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a b s t r a c t

Purpose: Diabetes is accompanied by fundamental rearrangements in redox homeostasis. Hyperglycemia
triggers the production of reactive oxygen and nitrogen species which contributes to tissue damage in
various target organs. Proliferative diabetic retinopathy (PDR) is a common manifestation of diabetic
complications but information on the possible role of reactive intermediates in this condition with
special regard to the involvement of the vitreous in PDR-associated redox alterations is scarce.

The aim of the study was to determine key parameters of redox homeostasis [advanced glycation
endproducts (AGE); protein carbonyl and glutathione (GSH)] content in the vitreous in PDR patients.
Methods: The study population involved 10 diabetic patients undergoing surgery for complications of
proliferative diabetic retinopathy and 8 control (non-diabetic) patients who were undergoing surgery for
epiretinal membranes. Vitreal fluids were assayed for the above biochemical parameters.
Results: We found elevated levels of AGE in the vitreous of PDR patients (812.10 vs 491.69 ng AGE/mg
protein). Extent of protein carbonylation was also higher in the samples of diabetic patients (2.08 vs
0.67 A/100 μg protein). The GSH content also increased in the vitreous of PDR patients as compared to
the control group (4.54 vs 2.35 μmol/μg protein), respectively.
Conclusion: The study demonstrates that diabetes-associated redox alterations also reach the vitreous
with the most prominent changes being increased protein carbonylation and increased antioxidant le-
vels.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Diabetes is one of the most prominent diseases in the world
and in recent decades its incidence reached “epidemic” propor-
tions. According to WHO the global prevalence of diabetes is 9% of
adults aged 18 years or more [1]. In contrary to common belief the
diabetes-related medical and health care problems and the asso-
ciated societal challenges are not restricted to wealthy societies as
indicated by the fact that 80% of diabetes deaths occur in middle or
low-income countries [2].

While the efficient treatment of the disease itself especially
that of insulin resistance in type 2 diabetes cannot be considered
as a solved medical problem, it is the management of diabetic
complications (e.g. vasculopathy, neuropathy, nephropathy) that
truly represents an unmet medical need. The eye is an important
target organ often affected by diabetic complications with diabetic
B.V. This is an open access article

Chemistry, Faculty of Medi-
retinopathy being the leading cause of blindness in the developed
countries [3]. In 5–10% of diabetes patients proliferative diabetic
retinopathy (PDR) develops [4] affecting mostly type I diabetics.
PDR is one of the most severe diabetic complications [5] char-
acterized by abnormally proliferating retinal blood vessels, neo-
vascularization and cell proliferation [6]. It often leads to vitreal
bleedings and tractional retinal detachment culminating in severe
deterioration of vision [7].

Several mechanisms [e.g. genetic factors, increased vascular
endothelial growth factor (VEGF) production, altered extracellular
matrix architecture, redox signaling] have been demonstrated to
underlie angiogenesis, collateral vessel formation and increased
permeability observed in PDR [8–10]. Production of various re-
active oxygen and nitrogen species (ROS and RNS, respectively)
have been shown to occur in diabetic tissues including the retina
[11,12]. ROS have also been implicated in diabetes-associated an-
giogenesis in the retina and are considered important contributors
to diabetic retinopathy [13,14].

In our present study we set out to characterize the redox en-
vironment in the vitreous humor of PDR patients. As indicator of
glycemic control we measured AGE, as a sign of oxidative damage
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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we determined protein oxidation, whereas the antioxidant status
has been assessed by measuring glutathione levels.
2. Materials and methods

2.1. Patient groups and tissue samples

All procedures performed as part of this study were in ac-
cordance with the ethical standards of Semmelweis University and
with the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. The study has been approved by
ETT-TUKEB (Scientific and Research Committee of the Medical
Research Council, Hungary) under protocol number: 9683-1/2012/
EKU. Informed consent was obtained from all individual partici-
pants included in the study.

The study population involved diabetic patients (n¼10;
6 males and 4 females) with an average age of 54 (range 34–69)
and the control group (n¼8; 2 males and 6 females) operated with
epiretinal membranes. Average age of control patients was 72
(range 67–80). In the diabetes group (7 type 2 diabetic patients
and 3 type 1 diabetic patients with all but one patient under in-
sulin treatment) the disease has persisted for an average of 17.7
years (2–34) and surgery was performed due to complications of
proliferative diabetic retinopathy (bleeding, retinal ablation, pro-
liferation bundles). With regard to the higher average age of
control patients it is important to note that according to our cur-
rent understanding, the age of the diabetic patients does not sig-
nificantly affect the phenotype of diabetic retinopathy [15].
Moreover, it has also been reported that total protein carbonyl
levels don’t correlate with age [16] and the ophthalmological
features of diabetic retinopathy are independent from the type of
diabetes [17].

Undiluted vitreal samples were obtained by pars plana vi-
trectomy and samples were stored in eppendorf tubes at �80 °C
until use.

2.2. Determination of Advanced Glycation End Products (AGE)

Amount of glycated proteins was determined using the Oxi-
Select Advanced Glycation End Product Competitive ELISA Kit (Cell
Biolabs, Inc., San Diego) following the manufacturer's instructions.

2.3. Protein carbonylation

ROS and RNS can modify amino acid side chains of proteins to
carbonyl (aldehyde or ketone). For protein carbonyl determina-
tions, each sample was diluted with distilled water to reach a
concentration of 20 μg protein in 200 μl. Then 50 μl of 80% tri-
chloroacetic acid (TCA) solution was added, samples were vor-
texed and incubated on ice for 5 min. After centrifugation at
13,000� g for 2 min, supernatants were removed and pellets were
resuspended in 500 μl ice-cold acetone. Incubation for 5 min at
�20 °C was followed by another centrifugation at 13,000� g for
2 min. Acetone was removed and pellets were dissolved in 20 μl
distilled water and used for protein carbonyl detection using
OxyBlot Protein Oxidation Kit (Merck Millipore, Budapest, Hun-
gary) following the manufacturer's instructions. After completion
of the derivatization step, the obtained dinitrophenol (DNP) pro-
duct was quantified spectrophotometrically by measuring optical
density (OD) at 405 nm.

2.4. Glutathion assay

Samples were precipitated for 10 min with ice cold 10% TCA
solution. After centrifugation (5000 g, 4 °C) supernatant was used
for further analysis. The glutathione (GSH) assay was performed in
96-well plates. Potassium phosphate buffer (1 M) and o-phtha-
laldehyde (0.5%) were added to the samples and after 30 min in-
cubation at room temperature fluorescence was measured at 390/
460 nm. The mixture of supernatant and N-ethylmaleimide was
used as a blank for each sample. Standard curve was prepared with
GSH. Protein concentration was determined with the BCA (bi-
cinchoninic assay) method.

2.5. Statistical analysis

Concentration values of vitreous samples obtained from dia-
betic and non-diabetic patients were compared by Statistica 11.0
(Statsoft, Tulsa OK, USA) software using the Mann-Whitney U
Tests. Difference was considered significant if po0.05.
3. Results

3.1. Glycation products in the vitreous

Efficiency of glycemic control in diabetics is mirrored by serum
(and tissue) levels of AGEs [18]. AGEs are stable endproducts
formed in a non-enzyme catalyzed reaction between reducing
sugars such as glucose and amino groups of proteins (or lipids).
The Schiff base formed in this reaction may in turn undergo fur-
ther chemical rearrangements to form stable Amadori products.
Glycated proteins (e.g. glycated hemoglobin A1c) are extensively
used in the clinical praxis to provide information about serum
glucose levels of the past 6–8 weeks [19]. Since to our best
knowledge AGE levels have not yet been measured in the vitreous,
we set out to investigate whether increased glycation can also be
detected in the vitreous of PDR patients. We found increased AGE
levels in the vitreous of PDR patients (Fig. 1A) compared to control
samples (obtained from patients undergoing surgery for epiretinal
membranes) 812.10 vs 491.69 ng/mg protein (p¼0.058). This
finding indicates that glucose levels in the vitreous display similar
changes to that in the serum and other body compartments.

3.2. Oxidative stress in the vitreous

Oxidative stress is often defined as an imbalance between the
production and elimination of ROS and RNS. If the antioxidant
capacity of a tissue is not sufficient to prevent ROS/RNS hitting
biological targets then various oxidative and nitrative protein, lipid
and DNA modifications may occur [20–24]. Appearance of carbonyl
groups on amino acid side chains (typically those of proline, lysine,
arginine and threonine) is regarded as a sign of oxidative protein
damage that can be triggered by a variety of ROS and RNS species
[25]. Protein carbonyl formation has been shown to be an im-
portant marker in various oxidative stress paradigms [25] and to
contribute to cell dysfunction in various diseases including dif-
ferent types of diabetic cellular dysfunction [26,27].

Here we have determined protein carbonyl content of vitreous
samples (Fig. 1B). We found that protein carbonylation is sig-
nificantly increased in the samples of diabetic patients as com-
pared to control (2.08 vs 0.67 A405/100 μg protein; p¼0.017). This
finding indicates that oxidative stress is present in the vitreous of
diabetic patients and ROS/RNS species can react with proteins in
this compartment.

3.3. Antioxidants in the vitreous

In addition to the production of ROS and RNS the actual con-
dition and composition of the antioxidant repertoire is also a key
determinant of the redox state of a compartment. Therefore we



Fig. 1. Vitreal samples were collected from diabetic and control patients and ad-
vanced glycation endproducts (AGE) (A), protein carbonylation (B) and reduced
glutathione (GSH) content (C) have been determined as described in the Methods
section. Star signs indicate significant difference between groups (npo0.05, Mann-
Whitney U-Test).
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also set out to obtain information on how well the vitreous of
diabetics is equipped with antioxidants. We have determined the
concentrations of the major endogenous antioxidant glutathione
in the vitreal samples (Fig. 1C). We found that the levels of reduced
glutathione (GSH) were also significantly (po0.05) higher in
diabetic vitreous as compared to control (4.53 vs 2.34 μmol/μg
protein; p¼0.019).
4. Discussion

Even in case of close-to-ideal diabetes management, serum
glucose levels cannot always be kept at optimal levels. Temporary
glycemic swings may be sufficient to increase protein glycation in
the blood and in various tissues [28]. Several lines of evidence
indicate that in diabetes AGEs form in the eye and contribute to
diabetic complications [29]. This is most prominent in the retina
where antioxidant enzymes, transcription factors and mitochon-
drial proteins have been found to undergo glycation which may
impair their functions [30,31]. Thus protein glycation may con-
tribute to oxidative stress in the diabetic eye [32]. Our finding that
AGE levels increase in the vitreous suggests that glucose levels are
increased in this ocular compartment. Since metabolic exchange
and equilibration between systemic circulation and vitreous hu-
mor is considered to be slow [33], elevated vitreal AGE levels may
indicate occurrence of sustained hyperglycemic periods in our
study patients. By analogy to what we know about the mechanism
of oxidative stress in the retina [34], it may be plausible to hy-
pothesize that glycation of vitreal proteins may also contribute to
the development of vitreal oxidative stress.

Tissue oxidative stress is typically accompanied by oxidative
protein, DNA and lipid modifications [35]. We measured protein
carbonyl content as protein oxidation marker. Elevated protein
carbonyl levels in the vitreous of diabetic patients provide further
support for the hypothesis that the vitreous humor is no exemp-
tion from oxidative diabetic environment in the eye. Vitreous
humor abounds in a high variety of proteins with albumin and
type II collagen being the most notable ones [36]. Thus ROS/RNS
may hit protein targets with high probability.

In oxidative stress situations antioxidants are often depleted by
continuous attack of prooxidant stimuli [37]. Therefore we ex-
pected lower antioxidant activities in the vitreous of diabetic pa-
tients. In the contrary, we found that vitreal level of reduced
glutathione was increased in the diabetic patients. This may in-
dicate an adaptive response to increased ROS/RNS production just
like it has been reported for the extracellular antioxidant enzyme
superoxide dismutase in PDR [38]. Glutamate cysteine ligase, the
key enzyme of glutathione synthesis is under control of Nrf2, the
master regulator of redox homeostasis [39]. Therefore, sustained,
chronic oxidative stress may in the long-term induce an Nrf2-
mediated upregulation of GSH synthesis. To find out whether or
not this is the case requires further investigation.

Overall our study highlights significant rearrangements in the
redox homeostasis of human vitreal fluid of diabetic patients with
possible implications for the pathomechanism of PDR.
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