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Abstract. Future cyber-physical systems, like networks of autonomous
vehicles, will result in a huge number of collaborating systems act-
ing together on large-scale topologies. Modeling them requires captur-
ing timed and probabilistic behavior as well as structure dynamics. In
[9], we introduced Probabilistic Timed Graph Transformation Systems
(PTGTSs) as a means of modeling a high-level view of these systems
of systems and provided model checking support. However, given the
scale of emerging systems of systems and their often complex topolo-
gies, analyzing only small or medium size models using model checking
is insufficient. To close this gap, we developed a simulator for PTGTSs
that can import real-world topologies, automatically detect violations of
state properties, and handle the graph pattern matching as well as time
and probabilities efficiently so that complex large-scale topologies can be
considered.

1 Introduction

In future large-scale cyber-physical systems, such as networks of autonomous
vehicles, the interconnection of the autonomous systems via complex software
and networking will result in massive systems of systems where a huge number
of systems collaborate and act together on complex large-scale topologies.

Since these systems of systems are often real-time critical and exhibit prob-
abilistic phenomena like failures, modeling them requires capturing timed and
probabilistic behavior. In addition, structure dynamics needs to be taken into
account since the interconnections between autonomous subsystems may change
at runtime. Finally, given the scale of emerging systems of systems and their
complex topologies, the modeling must also allow for capturing the complex
large-scale topologies in which these systems will operate.

In [9], we introduced Probabilistic Timed Graph Transformation Systems
(PTGTSs) as a means for modeling a high-level view of these systems of systems
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and provided model checking support. However, with model checking, only small
or medium size models could be analyzed, which is insufficient since the small
models will (1) likely not exhibit all characteristics of complex topologies that
can lead to failures and (2) likely will not allow to study emergent phenomena
and failures that result from the interaction of many autonomous systems.

To close this gap and to enable the analysis of large-scale systems of sys-
tems, we developed a simulator for PTGTSs that can import complex real-world
topologies, can automatically detect violations of state properties, and handles
the graph pattern matching as well as the concepts of time and probabilities
efficiently. The simulator maps the application of rules of a PTGTS to the prob-
abilistic application of graph transformation (GT) rules and a dedicated time
management. Scalability is achieved by exploiting the local nature of changes
and by managing time in a way that avoids global updates.

Employing graph transformation systems (GTSs) and incremental graph pat-
tern matching techniques for the simulation of complex systems has been pro-
posed in [13]. A link between GTSs and discrete event simulation has been con-
sidered in [14]. Also, an extension of GTSs with stochastic behavior and related
simulators like GraSS [15] and SimSG [4] have been developed. However, to the
best of our knowledge, no simulator for GTS variants that support timed and
probabilistic behavior (like PTGTSs [9]) has been presented so far.

This tool paper is structured as follows. The preliminaries, such as a running
example and the PTGTS formalism, are introduced in Sect. 2. The simulator’s
concept is outlined in Sect. 3. An evaluation in Sect. 4 shows that the tool
can import complex real-world topologies, can automatically detect violations
of state properties, and can handle graph pattern matching as well as time and
probabilities so efficiently that complex large-scale topologies can be considered.
The paper is closed with a conclusion and an outlook on future work in Sect. 5.

2 Preliminaries

In this section, we introduce our running example, briefly recall the framework
of GTSs, and recap the formalism of PTGTSs. As a running example, we model
a scenario inspired by the RailCab project [12] where autonomous shuttles on a
track topology form a system of systems.

In PTGTSs, we use the formalism of typed graphs [5] to describe the states
of the systems and their structure. A graph G = (Gv,GEg,sq,tg) is given
by a set Gy of nodes, a set Gg of edges, and source and target functions
sg tg : Gg—Gy. Let G = (Gv,GE,SG,tg) and H = (Hv,HE,SH,tH) be
two graphs, then a graph morphism f : G — H is defined as a pair of mappings
fv : Gy — Hy, fg : Gg — Hg that are compatible with the source and target
functions, i.e., fy o s¢ =sgo fgp and fy otg =ty o fg.

Let TG be a distinguished graph, called a type graph. Then a typed graph
(G, type) consists of a graph G and a graph morphism type : G—TG. For
two given typed graphs G| = (G1, type;) and Gy = (Ga, type,), a typed graph
morphism [ : G} — G is a graph morphism f : G; — G2 that is compatible
with the typing functions, i.e., types o f = type;.
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Fig. 1. Shuttle scenario type graph and generated extensions (grey, see Subsect. 3.2).

The type graph of the running example is given in Fig. 1 (without the grey
extensions). In the context of this scenario, track nodes are connected to the
adjacent tracks by next edges. Shuttle nodes are located on tracks, which is rep-
resented by at edges. Shuttles can move forward on tracks being in DRIVE mode
or can stop resp. brake by changing into STOP resp. BRAKE mode. To avoid
collisions and unnecessary braking maneuvers, shuttles can communicate and
establish connections. For this, adjacent tracks are marked by Conflict nodes.

PTGTSs are typed over some type graph T'G containing at least a type node
Clock. Furthermore, for every graph G we use the function CN(G) = {n | n €
Gy A typey(n) = Clock} to identify in every graph the nodes used for time
measurement only. In the following, we call such identified nodes simply clocks.

The type graph in Fig.1 thus equips tracks with clocks needed for time
measurement to be able to control the time for rule applications.

The adaptation of graphs is realized using GT rules, which are to be under-
stood as local rule-based modifications defining additions and removals of sub-

structures. A rule p =L LKL Ris given by a span of injective typed graph
morphisms with the graphs L and R called the left-hand side and the right-hand
side of the rule, respectively. A match for a rule is a graph morphism from L to
the current graph G describing one option where the rule could be applied in G.
The transformation procedure defining a GT step is formally introduced by the
DPO approach [5].

According to [9], PTGTSs are a combination of Probabilistic Graph Transfor-
mation Systems (PGTSs) and Timed Graph Transformation Systems (TGTSs).
Similarly to PGTSs, transformation rules in PTGTSs can have multiple right-
hand sides where each of them is annotated with a probability. While the choice
for a rule match remains nondeterministic, the effect of a rule becomes probabilis-
tic. Similarly to TGTSs, each probabilistic timed graph transformation (PTGT)
rule has a guard formulated over clocks contained in the left-hand side of the
rule, which is used to control the rule application. Moreover, each rule contains
the information about clocks that have to be reset during the rule application.

A probabilistic timed graph transformation (PTGT) rule R is a tuple
(L, P, u, ¢, rc) where L is a common left-hand side graph, P is a finite set of
graph transformation rules with the left-hand side L, u € Dist(P) is a prob-
ability distribution, ¢ € #(CN(L)) is a guard over nodes of the type Clock
contained in L, and r¢ C CN(L) is a set of nodes of the type Clock in L to be
reset (see [9]).
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Fig.2. PTGT rule drive (a), atomic proposition collision (b), and invariant shut-
tleDrivelnvariant (c) of the shuttle scenario PTGTS in HENSHIN syntax.

In PTGTSs, we also employ negative application conditions (NACs) [7] and
attributes. They allow to increase the descriptive expressiveness of the rules and
can be added straightforwardly to the presented formalization.

The behavior of the shuttle scenario is modeled using 14 PTGT rules in
HENSHIN [3]. In the following, we only discuss one of them in more detail and
give an intuition for the other rules due to space restrictions (see more details
n [11]). Shuttles can drive alone or can build convoys to reduce the energy
consumption. The rule drive (see Fig.2a) allows a shuttle leading a convoy or a
shuttle driving without a convoy to move forward if there are no shuttles located
too close in front of it. The restrictions for the location of other shuttles are
given by NACs of the rule. To reflect real-time behavior, we require that moving
on a single track can take between 3 and 4 time units, which we express using
the corresponding guards and invariants, respectively, formulated over the track
clocks for the driving rules. For the rule drive in Fig. 2a, the corresponding guard
is given by the annotation ¢1.c > 3. For brevity, we refer to a clock ¢ linked to an
element e as e.c and omit the extra node c. After rule application, we refer to c as
e.c’. To measure the time spent on a track, we reset the clock of the track to which
a shuttle is moving when applying the rule drive (annotation t2.¢/ = 0). Other
rules of the scenario handle the connection attempts between shuttles as well as
situations when shuttles have to brake or stop. Some rules, such as the rules for
connection attempts, have higher priorities to ensure their timely application.
Furthermore, probabilistic effects are used to model connection failures.

State properties in the form of invariants and atomic propositions are both
given for PTGTSs as conditions (non-changing rules) over clocks, the satisfaction
of which can be checked for a given state. In the context of our shuttle scenario,
we consider an atomic proposition collision that is depicted in Fig.2b and that
identifies a collision whenever two shuttles are at the same track without being
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Fig. 3. Architecture of the PTGTS simulator.

connected. The invariant shuttleDrivelnvariant in Fig. 2c ensures that a shuttle
in mode DRIVE should not remain longer than 4 time units on a track (t.c <= 4).

A probabilistic timed graph transformation system (PTGTS) S is then a tuple
(TG, Go,vo, I, I, AP, prio) where TG is a finite type graph including the type
node Clock, Gy is a finite initial graph over TG, vg : CN(Gp) — R is the initial
clock valuation assigning the clock value 0 to every clock, IT is a finite set of
PTGT rules, I is a finite set of probabilistic timed invariants, AP is a finite set of
probabilistic timed atomic propositions, and prio : I — N is a priority function
assigning a priority to each rule (see [9]).

3 Simulator

In this section, we present the concepts behind our PTGTS simulator [11]. Each
PTGT rule is translated into multiple typed GT rules. During the simulation,
only specific GT rules must be applied to specific subgraphs. Structural matches
are marked to avoid searching large parts of the graph after a local change.
Our simulator consists of three active components highlighted in Fig. 3. The
rule generator creates GT rules from a PTGTS and the simulation engine selects
and applies these GT rules. The graph importer constructs input graphs based
on real-world public transport network topologies from OpenRailwayMap [10].

3.1 Simulation Engine

The simulation engine’s algorithm for applying GT rules is sketched in Fig. 4.
To select applicable rules and affected subgraphs, the engine keeps track of so-
called markers. The engine is implemented in Java. It uses the Eclipse Mod-
eling Framework (EMF) and an interpreter for story diagrams [6]. The inter-
preter allows for graph pattern matching starting with a fixed partial match,
which, together with the engine’s marker bookkeeping, makes the algorithm
incremental.
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Fig. 4. PTGTS simulation algorithm based on marking pattern matches.

Step 1: Add initial markers Patterns occurring in the input graph are marked
by generated FIND rules for PTGT rules, invariants, atomic propositions, and
NACs. Since the rules for NACs are applied first, NAC markers can be used in
other rules [2]. In the top example in Fig. 4, markers m;—ms are created.

Step 2: Apply a rule Out of the created markers, the engine selects one that
represents an enabled rule application with highest available priority and satis-
fied time bounds. Afterwards, it computes a new global time t; s.t. no invariants
are violated. Then, the engine uses a generated APPLY rule to apply the actual
PTGT rule at the marked pattern, and, finally, resets clocks. In the middle
example in Fig. 4, node h is deleted while node j and two edges are created.

Step 3: Update affected subgraph After a rule application, the subgraph
affected by the application (incl. all markers) is determined so that the neces-
sary updates to the markers can be conducted incrementally. As can be seen
in the bottom example in Fig.4, CHECK rules remove markers that became
invalid (e.g. ms), FIND rules mark new patterns with new markers (e.g. mg),
and UPDATE rules update the time constraints of remaining markers (e.g. my).

Termination. The simulation engine stops when no rules are applicable (due
to a lack of markers or due to violated invariants or time constraints) or when
an atomic proposition (e.g. collision from Fig.2b) is matched.

Handling of Timed Behavior. Simulating the timed behavior of a PTGTS
requires according to PTGTS semantics the advancement of all clock values
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whenever time elapses. To avoid changing a potentially huge number of clock val-
ues each time, our simulation engine only maintains a global simulation time %,.
Instead of a time value t(c), each clock ¢ in the model has a last reset time value
t(c). Whenever a rule mandates a clock reset for ¢, the last reset time value
tr(c) is set to the global simulation time t,. Whenever the time value t(c) is
needed to evaluate a guard or invariant, it can be computed as t(c) = t, —t,-(c).

To handle guards and invariants even more efficiently, they are translated
into lower and upper bounds, respectively. For example, the guard t1.c > 3 of
the rule drive (see Fig.2a) is translated into lower_bound = t,.(t1.c) + 3, which
can then be compared to the current global simulation time ¢,.

3.2 Generation of GT Type Graph and Rules

In this subsection, we describe the generation of the type graph and GT rules
based on the running example of the PTGT rule drive (see Fig.2a). The GT
rules are generated once and stored in the form of story diagrams [6].

Extended Type Graph. Markers for all possible pattern matches are added
to the type graph. Moreover, a last_reset attribute is added to the Clock node
in order to store the values of ¢, as well as lower and upper bound attributes to
marker types. Fig. 1 shows the type graph extensions for the PTGT rule drive
(see Fig. 2a). Similar extensions are made for all other rules but omitted here.

FIND: Identifying Pattern Matches. The FIND rules create markers for
pattern matches. Their left-hand side is equal to that of the respective PTGT
rule, with the exception that instead of NAC patterns, NAC markers are
employed. Similar FIND rules are generated for the NAC patterns themselves.
To ensure that NACs are found first, the ordering of FIND rules is stored in
the rule metadata. FIND rules also assign lower resp. upper time bounds to a
marker, which are computed from guards resp. invariants as described above.

drive_Marker
lower_bound

z = tlc.last_reset + 3
:> tle: Clock| |z : Shuttle "
t2 t3
al a
12: Track}L'le t1: Track’M> 12 Track}&{t.‘i : Track

APPLY: Applying a Rule. The APPLY rules are similar to the PTGT rules,
with the exception that they require a marker on the left-hand side and perform
clock resets. If a PTGT rule has more than one right-hand side, multiple APPLY
rules are created. Their probabilities are stored in the rule metadata.

t1: Track|-nezt t3: Track
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x : Shuttle t2¢ : Clock
mode = DRIVE last_reset = t,
; canConnect = true

la,t ai
’tl : Track}Lzm{ﬁ : T‘r'uck}M;

CHECK: Checking Completeness of Pattern Matches. The CHECK
rules remove markers for matches that have become invalid after a rule appli-
cation. A NAC of the whole original pattern ensures that unless the complete
pattern is found, the marker is deleted.

t3: Track t3: Track

t1: T’V‘(LL‘]{}%tQ : Track}LTi,

drive_Marker

T Shuttle"a—t>

! Empt
tl: Track}%ﬂ : Track F22t 43« Track || :> Pty

UPDATE: Updating Time Bounds. The UPDATE rules recompute lower
and upper bounds of markers affected by the update of last_reset attributes.

drive_Marker
lower_bound
z = tlc.last_reset + 3

j tle: Clock ||z : Shuttle "
. t2 t3
at aty
tl: Tmckw t2: Track}& t3 : Track

t3 : Track

{1 : Track 222312 : Track }—>’”““t

4 Evaluation

For evaluation, we constructed input graphs from the tram networks of four
different German cities, including Europe’s largest connected tram network in
Berlin, which we modeled with 9184 track nodes. We assumed a density of one
shuttle per 10 tracks and, in case of Potsdam, created an additional topology
with doubled density. For each topology, we generated three sets of initial shuttle
positions and ran each of these experiments three times, leading in total to 45
runs for up to 25.000 steps each (most ended earlier due to invariant violations).

We were able to use the simulator to improve the PTGTS by discovering
and analyzing situations where invariants were violated. These situations were
too complex to be efficiently discovered by our previous model checking app-
roach in [9] using PRISM [8] e.g. when a violation is caused by three shuttles
approaching two subsequent crossroads with a specific timing.

Also, we tested whether the average runtime for a simulation step does not
change according to a trend (i.e., it is stationary) after an initial interval. For
that, we ran three different stationarity tests (ADF, KPSS and PP, see [1]). All
tests showed statistically significant results (i.e., p-value < 0.05), except for a sin-
gle simulator run in Frankfurt where one of the three tests had a p-value of 0.09.
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Fig. 5. Distribution of runtime per simulation step after non-stationary first interval.

As can be seen in Fig. 5, when excluding the non-stationary first interval, the
size of our example models has no significant impact on the average runtime per
simulation step. However, the higher shuttle density appears to have an influence
on the runtime, which can be explained by a higher rate of rule applications for
the connection of shuttles that affect a larger subgraph.

5 Conclusion and Future Work

We presented a simulator for PTGTSs [9] and demonstrated that it can import
complex real-world topologies, automatically detect violations of state proper-
ties, and handle the graph pattern matching as well as the concepts of time and
probabilities so efficiently that complex large-scale topologies can be considered.
As future work, we plan to formally analyze and further improve the efficiency of
our tool, provide more mature tool support covering, in particular, the transition
to model checking, and support checking for more than state properties.

Acknowledgments. We thank our colleague Christian Medeiros Adriano who sup-
ported us in the statistical evaluation of the experiment results.
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