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Colorectal cancer (CRC) is the primary cause of cancer-related death worldwide;

however, specific and sensitive tools for the early diagnosis and targeted therapy

of CRC are currently lacking. High-throughput sequencing technology revealed that

gene expression of long-chain non-coding RNAs (lncRNAs) in a number of cancers

directly or indirectly interferes with various biological processes. Emerging evidence

suggests that lncRNAs regulate target genes and play an important role in the biological

processes of malignancies, including CRC. Many carcinostatic/oncogenic lncRNAs

have been identified as biomarkers for metastasis and prognosis in CRC; hence, they

serve as therapeutic tools. In this article, we systematically review the literature on the

disordered lncRNAs in CRC from four aspects: DNA transcription, RNA level regulation,

post-translational level, and the translation of lncRNAs into polypeptides. Subsequently,

we analyze the mechanism through which lncRNAs participate in the biological process

of CRC. Finally, we discuss the application and prospects of these lncRNAs in CRC.
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INTRODUCTION

Long-chain non-coding RNA (lncRNA) is a transcript with a length >200 nucleotides. The
estimated number of lncRNA genes in the human genome is 16,000 (1). According to the relative
position of the lncRNA and protein gene in the genome, lncRNAs are identified into five types: sense
lncRNAs, antisense lncRNAs, bidirectional lncRNAs, intronic lncRNAs, and intergenic lncRNAs
(also termed long intergenic non-coding RNAs [lincRNAs]) (2). Recently, lncRNAs have been
demonstrated to exert a crucial effect on a variety of biological activities by affecting gene expression
in different types of cancer (3, 4). Furthermore, abnormal expression of lncRNAs is associated
with invasion, metastasis, chemoresistance, and resistance to radiation in CRC (5, 6). For example,
lncRNA H19 modulates the expression and transcription of cyclin genes, facilitates the levels of
epithelial-mesenchymal transition (EMT)-related genes, and plays an essential role in metastasis,
apoptosis, autophagy, and signal transition in CRC (7–9). The upregulation of lncRNA H19 is
deemed to be a key prognostic element for patients with CRC (7). In this article, we highlight the
role of lncRNAs in CRC and the biological processes involved in CRC. In addition, we emphasize
that lncRNAs are highly promising biomarkers for CRC and are expected to be used in the
clinical setting.
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MECHANISMS OF LNCRNAS IN CRC

lncRNAs can modulate gene expression in assorted aspects
(e.g., chromosomal remodeling, transcription, and post-
transcriptional processing) (10, 11). In this article, we elaborate
on the mechanism through which lncRNAs act on gene
expression in CRC in four aspects (DNA transcription, RNA
level regulation, post-translational level, and self-translation of
lncRNAs into polypeptides), which in turn affect the biological
behavior of CRC (Figure 1).

lncRNAs and DNA Transcription
It is well-established that the DNA transcription process is
mainly divided into two steps. The first step is the synthesis
of the original transcription products (including the initiation,
extension, and termination of transcription). The second step is
the post-processing of these transcription products to transform
them from their inactive form into mature RNA with biological
functions. This part mainly reviews the functions of lncRNAs in
themodulation of the first step of DNA transcription. The second
step of DNA transcription at the RNA level will be discussed in
the succeeding part.

Depending on the subcellular position and origin of lncRNAs,
they can be divided into nuclear lncRNAs and mitochondrial
lncRNAs (12). Numerous lncRNAs reside in the nucleus,
concentrated in particular subnuclear chambers, or abundant
in chromatin (12). It was described that nuclear lncRNA is
associated and involved in several biological processes that affect
DNA transcription (e.g., chromatin organization, transcriptional
and post-transcriptional levels, and serve as structural scaffolds
for nuclear domains) (1). Numerous nuclear lncRNAs are
associated with chromatin; nuclear lncRNAs are classified into
three basic types: chromatin-rich RNAs, chromatin-associated
lncRNAs, and GAA repeat-containing RNAs (12). Some nuclear
lncRNAs contain both DNA- and protein-binding motifs, which
can carry polycomb repressive complexes lacking sequence-
specific DNA binding motifs to specific genomic loci, thus
altering the transcriptional activity of genes on chromosomes.
For example, in hepatoma cells, transcription of the T-cell
factor 7 (TCF7) gene is facilitated by lncRNA TCF7 via the
recruitment of SWI/SNF complexes with the lncRNA TCF7
promoter (13). Likewise, recent research manifested that lncRNA
TCF7 recruits BAF170 (SWI/SNF-related, matrix-associated,
actin-dependent regulator of chromatin subfamily c member 2)
to stimulate the TCF7 promoter and alter the expression of
TCF7 in CRC (14). The data indicated that overexpression of
lncRNATCF7 can promote the occurrence ofmalignant behavior
of CRC cells transfected with small interfering-lncRNA TCF7,
thereby reversing the effect of lncRNA TCF7 on migration and
invasion of CRC cells (14). The interplay between lncRNAs and
DNA-binding proteins prevents these proteins from entering
the DNA recognition element, thus inducing or inhibiting
transcription dependent upon the nature of the target protein
(15). In this regard, it becomes clear that lncRNA growth
arrest-specific transcript 5 (GAS5) can cooperate with the DNA
binding site of the glucocorticoid receptor and compete with
the glucocorticoid response element on DNA. This prevents the

glucocorticoid receptor from entering the target DNA (16). Based
on quantitative reverse transcription polymerase chain reaction
(qRT-PCR), lncRNA GAS5 was shown to be downregulated in
CRC (17). The expression of lncRNA GAS5 correlates with
the degree of differentiation, metastatic capacity, and stage of
lymph node metastasis (17). Moreover, the reduced expression of
lncRNAGAS5 accelerates cellular proliferation and angiogenesis,
influences the cell cycle and apoptosis, and is a prognostic
biomarker of CRC (18, 19). Nevertheless, in a recent observation,
it was demonstrated that lncRNA GAS5 conduces to lymphatic
metastasis of CRC (19). Additionally, using qRT-PCR, Liu et al.
detected upregulation of lncRNA GAS5 and downregulation of
miR-221 in CRC (20). Surprisingly, the level of lncRNA GAS5 is
also related to clinical and pathological features (20). Therefore,
the mechanism of lncRNA GAS5 in CRC warrants further study
and confirmation.

Similarly, lncRNA P21-associated non-coding RNA DNA
damage-activated (PANDA) interacts with the transcription
factor nuclear factor Y-box A to reduce the occupancy of nuclear
factor Y-box A at the chromatin-containing target gene (21).
Studies have found that the expression of lncRNA PANDA is a
predictor of prognosis in patients with CRC. Moreover, lncRNA
PANDA is a vital risk factor affecting the lifetime of these patients
(22). Furthermore, the results of a multivariate analysis implied
that the expression of lncRNAPANDA is a factor that can directly
affect the prognosis of CRC, while in vitro studies suggested
that lncRNA PANDA may promote CRC transfer via the EMT
pathway (23). lncRNAs activates or inhibits transcription by
a local action (near its transcriptional site [cis-regulation])
or a distal action (a site located on another chromosome
[trans-regulation]). lncRNAs regulate transcription by affecting
transcription factor (TF) activity. A published study identified the
function of nuclear lncRNAs inmodulating the level of the tumor
suppressor protein p53 (24). In CRC, lncRNA p53 upregulated
regulator of p53 levels (PURPL) blocks the assembly of the
Myb-binding protein 1A (MYBBP1A)-p53 complex by binding
to the p53-stabilizing protein MYBBP1A, thereby weakening
the cell bank of p53 (24). In this instance, lncRNA PURPL
indirectly regulates transcription by modulating the expression
of principal TF, p53 (24). lncRNAs can participate in direct
transcription by cooperating with transcriptional complexes or
DNA components. RNA-binding proteins (RBPs) can cooperate
with single- or double-stranded RNA and affect the post-
transcriptional modulation of corresponding gene expression
(25). Notably, some RBPs can be used as transcriptional
regulators, while lncRNAs can regulate their activity. LncRNA
colon carcinoma-1 (OCC-1) regulates large amounts of mRNA
at the post-transcriptional level by affecting the stability of
RBP human antigen R (26). Consequently, lncRNAs may be
involved in DNA transcription in CRC through an interplay with
chromatin regulatory proteins, DNA-binding proteins, and cis or
trans elements.

RNA Level Regulation
LncRNA is a non-negligible element in the regulation of the
progression of CRC at the RNA level, mainly composed of
mRNA and microRNA (miRNA). Regarding the regulation
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FIGURE 1 | Regulatory mechanisms of lncRNAs that may be associated with CRC. SWI/SNF (chromatin remodeling complex); BAF170 (SWI/SNF-related,

matrix-associated, actin-dependent regulator of 67 chromatin subfamily c member 2); lncRNA TCF7 (lncRNA T-cell factor 7); TFs (transcription factors); RISC

(RNA-induced silencing complexes); SF (splicing factor); hnRNP1 (heterogeneous nuclear ribonucleoprotein 1).

of miRNAs by lncRNA, some scholars concluded four ways
in which lncRNAs interact with miRNAs, namely host genes
as miRNAs, miRNA instability, mRNAs that compete with
miRNAs, and capture of miRNAs (27). Firstly, lncRNAs can
serve as a precursor sequence of miRNAs. By existing data
analysis, some lncRNAs have been discovered to act as host
genes of miRNAs (28), such as lncRNA plasmacytoma variant
translocation 1 (PVT1) and lncRNA AK058003 (29). Wang et al.
used the Gene Expression Omnibus database, clinical sample
measurements, and further multivariate analysis to conclude that
the expression of lncRNA PVT1 is negatively correlated with
prognosis and the increased level of lncRNA PVT1 is the main
factor triggering CRC progression (30). Moreover, knockout of
lncRNA PVT1 in CRC cells resulted in inhibition of invasion,
migration, and proliferation. Fan et al. discovered that knocking
out lncRNA PVT1 may reverse multidrug resistance in CRC
cells (31). Secondly, miRNAs have a negative impact on the
stability of lncRNA. For instance, the let-7 family binds to
the RBP HuR (32), which reduces the stability of lncRNA p21
(33). The level of lncRNA p21 is reduced in CRC cells and
tissue samples (34, 35). A study showed that miR-451 regulates
lncRNA p21 delivery, thereby inhibiting β-catenin signaling and
the oncogenicity of CRC stem cells (36). Thirdly, lncRNAs are
considered to regulate the expression of miRNAs through linking
with miRNAs or their target. LncRNA beta-secretase 1 antisense
RNA (BACE1AS) can inhibit the target of miR-485-5p BACE1

by miR-485-5p, thereby alleviating the inhibition of BACE1
(37). The last and common way is that lncRNA, which is a
competitive endogenous RNA (ceRNA), plays a sponge role in
competitively binding miRNAs to inhibit their binding activity.
Through high-throughput sequencing technology, a number of
studies investigating lncRNA as ceRNA have been performed
(38, 39). This article summarizes the latest research on lncRNA
as a ceRNA in CRC (Supplementary Table 1).

In the aspect of mRNA, lncRNA regulation is mainly involved
in the modification of its stability and splicing. It is established
that the lifespan of mRNAs is considerably short, especially
for the oncogenes, such as cyclin D1 and c-Myc (40, 41).
Thus, once their mRNA stability is increased, it may give rise
to oncogenesis. In CRC cells, lncRNA Assisted Stabilization
of Transcripts (LAST) can interact with the CCHC-type zinc
finger nucleic acid-binding protein to modulate the stability of
cyclin D1 mRNA (42). Furthermore, the stability of c-myc is
selectively regulated by lincRNA-regulator of reprogramming
(lincRNA-ROR) (43). Researchers found that lincRNA-ROR is
upregulated in CRC cells and tissues, and further investigations
manifested that knockout of lincRNA-ROR advocates sensitivity
to radiation therapy against CRC (44). Alternative splicing
refers to the process in which eukaryotic cells (including
cancer cells) selectively splice different splice sites of precursor
mRNA to form various mature mRNAs. These mRNAs are
subsequently translated into multiple proteins with diverse
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biological functions (45). Hence, alternative splicing can affect
the origination and progression of cancer (46). Moreover, many
cis-acting elements and trans-acting factors are involved in the
regulation of splicing (47). The cis-acting elements of RNA
that participate in selective splicing include enhancers and
inhibitors. Heterogeneous nuclear ribonucleoprotein (hnRNP)
and serine/arginine-rich protein (SR protein) are trans-acting
factors (45). Thus, regulation of gene splicing is frequently
intricate. At present, an increasing body of evidence indicates
that lncRNAs may be a key factor in selective splicing (48).
The interaction of lncRNAs with hnRNPs may enhance their
combination with exon-splicing silencers or intron-splicing
silencer elements in mRNA alternative splicing (49–51). For
instance, lncRNA metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) can modulate alternative splicing of all
types of genes by linking to serine-arginine (SR) proteins, as well
as affecting their corresponding subnuclear localization (52). In
solid tumor cells, upregulation or depletion of lncRNAMALAT1
alters the splicing of pre-mRNA of several SR protein splicing
factor 1 (SRSF1) target genes (53, 54). In hepatic carcinoma,
knockdown of SRSF1 abolishes the carcinogenic characteristic
of cells upregulating lncRNA MALAT1 (55). In CRC, lncRNA
MALAT1 can bind to splicing factor proline and glutamine rich
(SFPQ) (also termed PSF [PTB-associated splicing factor]) and
enhance the release of polypyrimidine tract cooperating with
protein 2 (PTBP2) from the SFPQ/PTBP2 complex (56). A recent
report indicated that lncRNAs are associated with RNA precursor
processing (56). The lncRNA cancer susceptibility 9 (CASC9)
and hnRNP complexes affect AKT signaling and DNA damage
in HCC (57). HnRNPL is one of the proteins that stably bind to
the hnRNP complex, and together with other hnRNP proteins,
may exert a major effect on the formation, packaging, processing,
and function of RNA.

Post-translational Level
Mammalian lncRNAs regulate transcription; however, their
effects at the post-translational level is currently under
investigation. Numerous data have emerged indicating
that lncRNAs can influence gene epigenetics by recruiting
chromatin-modifying enzymes. For example, lncRNA HOX
transcript antisense intergenic RNA (Hotair) can be combined
with polycomb repressive complex 2, affecting cancer metastasis
(58). Under these circumstances, histone H3 lysine 27 (H3K27)
methylated state and gene expression are changed to advance
neoplastic invasion by lncRNA Hotair. Additionally, lncRNA
Hotair can be used as a scaffold to select histone-modifying
enzymes and affect the expression of specific genomes (59).
Therefore, inhibition of lncRNA Hotair leads to a decrease in
cellular invasion (59). LncRNAHotair was found in breast cancer
as a support for Hepatitis B X-interacting protein and lysine
demethylase 1, and is subsequently mediated by c-Myc (60).
When the level of human antigen R in cellular processes (e.g.,
cell senescence) declines, lncRNA Hotair also plays a scaffolding
role in protein ubiquitination (61). LncRNA Hotair forms a
complex with two E3 ubiquitin ligases Dzip3 (DAZ-interacting
zinc finger protein 3) and Mex3b (mex-3 RNA-binding family
member B) carrying an RNA binding domain. Moreover,

lncRNA Hotair also cooperates with respective ubiquitinated
substrates, Snurportin-1, and Ataxin-1 (61). Through advancing
the emergence of the complex, the ubiquitinated Ataxin-1 and
Snurportin-1 are advocated by lncRNA Hotair to enhance
their degradation. Furthermore, the level of lncRNA Hotair is
upregulated in CRC (62). Studies have shown that knockdown
of lncRNA Hotair markedly inhibits cellular proliferation and
the formation of clones, indicating that CRC neoplasia could be
accelerated by lncRNA Hotair (62, 63). EZH2 (enhancer of zeste
homolog 2), a histone methylase, an epigenetic modification
regulator, is up-regulated in CRC (64). Also, knockout of EZH2
considerably inhibits colony formation and cell viability. In
addition, RNA immunoprecipitation assays showed that lncRNA
Hotair combines directly with EZH2 in CRC (64). The lncRNA
Angelman (ANCR) syndrome chromosome region, which is
detected to be downregulated in CRC tissues and cells, can also
specifically bind to EZH2 to suppress progression (65). In breast
cancer, lncRNA ANCR syndrome chromosome region regulates
the stability of EZH2. It can promote ubiquitination of EZH2,
thus accelerating the degradation primarily by enhancing the
mutual effect of cyclin-dependent kinase 1 and EZH2. This
process increases the phosphorylation intensity of the two
specific threonine sites of EZH2 (66).

Self-Translation of lncRNAs Into
Polypeptides
Previously, lncRNAs were considered non-protein-encoded
transcripts; however, recent reports confirmed that lncRNAs can
also be translated into peptides, involved in cell metabolism and
tumor growth (67, 68). For instance, LINC00961 (a conserved
lncRNA) produces a polypeptide called “small regulatory
polypeptide of amino acid response” that inhibits the activity
of amino acid-mediated mechanistic target of rapamycin 1
(mTORC1) by lysosomes, thereby regulating post-injury skeletal
muscle regeneration (67). mTORC1 is involved in cellular
protein translation, metabolism, and growth (69, 70). It facilitates
cell growth (including tumor cells) by occluding destructive
metabolic pathways, such as autophagy (71), which functions
as the principal degradation pathway in eukaryocytes (72, 73).
Likewise, mTORC1 has been identified as the key factor of
EMT, metastasis, and motility of CRC (74). Receptor tyrosine
kinase phosphorylation is involved in the regulation ofmTORC1-
independent autophagy throughmTORC2 signaling of CRC (75).
A study revealed a circularly encoded 87-amino acid peptide
of the lincRNA p53 induced non-coding transcript (PINT)
induced by the long intergenic non-protein-encoding RNA p53,
which counteracts the proliferation of glioblastoma cells (68).
These studies suggest that the self-translation of lncRNAs into
polypeptides may exert a crucial influence on the evolvement
of CRC.

BIOLOGICAL FUNCTION OF lncRNAs IN
CRC

Numerous investigations have suggested that lncRNAs engage
with several cellular processes, which mainly affect proliferation,
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invasion, metastasis, autophagy, and drug resistance in CRC.
lncRNAs in CRC exert both tumor suppressive and pro-cancer
effects, which can be used as novel biomarkers for therapeutic
targeting and diagnosis (Figure 2).

Proliferation, Invasion, and Metastasis
Substantial evidence implies that lncRNAs participate in the
proliferation, invasion, and metastasis of CRC. The lncRNAs
that exert a promoting effect include lncRNA lung cancer
associated transcript 1 (LUCAT1), lncRNA small nucleolar RNA
host gene 6 (SNHG6), LINC00483, FAL1 (ATP-dependent RNA
helicase), and lncRNA urothelial cancer associated 1 (UCA1)
(76–80). The lncRNAs that play an inhibitory role comprise
lncRNA runt-related transcription factor 1-intronic transcript
1 (RUNX1-IT1), lncRNA tumor protein p73 antisense RNA 1
(TP73AS1), ENST00000547547, lncRNA heart and neural crest
derivatives expressed 2-antisense RNA 1 (HAND2-AS1), etc.
(81–84). Some lncRNAs act as ceRNAs to affect proliferation,
invasion, and metastasis in CRC (77). Some lncRNAs influence
the proliferation, invasion, and metastasis of CRC through
Wnt/β-catenin (63, 85), nuclear factor-κB (86), p38 mitogen-
activated protein kinase (86), transforming growth factor-
β/Smad (87), and other classical signaling pathways (88). Both
signaling pathways and ceRNAs affect these processes in CRC.
In Supplementary Table 2, we summarized the major tumor
suppressor and carcinogenic lncRNAs in CRC.

Autophagy
Autophagy is a cellular process in which cell contents (Cargo) are
transported to lysosomes and degraded. This process normally
removes proteins, organs, andmicroorganisms that are abnormal
in intracellular function (89). In addition, it plays a critical
role in maintaining the homeostasis of cells, tissues, and organs
(89). Disorders in autophagy can trigger a range of diseases,
including neurodegenerative diseases, inflammation, and cancer
(e.g., CRC) (73, 90). Many lncRNAs have been shown to affect
autophagy in tumor cells in CRC (Figure 3). For instance,
lncRNA HAGLROS (HOXD antisense growth-associated long
non-coding RNA opposite strand lncRNA) exerts a sponge
function inmiR-100 to target the expression of autophagy-related
5 (ATG5) for the regulation of autophagy in CRC cells (91).
Knockout of lncRNA UCA1 inhibits cell proliferation in CRC
and promotes apoptosis by modulating autophagy (92). LncRNA
carbamoyl-phosphate synthase 1-intronic transcript 1 (CPS1-
IT1) inhibits the progression and metastatic ability of CRC by
impeding autophagy via induction of hypoxia (93). LncRNA
H19 may be used as a ceRNA for the sponge miR-194-5p, and
studies have found that miR-194-5p directly target sirtuin 1
in CRC cells (9). The final results indicated that lncRNA H19
may affect resistance to 5-fluorouracil (5-FU) in CRC through
autophagy (9). Shan et al. found that knockout of the lincRNA-
POU domain, class 3, transcription factor 3 (POU3F3) gene
enhances autophagy in CRC cells (94).

Drug Resistance
Currently, chemotherapy and radiotherapy after surgical
resection are the most widely utilized treatment strategies for

CRC (95, 96). However, chemoresistance and resistance to
radiation remain major obstacles to the outcome of patients with
CRC. To date, research investigating lncRNAs has yielded some
results related to chemoresistance in CRC. For instance, lncRNA
antisense non-coding RNA in the INK4 locus (ANRIL) promotes
chemoresistance in CRC by modulating the expression of Let-7a
and interfering with the expression of ATP-binding cassette
subfamily C member 1 (ABCC1) (97). In CRC cells resistant
to cetuximab and their exosomes, the expression of lncRNA
UCA1 is noticeably upregulated (98). However, the influence of
UCA1 on the cetuximab-resistant CRC remains unclear (98).
The significant increase in lncRNA MALAT1 is revealed in cells
resistant to oxymatrine. However, to a certain extent, silencing
of lncRNA MALAT1 can reverse the EMT in cells resistant to
HT29 (99). Inhibition of LINC00473 reduced the resistance of
CRC cells induced by Taxol in vitro and restored the expression
of tumor suppressor miR-15a and chemotherapy-induced tumor
regression in vivo. These findings suggested that LINC00473
may play a role in CRC via miR-15a (100). Knockdown of
lncRNA BRAF-activated non-coding RNA (BANCR) may inhibit
the progression of CRC and stimulate the sensitivity of CRC
cells to adriamycin by acting on the miR-203/chromosome
segregation 1-like axis (101). In addition to the development
of resistance to the aforementioned chemotherapeutic drugs,
some researches have investigated the resistance of CRC to
other chemotherapeutic drugs, such as oxaliplatin, doxorubicin
(DOX), cisplatin, 5-FU, and methotrexate (MTX). In tissues and
cells of oxaliplatin-resistant CRC, lncRNA cancer susceptibility
15 (CASC15) is overexpressed, whereas its knockdown restores
the sensitivity of HT29 and HCT116 to oxaliplatin (102).
Knockout of lncRNA X inactive-specific transcript (XIST)
inhibits resistance to DOX in CRC by up-regulating miR-124
and downregulating serum and glucocorticoid-inducible kinase
1 (103). The level of XIST is markedly upregulated in CRC of
DOX resistance, while the level of miR-124 is reversed (103). In
CRC cell lines, knockout of lncRNA Hotair and upregulation of
miR-203a-3p lead to restrain of cellular proliferation and reduce
resistance to cisplatin (63). Notable, knockdown of lncRNA
PVT1 suppresses tumor formation and resistance to cisplatin in
CRC (104).

At present, the available literature has indicated that
lncRNAs promote the efficacy of chemotherapeutic drugs
against CRC. Nevertheless, lncRNAs have been found to exert
both promoting and inhibitory effects in 5-FU-resistant CRC.
LncRNAH19modulates resistance of CRC to 5-FU by autophagy
through sirtuin 1 (9). The reduced level of lncRNA prostate
cancer-associated ncRNA transcript 1 (PCAT-1) in CRC cells
inhibits motility, reduces their invasive capacity, and increases
sensitivity to 5-FU (105). LncRNA Hotair contributes to the
development of resistance to 5-FU by inhibiting miR-218 and
activating the nuclear factor-κB/thymidylate synthase signaling
pathway in CRC (106). Likewise, lncRNA colorectal neoplasia
differentially expressed (CRNDE) enhances proliferation and
resistance to 5-FU, as a result of Wnt/β-catenin signaling
mediated through miR-181a-5p in CRC (85). On the contrary,
lncRNA ENST00000547547 (a 434 bp lncRNA on human
chromosome12q15) reduces resistance to 5-FU in CRC cells by
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FIGURE 2 | Summary of lncRNAs involved in the biological function of CRC.

competitively binding to miR-31 (107). The decreased expression
of lncRNA solute carrier family 25 member 25-antisense RNA
1 (SLC25A25-AS1) promotes the proliferation of CRC cells,
resistance to 5-FU and DOX, and EMT (108). Ren et al. showed
that knockdown of lncRNA H19 increases the sensitivity of
HT-29 cells to MTX, whereas upregulation of lncRNA H19
increases resistance to MTX. These findings indicated that
lncRNA H19 is a contributive factor to the development of
resistance to MTX (109). LncRNA H19 mediates resistance to
MTX in CRC on condition that the Wnt/β-catenin pathway
is activated (109). Through the miR-186/CPEB2 axis, lncRNA
taurine upregulated 1 (TUG1) affects resistance to MTX in
CRC (110). Some studies indicated that lncRNAs are the key
factors in the development of resistance to radiation in CRC.
For example, lncRNA opa-interacting protein 5-antisense RNA
1 (OIP5-AS1) and dual specificity tyrosine phosphorylation
regulated kinase 1A (DYRK1A) are downregulated in radiation-
tolerant CRC cell lines (111). Moreover, studies using qRT-
PCR detected a meaningful increase in the expression of
lncRNA UCA1 in CRC tissues after radio-chemotherapy (112).
Downregulation of lncRNAUCA1 enhances the radio-sensitivity
of CCL244 cells by blocking colony formation and proliferation,
as well as promoting apoptosis through inducement of radiation
(112). Yang et al. found that lincRNA-ROR is upregulated

in CRC cell lines and tissue samples (44). They further
manifested that silencing of lincRNA-ROR increases sensitivity
to radiation therapy against CRC by suppressing cell viability
and facilitating apoptosis (44). Moreover, in xenotransplantation
models, the combination of specific knockout of lincRNA-ROR
and radiotherapy can markedly reduce tumor growth (44). Thus
far, some evidence suggests that lncRNA is a major factor
involved in the development of drug resistance in CRC.

DISCUSSION AND CONCLUSIONS

In this review, we introduce the recently reported mechanism
of lncRNAs in CRC, highlighting their biological importance
and therapeutic applications. CRC is characterized by a high
recurrence rate, intense metastatic potential, and low detection
rate; it is currently the second and third most common cause of
cancer-related death in men and women, respectively (113). As
mentioned earlier, an accumulating body of evidence suggests
that lncRNAs are vital for the proliferation, invasion, and
metastasis of CRC cells. These studies support the notion
that lncRNAs are critical therapeutic targets in advanced CRC.
lncRNAs are also functional regulators involved in autophagy
in CRC. Recently, scientists stated that autophagy may inhibit
the occurrence of cancer (114). Therefore, lncRNAs may be
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FIGURE 3 | Signaling mechanisms of lncRNAs engaged in autophagy in CRC. LncRNA HAGLROS (H19) as ceRNA sponges miR-100 (miR-194-5p) to repress the

degradation of ATG5 (SIRT1) mRNA by miR-100 (miR-194-5p), thereby accelerating autophagy and inhibiting the proliferation of CRC cells.

an important determinant of CRC. Furthermore, lncRNAs are
strongly linked to drug resistance in CRC. Thus, targeting
lncRNAs may reverse sensitivity to drugs in this setting.
Collectively, the evidence suggests that lncRNA represents a
very promising biomarker in patients with CRC. Moreover,
the lncRNA-mediated treatment of patients with CRC is
also encouraging.

lncRNAs are useful in non-invasive screening. Exosome
secretions occur in cells and body fluids (plasma, urine,
cerebrospinal fluid, saliva, etc.). Conveniently, there are many
sources of exosomes in vivo, and exosomes have potential
diagnostic value (115). Exosomes are characterized by favorable
bioavailability, distribution, and stability in vivo and in vitro,
as well as their ability to cross the blood-brain barrier, and
regulate gene expression of target cells by transferring miRNAs
and small interfering RNA. These characteristics render them
superior to other extracellular vesicles as potential therapies
(115). In addition, exosomes contain lncRNAs, and the exosome
lncRNAUCA1 can be separated from the blood serum of patients

with CRC (98). The circulating exosomes containing lncRNA
UCA1 can be used as an evaluation factor for the clinical
efficacy of cetuximab in patients with CRC. Notably, patients with
progressive disease/stable disease have significantly higher levels
of lncRNA UCA1 than those with partial/complete remission
(98). Besides, exosomes originated in cetuximab-resistant cells
can alter the expression of lncRNAUCA1 and enhance resistance
to cetuximab in CRC cells (98). This indicates that lncRNAs have
great potential as markers for the effective diagnosis and targeted
therapy of CRC.

However, a number of studies have two major limitations.
Firstly, most studies focused on cells and tissues. Further
animal model investigations, human pathophysiological clinical
trials, and basic research studies are required to validate the
spectrum of lncRNAs as diagnostic indices and assess the
effectiveness of lncRNAs-based therapies in clinical practice.
Secondly, the specific mechanism through which lncRNAs
impact on CRC remains unclear. It is necessary to optimize the
experimental conditions and scientifically explore and analyze
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the relationship between lncRNAs and CRC with the help of
advanced experimental technology.
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