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Abstract

Technological advances have enabled us to profile multiple molecular layers at unprece-

dented single-cell resolution and the available datasets from multiple samples or domains

are growing. These datasets, including scRNA-seq data, scATAC-seq data and sc-methyla-

tion data, usually have different powers in identifying the unknown cell types through cluster-

ing. So, methods that integrate multiple datasets can potentially lead to a better clustering

performance. Here we propose coupleCoC+ for the integrative analysis of single-cell geno-

mic data. coupleCoC+ is a transfer learning method based on the information-theoretic co-

clustering framework. In coupleCoC+, we utilize the information in one dataset, the source

data, to facilitate the analysis of another dataset, the target data. coupleCoC+ uses the

linked features in the two datasets for effective knowledge transfer, and it also uses the

information of the features in the target data that are unlinked with the source data. In addi-

tion, coupleCoC+ matches similar cell types across the source data and the target data. By

applying coupleCoC+ to the integrative clustering of mouse cortex scATAC-seq data and

scRNA-seq data, mouse and human scRNA-seq data, mouse cortex sc-methylation and

scRNA-seq data, and human blood dendritic cells scRNA-seq data from two batches, we

demonstrate that coupleCoC+ improves the overall clustering performance and matches

the cell subpopulations across multimodal single-cell genomic datasets. coupleCoC+ has

fast convergence and it is computationally efficient. The software is available at https://

github.com/cuhklinlab/coupleCoC_plus.

Author summary

The recent advances in single-cell technologies have enabled multiple biological layers to

be probed and provides unprecedented opportunities to assay cellular heterogeneity. To

analyze the complex biological processes varying across cells, we need to obtain and inte-

grate different types of genomic features through flexible but rigorous computational

methods. The most important challenge for data integration is to link data from different

sources in a way that is biologically meaningful. In this work, we have developed a transfer
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learning method based on the information-theoretic co-clustering framework for the inte-

grative analysis of single-cell genomic data. This method utilizes the information from

one dataset to boost the analysis of another dataset, and it also uses the information of the

features that are unlinked in the two datasets. We demonstrate that our transfer learning-

based clustering method significantly improves clustering performance in single-cell

genomic datasets. Our results show that transfer learning is promising for the integrative

analysis of single-cell genomic data.

This is a PLOS Computational BiologyMethods paper.

Introduction

The advances in single-cell technologies have enabled the profiling of multiple molecular lay-

ers and have provided great opportunities to study cellular heterogeneity. These technologies

include single-cell RNA sequencing (scRNA-seq) that profiles transcription, single-cell ATAC

sequencing (scATAC-seq) that profiles accessible chromatin regions [1–3], single-cell methyl-

ation assays that profile methylated regions [4–7] and other methods. The datasets [8–10]

brought by these technologies lead to increasing demands for computationally efficient meth-

ods for processing and analyzing the data. However, single-cell genomics data often have high

technical variation and high noise level due to the minimal amount of genomic materials iso-

lated from individual cells [11–14]. These experimental factors bring the challenge of analyzing

single-cell genomic data, and affect the results and interpretation of unsupervised learning

methods, including dimension reduction and clustering [15–18].

Clustering methods, which group similar cells into sub-populations, are often used as the

first step in the analysis of single-cell genomic data. Most clustering methods are designed for

clustering one type of measurement. The clustering methods for scRNA-seq data include

SIMLR [19], SC3 [20], DIMM-SC [21], SAFE-clustering [22], SOUP [23], SAME-clustering

[24] and SHARP [25]. The methods chromVAR [26], scABC [27], SCALE [28], cisTopic [29]

and Cusanovich2018 [30] are developed for analyzing scATAC-seq data. Clustering methods

have also been proposed for methylation data [31, 32]. To comprehensively analyze the com-

plex biological processes, we need to acquire and integrate different types of measurement

from multiple experiments. In recent years, some methods are developed for this purpose.

They include Seurat [33, 34], MOFA [35], coupleNMF [36], scVDMC [37], LIGER [38], scACE

[39], MOFA+ [40], scAI [41], coupleCoC [42] and scMC [43]. A more comprehensive discus-

sion on integration of single-cell genomic data is presented in [44].

To link data from different sources in a way that is biologically meaningful is the most

important challenge in the integration of single-cell data across different types of measure-

ment. As an example, we consider the setting where scRNA-seq and scATAC-seq are

profiled on similar cell subpopulations but different cells. It is desirable to utilize the infor-

mation in scRNA-seq data to help us cluster scATAC-seq data, which is typically sparser and

noisier. A subset of features in scATAC-seq data are linked with scRNA-seq data, because

promoter accessibility/gene activity score are directly linked with gene expression. The

linked features help us connect the two data types, which may lead to improvement in clus-

tering scATAC-seq data. Besides the linked features, we can also leverage the unlinked fea-

tures in the scATAC-seq data: accessibility of the peaks distant from the genes is not directly
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linked with gene expression in scRNA-seq data. Incorporating more information by includ-

ing the unlinked features is expected to further improve the clustering performance of the

scATAC-seq data.

In this work, we propose coupleCoC+, which is based on the information-theoretic co-clus-

tering [45] transfer learning framework for the integrative analysis of single-cell genomic data

(Fig 1). The goal of coupleCoC+ is to utilize one dataset, the source data (S), to facilitate the

analysis of another dataset, the target data. Depending on whether the features are linked with

the source data or not, the target data can be partitioned into two parts, data T with the linked

features, and data U with the unlinked features (Fig 1(a)). As an example, we may use scRNA-

seq data as the source data S and scATAC-seq data as the target data. Data T is the data matrix

of gene activity score, which are directly linked with gene expression in scRNA-seq data, and

data U is the data matrix for the accessibility of peaks distal to the genes, which are not directly

linked with gene expression. coupleCoC+ not only transfers information from the source data,

but also utilizes information from the unlinked features in data U. In coupleCoC+, both the

genomic features and the cells are clustered (Fig 1(b)). The key for knowledge transfer between

the source data and the target data is that the cluster assignments for the linked features are the

same. coupleCoC+ also performs matching of a subset of cell clusters across the source data

and the target data, which may represent shared cell types across the two datasets. We refer

our model as coupleCoC+, because it is based on the framework of our previously proposed

coupleCoC [42]. coupleCoC+ addresses the limitations of coupleCoC by including the unlinked

features in target data and it also integrates co-clustering and cell type matching in one step for

better use of information from the source data.

Fig 1. Toy example of coupleCoC+. (a). Source data is represented by “S”. Based on whether the features are linked with those in the source data, we

partition the target data into two parts, “T” and “U”. The features in data T are linked with data S, while the features in data U are not directly linked with

data S. The cells in data T and U are the same. Red color means that the corresponding features are active, and yellow color means that they are inactive. (b).

The clustering results by coupleCoC+. coupleCoC+ co-clusters the data S, T and U simultaneously by clustering similar cells and similar features. A subset

of the cell clusters are also matched between the source data and the target data, representing shared cell types. “clu” is the abbreviation of “cluster”, and

“m” means the matched clusters. “clu t” represents the cell cluster that is unique to the the target data.

https://doi.org/10.1371/journal.pcbi.1009064.g001
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Materials and methods

In this section, we first introduce the information-theoretic co-clustering framework for

source data [45], and then extend it to our framework of co-clustering source data and target

data simultaneously. We will choose the less noisy dataset as the source data, such as scRNA-

seq data, and we will choose the noisier dataset as the target data, such as scATAC-seq data

and sc-methylation data. We assume that a subset of features in the target data are linked with

the source data: gene activity score in scATAC-seq data and gene body methylation in sc-

methylation data are linked with gene expression in scRNA-seq data; and the other subset of

features are not directly linked: peak accessibility in scATAC-seq data and DNA methylation

levels at non-CG sites for non-overlapping bins in sc-methylation data are not directly linked

with the genes in scRNA-seq data. Promoter accessibility may also be used to link scATAC-seq

data with scRNA-seq when gene activity score is not available. Promoter accessibility may

have less power in separating the cell types compared with gene activity score, because gene

activity score incorporates more regions nearby the gene. We expect to improve the clustering

performance of the target data by transferring knowledge from the source data via the linked

features and also effectively utilizing the information in the unlinked features in the target

data.

Information-theoretic co-clustering

We first consider the source data. Let S be a nS by qmatrix representing this dataset with q fea-

tures for nS cells. Let X and ZS be discrete random variables, representing the possible outcome

of cell labels and feature labels, respectively. X takes values from the set {1, 2, . . ., nS} and ZS

takes values from the set {1, 2, . . ., q}. We let pS(X, ZS) be the joint probability distribution for

X and ZS, and define pS(X = x, ZS = z) as the probability of the z-th feature being active in the

x-th cell: the more active the feature, the higher the value. This joint probability is estimated

from the normalized dataset, i.e. scaling the data matrix S to have total sums equal to 1, and we

have pSðX ¼ x;ZS ¼ zÞ ¼
SxzPnS

x¼1

Pq

z¼1
Sxz
; where x 2 {1, . . ., nS}, z 2 {1, . . ., q}.

The goal of co-clustering is to cluster similar cells into clusters and similar features into

clusters. Assume that we want to cluster the cells into NS clusters, and the features into K clus-

ters. We denote the clusters of cells and features as the possible outcomes of discrete random

variables ~X and ~ZS, where ~X and ~ZS take values from the sets of cell cluster indexes {1, . . ., NS}

and feature cluster indexes {1, . . ., K}, respectively. To map cells to cell clusters and features to

feature clusters, we use CX(�) and CZ(�) to represent the clustering functions of cells and fea-

tures, respectively. CXðxÞ ¼ ~x (~x ¼ 1; . . . ;NS) indicates that cell x belongs to cluster ~x, and

CZðzÞ ¼ ~z (~z ¼ 1; . . . ;K) indicates that feature z belongs to cluster ~z . We then let ~pSð~X ; ~ZSÞ be

the joint probability distribution for ~X and ~ZS, and this distribution can be expressed as

~pSð~X ¼ ~x; ~ZS ¼ ~zÞ ¼
X

x2fCX ðxÞ¼~xg

X

z2fCZðzÞ¼~zg

pSðX ¼ x;ZS ¼ zÞ: ð1Þ

Note that ~pSð~X ¼ ~x; ~ZS ¼ ~zÞ is connected to pS(X, ZS) via the clustering functions CX(�) and

CZ(�). The matrix ~pSð~X ; ~ZSÞNS�K
can be interpreted as the low dimension representations for

the cell clusters in the source data S.

The information-theoretic co-clustering [45] aims at finding the optimal clustering func-

tions CX(�) and CZ(�) to minimize the loss of mutual information:

‘SðCX;CZÞ ¼ IðX;ZSÞ � Ið~X ; ~ZSÞ; ð2Þ
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where I(�) denotes the function of mutual information, and we have

IðX;ZSÞ ¼
P

x

P
zpSðx; zÞlog

pSðx;zÞ
pSðxÞpSðzÞ

, and Ið~X ; ~ZSÞ ¼
P

~x

P
~z~pSð~x; ~zÞlog

~pSð~x ;~zÞ
~pSð~xÞ~pSð~zÞ

.

The framework of coupleCoC+

We now extend the information-theoretic co-clustering framework to multiple datasets,

and simultaneously perform matching of the cell types across datasets (see the toy example in

Fig 1).

Besides the source data S, we have another target data. The goal of coupleCoC+ is to

improve the clustering performance of the target data, utilizing the information in the source

data. Depending on whether the features are linked with the source data, the target data can

be partitioned into two parts: data T, which includes the linked features; and data U, which

includes the unlinked features. Similar to the corresponding definitions for source data, we

have the loss of mutual information for co-clustering the data T:

‘TðCY ;CZÞ ¼ IðYT;ZTÞ � Ið~Y T; ~ZTÞ; ð3Þ

where YT and ZT are the discrete random variables representing the cell labels and the feature

labels in data T, respectively. We have IðYT;ZTÞ ¼
P

y

P
zpTðy; zÞlog

pTðy;zÞ
pTðyÞpTðzÞ

. ~Y T and ~ZT are

the discrete random variables representing the cell cluster labels and the feature cluster labels

in data T, respectively. We have Ið~Y T; ~ZTÞ ¼
P

~y

P
~z~pTð~y; ~zÞlog

~pTð~y ;~zÞ
~pTð~yÞ~pTð~zÞ

. CY and CZ are the

clustering functions for the cells and the features in data T, respectively. Note that we assume

that the feature clustering function CZ is the same for the linked features in data S and T. The

function CZ is the key for knowledge transfer between source data and target data. By cluster-

ing similar features using the information from the source data, it effectively reduces the noise

in the target data.

We also have the loss of mutual information for co-clustering the data U:

‘UðCY ;CUÞ ¼ IðYU;ZUÞ � Ið~YU; ~ZUÞ; ð4Þ

where YU and ZU are the discrete random variables representing the cell labels and the feature

labels in data U, respectively. We have IðYU;ZUÞ ¼
P

y

P
upUðy; uÞlog

pUðy;uÞ
pUðyÞpUðuÞ

. ~YU and ~ZU are

the discrete random variables representing the cell cluster labels and the feature cluster labels

in data U, respectively. We have Ið~YU; ~ZUÞ ¼
P

~y

P
~u~pUð~y; ~uÞlog

~pUð~y ;~uÞ
~pUð~yÞ~pUð~uÞ

. CY and CU are the

clustering functions for the cells and the features in data U, respectively. Because the cells in

data U and T are the same, data U and T share the same cell clustering function CY.

The matrices ~pSð~X ; ~ZSÞ and ~pTð~Y T;
~ZTÞ can be interpreted as the low dimension representa-

tions for the cell clusters in the source data and the target data. A subset of the clusters in the

source data and target data may be matched, representing similar cell types across the two

datasets. We denote hT;Nsub
as a permutation of size Nsub for the indexes of the cell clusters in

data T, and denote hS;Nsub
as an ordered permutation of size Nsub for the indexes of the cell clus-

ters in source data S. We then use DKLðp̂Tð~YhT;Nsub
; ~ZTÞkp̂Sð~XhS;Nsub

; ~ZSÞÞ to measure the statisti-

cal distance between two probability distributions p̂Tð~YhT;Nsub
; ~ZTÞ and p̂Sð~XhS;Nsub

; ~ZSÞ, where

DKL(�k�) is Kullback-Leibler (KL) divergence [46]. These two distributions are obtained by

extracting the rows hT;Nsub
and hS;Nsub

from ~pTð~Y T;
~ZTÞ and ~pSð~X ; ~ZSÞ correspondingly and then

scaling the two submatrices to have summation equal to 1. The smaller the KL divergence, the

more similar the subsets of cell clusters chosen by hT;Nsub
and hS;Nsub

.
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To co-cluster the three data T, S and U simultaneously, and to match a subset of cell clusters

across the source data and the target data, we propose to solve the following optimization

problem in coupleCoC+:

argmin
CY ;CX;CZ;CU
hT;Nsub;

hS ;Nsub

‘TðCY ;CZÞ þ l‘SðCX;CZÞ þ b‘UðCY ;CUÞ

þ gDKLðp̂Tð~YhT;Nsub
; ~ZTÞkp̂Sð~XhS;Nsub

; ~ZSÞÞ:

ð5Þ

As mentioned before, the two terms ℓT(CY, CZ) and ℓS(CX, CX) in formula (5) share the

same feature cluster CZ, which can be viewed as a bridge to transfer knowledge between the

source data and the target data [42, 47]. The dimension of the feature space shared by the

source data S and the data T is reduced by clustering and aggregating similar features.

Aggregating similar features guided by the source data S enables knowledge transfer between

the source data S and the data T, which reduces the noise in the single-cell data and can gen-

erally improve the clustering performance of cells in the target data. The term ℓU(CY, CU)

corresponds to the features in the target data that are unlinked with the source data. Incor-

porating more information from the target data by including more features will also benefit

the clustering performance of the target data. The term DKLðp̂Tð~YhT;Nsub
; ~ZTÞkp̂Sð~XhS;Nsub

; ~ZSÞÞ

further borrows information from the source data for the matched cell clusters. λ is a hyper-

parameter that controls the contribution of the source data S, β is a hyperparameter that

controls the contribution of the unlinked features in the target data, and γ is a hyperpara-

meter that controls the contribution of cell types matching across the source data S and the

data T.

The optimization problem (5) can be solved by iteratively updating CX, CY, CZ, CU, hT;Nsub

and hS;Nsub
. The technical details of the updates are presented in Text A and B in S1 Text. The

objective function in the optimization problem (5) is non-increasing in the updates of CY, CX,

CZ, CU, hT;Nsub
and hS;Nsub

, and the algorithm will converge to a local minimum. Finding the

global optimal solution is NP-hard. The algorithm converges in a finite number of iterations

due to the finite search space (see details in Section: Convergence and running time). In prac-

tice, this algorithm works well in real single-cell genomic data analysis.

Lastly, we note that the major differences between coupleCoC [42] and coupleCoC+ lie in

two aspects: (a). coupleCoC does not include the unlinked features in the target data. We will

demonstrate through the real data examples that incorporating more information by including

the unlinked features will benefit clustering of the target data. (b). In coupleCoC, cell type

matching is a separate step from co-clustering. In coupleCoC+, we simultaneously perform cell

type matching and co-clustering. Merging cell type matching and co-clustering in one step can

leverage more information from the source data.

Choosing source data and target data

In coupleCoC+, the dataset that is less sparse and less noisy should be chosen as the source

data, and dataset that is more sparse and noisier should be chosen as the target data. By doing

so, we expect to borrow more useful information from the source data to clustering the target

data. Based on this rule, we generally choose scRNA-seq data as the source data and choose

scATAC-seq data or sc-methylation data as the target data. In practice, we utilize the propor-

tion of zero entries in the data matrix to evaluate the sparsity, and it is calculated as:

#of zero entries
#of cells� #of features

:
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We will describe the details on how to choose the source data and the target data case-by-case

in the real data examples.

Feature selection

Features that are directly related to the genes are used as linked features across datasets: we use

gene activity score (prefered) or promoter accessibility in scATAC-seq data, homologs in

human and mouse scRNA-seq data, and gene body methylation in sc-methylation data. Fea-

tures that are not directly linked to genes are treated as the unlinked features in target data: we

use accessibility of peak values in scATAC-seq data and DNA methylation levels at non-CG

sites for non-overlapping 100kb bins in sc-methylation data. We use the mouse specific genes

that are not included in human as the unlinked features when we use mouse scRNA-seq data

as the target data and human scRNA-seq data as the source data. We implement feature selec-

tion before performing clustering. We use the R toolkit Seurat [33, 34] to select 1000 most vari-

able features for each data S, T and U.

Data preprocessing

We take log transformation for scRNA-seq data to alleviate the effect of extreme values in the

data matrices: we use log2(TPM+1) for TPM data and log2(UMI + 1) for UMI data as the

input. We use gene activity score or promoter accessibility and binarized count for peaks as

the input for scATAC-seq data. We use DNA methylation levels at non-CG sites in the gene

body and non-overlapping 100kb bins as the input for sc-methylation data. We impute the

missing values in sc-methylation data with the overall mean. Since the relationship between

gene body methylation and gene expression is negative, we further transform sc-methylation

data by 1-methylation level. Our proposed coupleCoC+ can automatically adjust for sequenc-

ing depth, so we do not need to normalize for sequencing depth. The input formats of data S,

T and U are described case-by-case in real data examples.

Hyperparameter selection

Before implementing the coupleCoC+ algorithm, we use the Calinski-Harabasz (CH) index

[48] to pre-determine the number of cell clusters NT for target data and the number of cell

clusters NS for source data separately. CH index is proportional to the ratio of between-clusters

dispersion and within-cluster dispersion:

f ðNÞ ¼
SSBðNÞ
SSWðNÞ

�
n � N
N � 1

;

where SSB(N) is the overall between-cluster variance, and SSW(N) is the overall within-cluster

variance, N is the number of cell clusters, and n is the total number of cells. For each cluster

number N, we first cluster the dataset by minimizing ℓT for target data (or ℓS for source data)

by CoC (i.e. information theoretic co-clustering algorithm in [45], which is equivalent to set-

ting λ = β = γ = 0 in formula (5)), and then calculate SSB(N), SSW(N), and obtain f(N). We

choose the number of cell clusters N with the highest CH index.

Our coupleCoC+ is an unsupervised learning model, and it is hard to determine the value

of non-negative hyperparameters λ, β and γ, and the number of feature clusters K in data T

and K0 in data U in theory. In practice, we tune these parameters empirically on the datasets

themselves by optimizing the CH index. Let O¼
4
ðl; b; g;K;K0Þ, and we use grid search to

choose the best combination of hyperparameters that has the highest CH index for the target
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data: fTðOÞ ¼
SSBðOÞ
SSW ðOÞ

�
nT � NT
NT � 1

: We choose the search domains λ, β, γ 2 (0, 5) and K, K0 2 (1, 20).

Grid search performs well in real data analysis.

The value of Nsub can be user-defined or chosen heuristically. The intuition for choosing

Nsub is that the KL divergence DKLðp̂Tð~YhT;Nsub
; ~ZTÞkp̂Sð~XhS;Nsub

; ~ZSÞÞ will be larger if the clusters

being matched are less similar when they are forced to be matched. Nsub is chosen similarly as

in [42]. More details are given in Text C in S1 Text. Though there is no theoretical guarantee,

this heuristic approach for choosing Nsub gives reasonable results in the real data examples.

Evaluation metrics

We evaluate the clustering performance by normalized mutual information (NMI) and

adjusted Rand index (ARI) [49]. Assume that G is the known ground-truth labels of cells and

Q is the predicted clustering assignments, then NMI is calculated as:

IðQ;GÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðQÞ �HðGÞ

p ; ð8Þ

where H is the entropy. NMI is normalized mutual information score and takes value between

0 and 1. Assume that n is the total number of single cells, nQ,i is the number of cells assigned to

the i-th cluster in Q, nG,j is the number of cells belonging to the j-th cell type in G, and ni,j is
the number of overlapping cells between the i-th cluster in Q and the j-th cell type in G. As a

corrected-for-chance version of the Rand index, ARI is calculated as:

P
ij
ni;j
2

� �
�
P

i
nQ;i
2

� �P
j
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2
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=
n
2
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þ
P

j
nG;j
2

� �h i
�
P

i
nQ;i
2
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=
n
2

� � : ð9Þ

The higher values of NMI and ARI indicate better clustering performance.

Results

We evaluated our method coupleCoC+ in four real data examples, including one example for

clustering mouse cortex scATAC-seq data and scRNA-seq data, one example for clustering

human and mouse scRNA-seq data, one example for clustering mouse cortex sc-methylation

data and scRNA-seq data, and one example for clustering human blood dendritic cells scRNA-

seq data generated from two experimental batches. UMAP visualizations of all these raw data

are presented in S1–S4 Figs. We compared coupleCoC+ with coupleCoC [42], CoC [45], k-

means and other commonly used clustering methods for single-cell genomic data, including

SC3 [20], SIMLR [19], SAME-clustering [24] and SHARP [25] for scRNA-seq data, Cusano-

vich2018 [30] and cisTopic [29] for scATAC-seq data (we implemented louvain clustering

after dimension reduction by Cusanovich2018 [30] and cisTopic [29], which was suggested in

a recent benchmark study on scATAC-seq data [50]), BPRMeth-G [31] (Gaussian-based

model proposed in [31]) for sc-methylation data, and Seurat [34], LIGER [38] and scACE [39]

for the integrative clustering of source data and target data. For a fair comparison, we imple-

mented the benchmarked methods (except coupleCoC) with both the linked and the unlinked

features. We determined the number of cell clusters for coupleCoC+ by the CH index, and we

used the true number of cell clusters for the other methods, except for the methods Seurat [34]

and LIGER [38], which automatically determine the number of cell clusters. We used ARI,

NMI and the clustering table to evaluate the clustering results, where the cell type labels pro-

vided in their original publications were treated as the ground truth.
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Example 1: Integrative clustering for mouse cortex scATAC-seq data and

scRNA-seq data

We first evaluated coupleCoC+ by jointly clustering mouse cortex scATAC-seq data [30] and

scRNA-seq data [51]. We collected 458 oligodendrocytes, 551 astrocytes, 319 inhibitory neu-

rons, 197 microglia cells for the scATAC-seq data and collected six subtypes of inhibitory neu-

rons (including 1122 Lamp5 cells, 1741 Sst cells, 1337 Pvalb cells, 125 Sncg cells, 27 Serpinfi

cells and 1728 Vip cells), 368 astrocytes and 91 oligodendrocytes for the scRNA-seq data. Note

that microglia cells are not used in the scRNA-seq data. We chose the scATAC-seq data as the

target data, and scRNA-seq data as the source data, because scATAC-seq data is noisier and

sparser (The proportions of zero entries in the scATAC-seq data and scRNA-seq data are

95.71% and 86.68%, respectively.) We used gene activity score in scATAC-seq data as the fea-

tures that are linked with scRNA-seq data, and used the accessibility of the peaks as the

unlinked features. The input formats are log(TPM+1) for scRNA-seq data, and binarized gene

activity score and binarized peak accessibility for scATAC-seq, respectively. We used the pro-

vided cell type labels as a benchmark for evaluating the performance of the clustering methods.

The numbers of cell clusters with the highest CH indexes are NT = 5 for the target data and NS

= 6 for the source data (S5 Fig). In the source data, there are six subtypes of inhibitory neurons

and two other cell types, and the smaller cell cluster number (NS = 6) chosen by CH index

likely represents the similarity of the six subtypes of inhibitory neurons. We implemented cou-
pleCoC+ with NS = 8 and NT = 5. We set the tuning parameters in coupleCoC+ as λ = 2.5, β =

0.01, γ = 1, K = 12, K0 = 6 by grid search. We set the number of Nsub as 4, because the objective

function g(Nsub) for choosing Nsub (The formula of g(Nsub) is given in Text C in S1 Text)

obtains the minimum 0.021 when Nsub = 4 (S6 Fig).

Table 1 shows that coupleCoC+ performs better than coupleCoC on clustering the target

data, because coupleCoC+ utilizes information from clustering the data U which is not present

in coupleCoC, and it performs much better than CoC, because coupleCoC+ transfers knowl-

edge from clustering the source data S. The methods cisTopic and Cusanovich2018 perform

well but not as good as coupleCoC+. The performance of clustering the source data by couple-
CoC+ is better than coupleCoC, and ranks the third among ten clustering methods. The inte-

grative clustering methods Seurat, LIGER and scACE perform worse than coupleCoC+, except

for clustering the source data by LIGER. The clustering table (Table A in S1 Table) by couple-
CoC+ shows that the cell types astrocytes and oligodendrocytes are matched well across the

two data types. Fig 2 shows the heatmap after clustering by coupleCoC+. coupleCoC+ clearly

clusters similar cells and features. In addition, we can see that the pairs of matched cell

clusters m1–4 in the two datasets clearly resemble each other more, compared with the other

unmatched cell clusters.

Next we investigated the features that are clustered together by coupleCoC+. Feature cluster

“clu4” is specific to cell cluster “clu m3” in scRNA-seq and scATAC-seq data, which are mostly

oligodendrocyte cells; and feature cluster “clu6” is specific to “clu t5” in scATAC-seq data,

which are mostly microglia cells. We performed functional annotation enrichment analysis

using DAVID [52, 53]. The genes in feature cluster “clu4” (59 genes in total) are highly

enriched for the terms related to myelin (more comprehensive list in Table B in S1 Table). The

top three terms and their Bonferroni corrected p-values are (“myelin sheath”, 1.44 × 10−11),

(“myelination”, 1.12 × 10−7) and (“structural constituent of myelin sheath”, 2.51 × 10−5),

respectively. By creating myelin sheath, oligodendrocytes provide support and insulation to

axons in the central nervous system. The genes in feature cluster “clu6” (198 genes in total)

are highly enriched for the terms related to the immune system (more comprehensive list in

Table C in S1 Table). The top two terms and their Bonferroni corrected p-values are
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(“immunity”, 8.27 × 10−22) and (“immune system process”, 3.00 × 10−19), respectively. Micro-

glia represents a specialized population of macrophages-like cells in the central nervous system

(CNS) considered immune sentinels that are capable of orchestrating a potent inflammatory

response [54]. In summary, the genes that are clustered together by coupleCoC+ tend to be

enriched for functional annotation terms closely related to the cell clusters in which they are

active.

Example 2: Integrative clustering for mouse and human scRNA-seq data

In the second example, we examined our coupleCoC+ in datasets across different species, i.e.

human and mouse scRNA-seq data [55]. We collected 99 clara cells, 14 ependymal cells, 179

mouse pulmonary alveolar type II in the mouse scRNA-seq dataset, and we collected 113 clara

cells and 58 ependymal cells in the human scRNA-seq dataset. Note that there is one cell type

in the mouse scRNA-seq data that is not present in the human scRNA-seq data. We chose the

human scRNA-seq data as the source data and chose the mouse scRNA-seq dataset that is

Table 1. The results of clustering the cells in source data and target data in four examples. Note that the capital letters in the brackets represent the input data matrices

for the corresponding methods: S represents source data, T and U represent the sub-matrices for the linked and unlinked features in target data, respectively. For integra-

tive analysis methods (coupleCoC+, coupleCoC, Seurat, LIGER, scACE) that utilize both the source data and the target data as input, they produce clustering results of the

cells in source data and target data simultaneously. We then summarize the clustering results by calculating ARI and NMI for source data and target data separately. For

the remaining methods that are implemented on only one dataset, they produce clustering results of the cells in source data or target data independently. We then summa-

rize the clustering results by calculating ARI and NMI for source data and target data separately. The source data type is scRNA-seq data for all four examples, while the tar-

get data types for examples 1–4 are scATAC-seq data, scRNA-seq data, sc-methylation data and scRNA-seq data, respectively. The symbol “-” means that the

corresponding clustering method is not designed for that data type. We only compared the methods for integrative analysis of multiple datasets in example 4. nT and nS are

the numbers of cells in the target data and the source data, correspondingly. Because we included the unlinked features when implementing CoC, k-means, Cusano-

vich2018, cisTopic, SC3, SIMLR and BPRMeth-G, the clustering results for these methods are better than that presented in [42].

Clustering methods Example 1 Example 2 Example 3 Example 4

(nT = 1525, nS = 6539) (nT = 292, nS = 171) (nT = 1102, nS = 2383) (nT = 288, nS = 288)

ARI NMI ARI NMI ARI NMI ARI NMI

Target data coupleCoC+ (T+S+U) 0.898 0.886 0.859 0.769 0.869 0.782 0.837 0.804

coupleCoC (T+S) 0.843 0.850 0.790 0.672 0.619 0.500 0.838 0.800

CoC (T+U) 0.810 0.879 0.819 0.728 0.839 0.743 - -

k-means (T+U) 0.479 0.615 0.636 0.537 0.738 0.638 - -

Cusanovich2018 (T+U) 0.876 0.824 - - - - - -

cisTopic (T+U) 0.860 0.855 - - - - - -

SC3 (T+U) - - 0.839 0.683 - - - -

SIMLR (T+U) - - 0.691 0.578 - - - -

BPRMeth-G (T+U) - - - - 0.293 0.193 - -

Seurat (T+S+U) 0.697 0.725 0.815 0.672 0.317 0.336 0.777 0.728

LIGER (T+S+U) 0.564 0.525 0.434 0.313 0.358 0.236 0.729 0.667

scACE (T+S+U) 0.859 0.855 0.490 0.371 0.042 0.016 0.496 0.479

Source data coupleCoC+ (T+S+U) 0.716 0.754 0.930 0.883 0.987 0.970 0.858 0.819

coupleCoC (T+S) 0.666 0.731 0.930 0.883 0.985 0.965 0.858 0.819

k-means (S) 0.682 0.729 0.268 0.190 0.972 0.939 - -

SC3 (S) 0.464 0.562 0.953 0.908 0.987 0.968 - -

SIMLR (S) 0.508 0.480 0.481 0.431 0.977 0.949 - -

SHARP (S) 0.692 0.733 0.884 0.811 0.968 0.935 - -

SAME-clustering (S) 0.727 0.736 0.930 0.862 0.975 0.945 - -

Seurat (T+S+U) 0.631 0.661 0.862 0.783 0.905 0.780 0.830 0.789

LIGER (T+S+U) 0.889 0.859 -0.029 0.027 0.842 0.748 0.800 0.731

scACE (T+S+U) 0.683 0.674 0.885 0.800 0.987 0.969 0.489 0.493

https://doi.org/10.1371/journal.pcbi.1009064.t001
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sparser as the target data (The proportions of zero entries in the human and mouse scRNA-seq

data are 88.90% and 95.00%, respectively.). The homologs shared by mouse and human are

chosen as the linked features, and mouse-specific genes are used as the unlinked features.

These data are generated from the drop-seq platform, and their input formats are log(UMI+1).

We use the cell type annotation [56] as a benchmark for evaluating the performance of the

clustering methods. The optimal number of clusters is NS = 2 for the source data, and the val-

ues of CH index are close when NT = 2 or 3 (S7 Fig). We chose NT = 3, which equals to the true

number of cell types. We set the tuning parameters in coupleCoC+ as λ = 2, β = 0.04, γ = 1,

K = 8, K0 = 7 by grid search. We set the number of Nsub as 2, because the values of the objective

function g(Nsub) for choosing Nsub are smaller when Nsub = 2 (0.150 when Nsub = 1 and 0.077

when Nsub = 2, respectively).

coupleCoC+ performs the best among all the other methods for clustering the target data

(Table 1). It improves the performance over CoC by transferring the knowledge from the

source data S, and also improves performance over coupleCoC by utilizing the information

in the unlinked features. SC3 has the best performance on clustering the source data, and

coupleCoC+ ranks the second. Compared to coupleCoC+, the integrative clustering methods

Seurat, LIGER and scACE do not perform well on both source data and target data. Fig 3

shows the heatmap after clustering by coupleCoC+. coupleCoC+ clearly clusters similar cells

and features. In addition, the patterns of the linked features for the matched clusters tend to

be consistent.

Fig 2. Heatmaps of the clustering results by coupleCoC+ for example 1. “clu m” represents the matched cell cluster across the source data and the target

data. “clu s” and “clu t” represent the cell clusters that are unique to the source data and the target data, respectively. For better visualization, we randomly

averaged every 15 cells within the same cell cluster to generate pseudocells for every heatmap.

https://doi.org/10.1371/journal.pcbi.1009064.g002
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Example 3: Integrative clustering for mouse cortex sc-methylation and

scRNA-seq data

In the third example, we evaluated coupleCoC+ by jointly clustering sc-methylation data and

scRNA-seq data from the mouse cortex [7, 51]. We collected 412 L4 and 690 L2/3 sc-methyla-

tion cells, and 1401 L4 and 982 L2/3 IT scRNA-seq cells (“L4” and “L2/3” stand for excitatory

neurons in different neocortical layers; IT is the abbreviation of intratelencephalic neuron.).

Sc-methylation data tends to be noisier than scRNA-seq data, so we chose sc-methylation as

the target data and chose scRNA-seq data as source data. The methylation of gene bodies are

the linked features, and the DNA methylation levels at non-CG sites (mCH levels) for non-

overlapping 100kb bins are the unlinked features. We used the provided cell type labels as a

benchmark for evaluating the performance of the clustering methods. S7 Fig shows that the

optimal number of cell clusters are NT = 2 and NS = 2. We set the tuning parameters in couple-
CoC+ as λ = 0.1, β = 0.6, γ = 1, K = 5, K0 = 8 by grid search. We set the number of matched

clusters Nsub as 2, because the values of the objective function g(Nsub) for choosing Nsub are

smaller when Nsub = 2 (0.138 when Nsub = 1 and 0.061 when Nsub = 2, respectively).

Table 1 shows that all ten methods have good clustering performance for scRNA-seq data.

coupleCoC+ performs much better than the other methods for clustering sc-methylation data,

and it matches well the cell types across the two data types (Table A in S1 Table). coupleCoC

+ has better clustering performance than CoC, due to the transfer of knowledge from scRNA-

seq data to clustering sc-methylation data, and coupleCoC+ performs better than coupleCoC,

Fig 3. Heatmaps of the clustering results by coupleCoC+ for example 2. “clu m” represents the matched cell cluster across the source data and the

target data. “clu t” represents the cell cluster that is unique to the target data. For better visualization, we randomly averaged every 15 cells within the

same cell cluster to generate pseudocells for every heatmap.

https://doi.org/10.1371/journal.pcbi.1009064.g003
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because it utilizes the information in the unlinked features while coupleCoC does not. The

integrative methods Seurat, LIGER and scACE do not perform well on target data. Fig 4 is the

corresponding heatmap after clustering by coupleCoC+. For scRNA-seq data, coupleCoC+

clearly clusters similar cells and features. The signal in sc-methylation data is weaker but we

can still see the reverse trend compared with scRNA-seq data: when the gene body methylation

level is lower in sc-methylation data, gene expression tends to be higher in scRNA-seq data.

The heatmap of the data U further demonstrates the usefulness of including the unlinked fea-

tures in sc-methylation data, where mCH levels for non-overlapping 100kb bins better distin-

guishes the cell types compared with gene body methylation.

Example 4: Integrative clustering for human blood dendritic cells scRNA-

seq data from two batches

In the fourth example, we examined coupleCoC+ by integrative clustering of human blood

dendritic cell (DC) scRNA-seq data from two batches [57]. Each batch consists of 96 CD141

DC, 96 CD1C DC, 96 plasmacytoid DC (pDC) and 96 double negative cells. The data were

generated from the Smart-Seq2 platform and they were used in a recent benchmark study

[58]. We processed the data similar to [58], where CD141 DC in batch 1 and CD1C DC in

batch 2 were removed. So, both batches share pDC and double negative cells, and each batch

has one unshared cell type (CD1C and CD141 respectively) that are biologically similar. We

chose batch 1 as the source data and chose batch 2 that is sparser as the target data (The

Fig 4. Heatmaps of the clustering results by coupleCoC+ for example 3. “clu m” represents the matched cell cluster across the source data and the target

data. We obtained the centered methylation level by first centering the data matrix by row and then centering the data matrix by column. Grey color in the

heatmap of sc-methylation data corresponds to missing data. For better visualization, we randomly averaged every 15 cells within the same cell cluster to

generate pseudocells for every heatmap.

https://doi.org/10.1371/journal.pcbi.1009064.g004
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proportions of zero entries in batch 1 and batch 2 are 32.65% and 42.89%, respectively.).

Because all features are shared by source data and target data, and target data have no unlinked

features in this example, we set the value of β as 0 in objection function (5). We set the number

of cell clusters as NT = NS = 3. We set the tuning parameters in coupleCoC+ as λ = 2, γ = 1,

K = 5, K0 = 5 by grid search. We set the number of matched clusters Nsub as 2, because the val-

ues of the objective function g(Nsub) for choosing Nsub are smallest when Nsub = 2: 8.66 × 10−4

when Nsub = 1, 6.37 × 10−4 when Nsub = 2, and 1.08 × 10−3 when Nsub = 3.

All five integrative methods, except scACE, have good clustering performance for scRNA-

seq data in batch 1 (source data)(Table 1). scACE also fails to cluster scRNA-seq data in batch

2 (target data). Because no unlinked features are included in target data, coupleCoC+ and cou-
pleCoC have similar clustering performance for the data from two batches, and they have com-

petitive performance compared with the other methods (Table 1). Fig 5 is the corresponding

heatmap after clustering by coupleCoC+. coupleCoC+ clearly clusters similar cells and features,

and it accurately found the two matched clusters (the shared pDC and double negative cells)

across the two batches (Table A in S1 Table). In addition, the expression patterns for the

matched clusters tend to be consistent in the two batches. The cell types unshared by the two

batches, including CD1C DC and CD141 DC, are represented by “clu s3” and “clu t3”, respec-

tively. They have high similarity with each other, and they are only distinguished by feature

cluster “clu2”.

Fig 5. Heatmaps of the clustering results by coupleCoC+ for example 4. “clu m” represents the matched cell cluster

across the source data and the target data. “clu s” and “clu t” represent the cell clusters that are unique to the source

data and the target data, respectively. For better visualization, we randomly averaged every 15 cells within the same cell

cluster to generate pseudocells for every heatmap.

https://doi.org/10.1371/journal.pcbi.1009064.g005
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Simulation studies

Lastly, we tested the performance of coupleCoC+ through simulation studies. We followed the

simulation setup given in [39] with some modifications specific to our framework. The details

for generating data T, S and U are given in Text D in S1 Text. We set the numbers of cell types

in both target data and source data as NT = NS = 2, set the numbers of cells as nT = nS = 100, set

the proportion of each cell type as 0.5 and set the number of features as q = q0 = 1000. We var-

ied the differential degree (w) across clusters, the standard deviations (σS and σT, correspond-

ing to source data and target data, respectively) of the generative distribution, and the shift

between two means (d) of the generative distributions for the two cell types in data U (i.e.,

unlinked features in target data). Larger w leads to better separation of the cell clusters in data

S and data T, larger σS or σT leads to higher noise level in data S or data T, and larger d leads to

better separation of the cell clusters in data U. We considered six different simulation settings,

varying the parameters w, σS, σT and d. We compared coupleCoC+ with coupleCoC and CoC.

We set the tuning parameters in coupleCoC+ as λ = 2, γ = 1, K = 3, K0 = 3 for all six settings,

β = 0.1 for setting 5, and β = 1 for the remaining settings by grid search. We set the number of

matched clusters Nsub as 2. Table 2 presents the simulation results for the target data. In set-

tings 1–3, we fixed d = 2, and we varied w, σS and σT. Compared with setting 1 (w = 0.67, σS =

σT = 1.4), setting 2 has higher noise (σS = σT = 1.7), and setting 3 has lower differential ability

across the cell clusters (w = 0.64) in data T and data S. Compared with setting 3 (d = 2), the

unlinked features (data U) in target data have less power in separating the cell types in setting

4 (d = 1). In these four settings, coupleCoC+ performs better than coupleCoC, because data U

provide information for separating the cell types and coupleCoC does not utilize the informa-

tion in data U. In setting 4 where d is smaller, i.e. data U have less power in separating the cell

types, the margin between coupleCoC+ and coupleCoC becomes smaller. Both coupleCoC

+ and coupleCoC have better clustering performance than CoC, due to the transfer of knowl-

edge from source data to clustering target data. When data U contain no information in sepa-

rating the cell types (setting 5, d = 0), the performance of coupleCoC+ is slightly worse than

coupleCoC. CoC does not work well in setting 5 because it is affected by data U and it does not

transfer knowledge from the source data. When source data S have higher noise (setting 6, σS

= 2.0), the performance of coupleCoC+ and coupleCoC drops and they become inferior to

CoC. coupleCoC+ is slightly better than coupleCoC in setting 6, because it incorporates the

information in data U.

Convergence and running time

coupleCoC+ is guaranteed to converge as the objective functions in Equations (S.10-S.14) in

Text A in S1 Text are non-increasing in each iteration. coupleCoC+ tends to converge in 15

Table 2. The simulation results for clustering the target data in 30 independent runs are summarized. Note that the capital letters in the brackets represent the input

data matrices for the corresponding methods: S represents source data, T and U represent the sub-matrices for the linked and unlinked features in target data, respectively.

coupleCoC+ and coupleCoC utilize both the source data and the target data as input, and they produce clustering results of the cells in source data and target data simulta-

neously; CoC is implemented on only target data, and it produces clustering results of the cells in target data. We then summarize the clustering results by calculating ARI

and NMI for target data.

Clustering methods Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6

w = 0.67, d = 2 w = 0.67, d = 2 w = 0.64, d = 2 w = 0.64, d = 1 w = 0.64, d = 0 w = 0.64, d = 2

σS = σT = 1.4 σS = σT = 1.7 σS = σT = 1.4 σS = σT = 1.4 σS = σT = 1.4 σS = 2.0, σT = 1.4

ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI

coupleCoC+(S+T+U) 0.935 0.905 0.855 0.802 0.834 0.805 0.816 0.711 0.780 0.699 0.637 0.601

coupleCoC(S+T) 0.909 0.874 0.824 0.750 0.800 0.746 0.800 0.746 0.800 0.746 0.611 0.555

CoC(T+U) 0.826 0.781 0.816 0.774 0.810 0.766 0.567 0.522 0.002 0.009 0.812 0.765

https://doi.org/10.1371/journal.pcbi.1009064.t002
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iterations (S8 Fig) for the four real examples. We further summarized the computation time by

the methods SC3, SIMLR and coupleCoC+ (Table D in S1 Table) in each real example. The

computation time for clustering source data with�6.5K cells in example 1 are SC3 = 20.52

(mins), SIMLR = 55.50 (mins). The computation time when we implement coupleCoC+ on

source data S, target data T and U (with a total of�8.0K cells) in example 1 is 28.20 (mins). It

shows that coupleCoC+ has comparable computational speed.

Finally, in order to study the scalability of coupleCoC+, we also examined the examples

where the number of cells is much larger. We followed the procedures of data generation

described in Section: Simulation studies by setting q = q0 = 1000, and generated datasets S, T

and U with nS + nT = 20K and 50K cells in total. The computation time by coupleCoC+ when

the total number of cells nS + nT = 20K, 50K are 163.92 (mins) and 1576.05 (mins), respec-

tively. This demonstrates that coupleCoC+ can be implemented on datasets with 20K cells, and

it can be challenging to implement coupleCoC+ on datasets with more than 50K cells.

Discussion

In this research, we demonstrated that coupleCoC+, an information-theoretic co-clustering-

based unsupervised transfer learning method, is useful in the integrative analysis of single-cell

genomic data. First, through clustering and aggregating similar features, coupleCoC+ implicitly

incorporates dimension reduction of the feature space, which is helpful to reduce the noise in

high dimensional single-cell genomic data. We empirically demonstrated that coupleCoC+ can

alleviate the problems of high dimensionality and sparsity by presenting the clustering results

on real single-cell genomic datasets. Second, compared with CoC [45] and coupleCoC [42],

coupleCoC+ yields better clustering results for target data, because it not only transfers knowl-

edge via clustering the features that are linked with the source data but also utilizes informa-

tion from the unlinked features in target data. Incorporating more information from the target

data by including the unlinked features further boosts the clustering performance of the target

data. Third, coupleCoC+ can automatically find the matched cell subpopulations across source

data and target data. Fourth, feature clustering by coupleCoC+ is biologically meaningful,

where it tends to group genes that are enriched for functional annotation terms closely related

to the cell clusters in which they are active. Although our method coupleCoC+ has appealing

computational speed in clustering the datasets with�8K cells (<30 mins to implement), it is

challenging to implement coupleCoC+ on very large datasets with more than 50k cells (>24hrs

to implement). Further improvement in computational speed may be achieved by optimizing

the code and developing mini-batch version of the algorithm.

Supporting information

S1 Text. Text A: coupleCoC+ algorithm. Text B: Summary of coupleCoC+ algorithm. Text

C: Selecting Nsub. Text D: Data generation in simulation.

(PDF)

S1 Table. Table A. Clustering table by coupleCoC+ in real data examples 1–4. “clu m” rep-

resents the matched cell cluster across the source data and the target data. If there is no “m” in

a cell cluster label, it represents that the cluster is not matched across the two datasets, and we

use “clu s” and “clu t” to represent that the cluster belongs to source data and target data,

respectively. Table B. Enriched functional annotation terms for gene list in the “clu 4” of

linked genes in example 1 using DAVID tools. The top 10 terms are shown here. Table C.

Enriched functional annotation terms for gene list in the “clu 6” of linked genes in exam-

ple 1 using DAVID tools. The top 10 terms are shown here. Table D. Summary of the
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computation time by classical clustering methods SC3 and SIMLR for scRNA-seq data in

examples 1–3 and by couple CoC+ for the combination of source data and target data in

examples 1–4. The algorithm coupleCoC+ runs until convergence (15 iterations) by MATLAB

R2019b—academic use. SC3 and SIMLR run in default iterations in Rstudio (Version

1.2.5033) by the downloaded R packages. All of these algorithms are run in Windows 10 Enter-

prise (Version 1909) with the Processor: Intel(R) Core(TM)i7–9700 CPU 3.00GHz and with

16.0 GB installed RAM.

(PDF)

S1 Fig. UMAP visualization of source data (left) and target data (right) in example 1.

(TIF)

S2 Fig. UMAP visualization of source data (left) and target data (right) in example 2.

(TIF)

S3 Fig. UMAP visualization of source data (left) and target data (right) in example 3.

(TIF)

S4 Fig. UMAP visualization of source data (left) and target data (right) in example 4.

(TIF)

S5 Fig. Calinski-Harabasz evaluation on selecting the optimal number of cell clusters for

the source dataset and the target dataset in example 1. The value of CH index has been stan-

dardized via minimax normalization to ensure each value being bound to between 0 and 1.

(TIF)

S6 Fig. Choose the number of Nsub in example 1.

(TIF)

S7 Fig. Calinski-Harabasz evaluation on selecting the optimal number of cell clusters for

the source dataset and the target dataset in examples 2 and 3. The value of CH index has

been standardized via minimax normalization to ensure each value being bound to between 0

and 1.

(TIF)

S8 Fig. The loss function (objective function) curves after each iteration by coupleCoC+ in

real data examples 1–4. The value of the objective function after each iteration has been stan-

dardized via minimax normalization to ensure each value being bound to between 0 and 1.

(TIF)
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