was
related to a better outcome. Figure 6I showed the distribution of
the histological subtypes among Clusters-A, -B, and -C. A
stacked column chart also showed the distribution of the
histological subtypes in the high- and low-HCDscore groups
(Figure S5G). Furthermore, Figure S5H shows significant
difference in HCDscore among OSCC, oropharyngeal cancer,
laryngeal cancers, or hypopharyngeal cancer. There were 20
patients with metastatic tumors recorded in all of the TCGA-
HNSC, GSE65858, and GSE41613 cohorts, comprising 10 cases
in Cluster-A, 4 cases in Cluster-B, and 6 cases in Cluster-C
(Figure S5I). Kaplan–Meier survival analysis of the four
histological subtypes showed no obvious differences (Figure
S5J). The low-HCDscore group had a better prognosis in each
of the individual histological subtypes , except for
hypopharyngeal cancer (potentially due to the limited number,
43, of cases) (Figure S5K).

Patients with complete clinical data were used to establish a
prognostic nomogram predicting 1-, 3-, and 5-year OS based on
stepwise Cox regression. HCDscore, age, gender, HPV infection
status, tumor stage, TN stage, and smoking status were included
in the nomogram (Figure 6J). The calibration curves indicated
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correspondence between the OS predicted by the nomogram and
the actual OS of the HNSCC patients (Figure S5L). The 95%
confidence intervals (CIs) of a GiViTI calibration belt plot did
not cross the diagonal bisecting line (P=0.652 in GiViTI
calibration test) (Figure 6K). Therefore, the predicted
probability of the model was consistent with the actual
probability, which suggested that the prediction model had
strong concordance performance.
DISCUSSION

HNSCC is an aggressive and heterogeneous neoplasia primarily
involving the oral cavity, tonsils, pharynx, and larynx (2). In the
past decade, clinical trials of cancer immunotherapy have made
remarkable advances in the treatment of a number of
malignancies, especially metastatic cancer. Immunotherapy
drugs called immune checkpoint inhibitors improved the
prognosis in advanced HNSCC patients. Unfortunately, the
overall response rate to PD-1 inhibitors for unselected HNSCC
patients is only approximately 15–20% due to the intratumor
complexity and tumor heterogeneity (38). Although many
molecular subtypes of HNSCC have been proposed in recent
years, intratumoral and individuals’ heterogeneity are still the
greatest challenges in precision cancer therapy. The development
of scRNA-seq technologies provides a cell-based resolution
method to reveal the transcriptome characteristics of
intratumor cells (7). These technologies also provide the
statistical power to determine the diverse cellular populations
and cell differentiation of tumors. In this study, HNSCC cells
with distinct differentiation trajectories were projected into
distinct molecular subtypes by combining the results of
scRNA-seq and bulk RNA-seq. This study used multi-omics
data and clinical data, including gene expression, CNV, somatic
mutation, DNA methylation, to explore the characteristics of
three molecular subtypes and develop an HDRG scoring system.

To perform HDRG-based molecular typing for HNSCC, we
first identified important HNSCC cell differentiation trajectory-
related genes using single-cell differentiation trajectory analysis.
The Gene Ontology (GO) and KEGG enrichment analyses
suggested that the differences in tumor cell differentiation may
involve immune- and metabolic-related processes, especially PD-
L1 expression and the PD-1 checkpoint pathway. Next,
unsupervised clustering analysis based on these genes
comprehensively identified three special phenotypes: active
stroma, active metabolic, and active immune subtypes, named
Cluster-A, -B, and -C, respectively. Notably, Cluster-C had a
higher proportion of infiltrating immune cells compared to the
other two groups, which mainly related to higher anti-tumor
immune cell infiltration, such as CD8+ T cells, DCs, and NK
cells, and lower tumor-promoting immune cell infiltration, such
as Tregs and gamma delta T (Tgd) cells. The immune cell
infiltration network also reflected the denser immune cell
interactions in Cluster-C. The immune cell infiltration
characteristics of Cluster-C contributed to better survival. In
contrast, Cluster-A involved stromal activation accompanied by
an immune desert phenotype. We observed that Cluster-A had
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higher cancer-associated fibroblast (CAF) cell infiltration,
endothelial cell infiltration, and activation of pro-tumor
biological processes, such as the TGF-b response, EMT, Wnt,
and hypoxia pathways. The suppressive activity of T cells
promoted the immune escape and progression of tumors in
Cluster-A, which also explained the poorer survival in Cluster-A.
In accordance with the abundant immune cell infiltration in
Cluster-C, we also found that Cluster-C had higher immune
checkpoint-related gene expression levels, such as CD274 and
PDCD1 levels. The SubMap algorithm also indicated that
Cluster-C had better PD-1 inhibitor responses. However,
further clinical trials are needed to assess anti-CTLA4 therapy
for Cluster-C patients compared to Cluster-A and -B patients.
TGF-b signaling has been shown to play an important role in the
EMT pathway and is considered as an important step in tumor
progression. We thus speculate that the high activation state of
EMT and the TGF-b pathway in Cluster-A weakened the
response rate to cancer immunotherapy.

Cluster-B is a unique subtype of HNSCC characterized by
high levels of metabolic processes, which mainly included amino
acid and lipid metabolic processes. These remarkable metabolic
characteristics indicate that patients in Cluster-B may benefit
from metabolic therapy. We also noticed that Cluster-B involved
an immune desert phenotype characterized by high levels of
metabolic processes, unlike Cluster-A characterized by stromal
activation. In recent years, studies on metabolic reprogramming
of HNSCC during immune escape have shown that cancer cells
can evolve and develop compensatory metabolic changes to
escape death. In light of this, systemic manipulations to direct
the tumor cell metabolic status to the normal cell status may
reduce the malignancy (39–41). Studies have shown that
metabolic therapy for certain metabolic processes provides an
alternative for chemotherapy-resistant patients. Studies have also
shown that glucose metabolism plays an important role in the
occurrence and development of HNSCC. For example,
metformin is associated with the prevention of HNSCC (42,
43). Some important metabolic pathways in our study were
tryptophan metabolism, primary bile acid biosynthesis, alpha
linoleic acid metabolism, and N-glycan biosynthesis. These
pathways were correlated with the survival of HNSCC patients
(based on the random survival forest ranking) and may provide
new insights for future metabolic therapies.

As tumor heterogeneity is focused on in recent years,
researchers have been paying increasing attention to the so-
called tumor immunological phenotype. According to the spatial
distribution of T-cell infiltration in the TME, tumors were
divided into different immune profiles including hot tumor
and cold tumors (44). Immune-inflamed tumors, also named
hot tumors, are mainly characterized by high CD8+ T cells
infiltration and expression of PD-1/PD-L1 (45). Immune-
excluded tumors and immune-desert tumors can be described
as cold tumors. In immune-excluded tumors, CD8+ T cells
localize only at invasion margins and do not efficiently
infiltrate the tumor. In immune-desert tumors, CD8+ T cells
are absent in the tumor. In addition to poor T-cell infiltration,
cold tumors are characterized by low PD-1/PD-L1 expression
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(45). Hot tumors also have a strong infiltration of pre-existing
immune cells (e.g. CD8+, DCs, Natural killer immune cells) that
facilitate clearance of tumor cells (46). A clinical trial indicated
hot tumors have significantly higher expressions of PD-1 and
PD-L1 in comparison to cold tumors, they might be more prone
to immune checkpoint inhibitors treatments (47). Our results
also confirmed that Cluster-C corresponds to abundant CD8+T
cell infiltration and highly expressions of PD-1/PD-L1 compared
to Cluster-A and Cluster-B. More importantly, Cluster-C
characterized by hot tumors has a higher response rate to
immune checkpoint inhibitors treatments.

We also analyzed the genomic and epigenetic alterations in the
three subtypes. Cluster-C had a lower somatic mutation rate than
the other two groups. A pan-cancer study showed that the
prognostic value of TMB varies across different cancer types (48),
which is consistent with our study. Cluster-C, which had a lower
TMBlevel, hadhigher survival and immunecell infiltration than the
other two groups. A study also revealed that the KL, CCR7, LGR5,
and RORB gene expression is associated with low TMB and a
favorable prognosis, while immune cell infiltration is related to
mutations in these four hub genes (49). As an epigenetic
abnormality that can occur in tumors, DNA methylation is
considered to be correlated with tumor immune escape signatures
(50). In our study, Cluster-C, which had high DNA methylation
levels, had high immune cell infiltration levels, which suggests that
high DNA methylation levels may promote the infiltration of
immune cells in HNSCC. Studies have shown that BCNV can be
an important immunogenic activator that promotes the infiltration
of immune cells (51, 52). Our results confirmed that patients in the
immuneactivationgroup (Cluster-C)had a lowerBCNVcompared
to patients in the immune desert groups (Clusters-A and -B) in
HNSCC. Altogether, our results showed different immune
phenotypes have different genomic characteristics.

To further explore the immunity/metabolism/stemness
phenotype genes associated with cell differentiation trajectories,
WGCNAwas performed. Three unsupervised clustering analyses
showed that the immunity phenotype (ImmuneScore)-,
metabolism phenotype (tryptophan metabolism)-, and
stemness phenotype (mRNAsi)-related genes clustered into
three phenotype subtypes, respectively. Each phenotype
subtype had unique immunity/metabolism/stemness features,
contributing to different prognoses. This suggested the
potential influence of tumor cell differentiation trajectories on
immunity, metabolism, and tumor stemness. However, the
heterogeneity and complexity of individual patients with
different HDRG subtypes can easily be ignored; therefore, we
constructed an HDRG scoring system designated HCDscore to
quantify the differentiation pattern using a series of machine
learning algorithms. As expected, HCDscore had many profound
clinical implications. First, it was related to tumorigenesis and
progression; specifically, it was significantly negatively correlated
with anti-tumor immune processes, and positively related to
oncogenic signal pathways, such as EMT, Wnt, and hypoxia
signaling pathways. Second, there were significant differences in
HCDscore between the different molecular subtypes. Third,
HCDscore was an independent prognostic factor and exhibited
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higher prediction accuracy than other clinical parameters in
HNSCC. Fourth, HCDscore as a biomarker for predicting
immunotherapy response was indicated by analyses involving
the TIDE, TIS, and SubMap algorithms. Additionally, HCDscore
could also predict drug sensitivity, so it could be used to guide
chemotherapy use. Lastly, we combined HCDscore and clinical
variables to construct a prognostic nomogram to provide a visual
method for predicting OS in HNSCC patients.

However, this studyhas several limitations. First, although a series
of algorithmswere used to reduce the potential batch effects asmuch
as possible, the use of the three largest HNSCC databases inevitably
led to the neglect of the existence of heterogeneity in the different
cohorts. Second, although verified separately in independent cohorts,
the results require further large-scale prospective clinical studies to
evaluate the effectiveness and practicality of the HCDscore cutoff
value. In the current study, the comprehensive evaluation of the
cellular, molecular, and genetic factors associated with TME
infiltration patterns has yielded several insights that shed light on
how tumors respond to immunotherapies and may guide the
development of immunotherapy, metabolism, and other
drug strategies.
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Supplementary Figure S1 | Dimensionality reduction analysis for scRNA-seq data
(A) PCA analysis based on scRNA-seq data in HNSCC samples. (B) PCA identified
the 15 PCs with an estimated P value < 0.05. (C) The topmarker genes from identified
differential analysis of each cell cluster are displayed in the heatmap. The colors from
purple to yellow indicate the gene expression levels from low to high.

Supplementary Figure S2 | Validation of molecular subtypes in multiple cohorts.
(A) Heatmap shows a representative top10 genes for Cluster-A, Cluster-B and
Cluster-C. (B) Consensus matrix and CDF plots using unsupervised clustering in
TCGA-HNSC (left), GSE65858 (middle) and GSE41613 (right) cohorts, respectively.
(C) Survival analyses for the three clusters in TCGA-HNSC (left), GSE65858 (middle)
and GSE41613 (right) cohorts, respectively. (D) Violin plot shows the difference of
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tumor purity in three clusters. (E) Kaplan–Meier curves for each type of six stemness
indices using the Log-rank test. The high or low level of stemness indices was
defined by optimal cut-off using “survminer” R package.

Supplementary Figure S3 | Genomic and epigenetic features. (A) The summary
of the overall distribution of mutation in HNSCC including the classification of
variants, the types of the variants, the type of nucleotide change, the distribution of
the variants and top 20 genes with the highest counts of the variants. (B) Boxplot
shows the difference of levels of tumor mutation burden in the three clusters using
the Kruskal–Wallis test. (C) CpG sites are displayed for cluster-A, -B and -C. Hypo-
and hyper-methylation CpG sites are represented by red and blue bars.

Supplementary Figure S4 | WGCNA and identifying phenotype-related subtypes.
(A) Hierarchical clustering dendrograms of identified co-expressed genes in modules.
The branches of the cluster dendrogram correspond to the different gene modules.
Five merged modules were identified. (B) The consensus matrix heatmaps for k=3
obtained by consensus clustering. (C) Kaplan–Meier curves using the Log-rank test
for Immunitycluster-A, -B and -C. (D) The difference of metabolic pathways among
Metabolismcluster-A, -B, -C groups. (E) Forest plot using multivariate cox regression
analysis of HCDscore and different clinical feature in HNSCC.

Supplementary Figure S5 | Histological type analysis and verification of the
accuracy of the nomogram. (A) Survival analyses for the low- and high-HCDscore
groups in TCGA-HNSC, GSE65858 and GSE41613 cohorts, respectively. The
optimal cutpoint for the levels of HCDscore was determined by R package
“survminer”. (B) Distribution of HCDscore, different clusters of survival status and
survival time between the high- and low-HCDscore groups. Heatmap shows the
expression levels of the 12 hub genes for HNSCC patients. (C) GSVA enrichment
analysis shows the activation states of metabolism-related biological pathways in
high- and low-HCDscore groups. (D) The correlation between TIDEscore or
TISscore and HCDscore by Spearman correlation analysis. (E) Forest plot of the
differentially mutated genes between high- and low-HCDscore groups. (F) Alluvial
diagram shows the changes of cluster, histology type, HCDscore level and survival
outcomes. (G) The proportion of HNSCC patients with different clinical
histopathological type. (H) Boxplot shows differences in HCDscore among different
clinical histopathological type in HNSCC patients. The statistical difference of
clusters was compared using the Kruskal–Wallis test. (I) Pie chart of the HNSCC
patients with metastasis distribution among three clusters. (J) Survival analyses for
HNSCC patients with each clinical histopathological phenotype using Kaplan–Meier
curve and Log-rank test. (K) Survival analyses for each histology type including in
HNSCC patients using Kaplan–Meier curve and Log-rank test. (L) The calibration
plot for internal validation of the nomogram.

Supplementary Table S1 | Prognostic analysis of 159 HNSCC cell
differentiation-related genes using a univariate Cox regression model.

Supplementary Table S2 | The clinical baseline and endpoint data of each
HNSCC sample in TCGA-HNSC, GSE41613 and GSE65858 cohorts.

Supplementary Table S3 | 20 prognosis-related metabolic pathways selected
by the randomSurvivalForest algorithm.

Supplementary Table S4 | 20metabolic pathways and prognosiswas independently
analyzed in Cluster-A, Cluster-B, and Cluster-C using the univariate cox regression.

Supplementary Table S5 | Amplification or deletion genes for copy number
profiles in cluster-A group.

Supplementary Table S6 | Amplification or deletion genes for copy number
profiles in cluster-B group.

Supplementary Table S7 | Amplification or deletion genes for copy number
profiles in cluster-C group.

Supplementary Table S8 | Immune phenotype-related genes, metabolism
phenotype-related genes, and stemness phenotype-related genes selected byWGCNA.

Supplementary Table S9 | Identification of hub cell differentiation-related genes
using multivariate Cox regression.
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