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Abstract
Background: To strengthen research and differential diagnostics of mitochondrial disorders, we
constructed and validated an oligonucleotide microarray (h-MitoArray) allowing expression
analysis of 1632 human genes involved in mitochondrial biology, cell cycle regulation, signal
transduction and apoptosis. Using h-MitoArray we analyzed gene expression profiles in 9 control
and 13 fibroblast cell lines from patients with F1Fo ATP synthase deficiency consisting of 2 patients
with mt9205ΔTA microdeletion and a genetically heterogeneous group of 11 patients with not yet
characterized nuclear defects. Analysing gene expression profiles, we attempted to classify patients
into expected defect specific subgroups, and subsequently reveal group specific compensatory
changes, identify potential phenotype causing pathways and define candidate disease causing genes.

Results: Molecular studies, in combination with unsupervised clustering methods, defined three
subgroups of patient cell lines – M group with mtDNA mutation and N1 and N2 groups with
nuclear defect. Comparison of expression profiles and functional annotation, gene enrichment and
pathway analyses of differentially expressed genes revealed in the M group a transcription profile
suggestive of synchronized suppression of mitochondrial biogenesis and G1/S arrest. The N1 group
showed elevated expression of complex I and reduced expression of complexes III, V, and V-type
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ATP synthase subunit genes, reduced expression of genes involved in phosphorylation dependent
signaling along MAPK, Jak-STAT, JNK, and p38 MAP kinase pathways, signs of activated apoptosis
and oxidative stress resembling phenotype of premature senescent fibroblasts. No specific
functionally meaningful changes, except of signs of activated apoptosis, were detected in the N2
group. Evaluation of individual gene expression profiles confirmed already known ATP6/ATP8 defect
in patients from the M group and indicated several candidate disease causing genes for nuclear
defects.

Conclusion: Our analysis showed that deficiency in the ATP synthase protein complex amount is
generally accompanied by only minor changes in expression of ATP synthase related genes. It also
suggested that the site (mtDNA vs nuclear DNA) and the severity (ATP synthase content) of the
underlying defect have diverse effects on cellular gene expression phenotypes, which warrants
further investigation of cell cycle regulatory and signal transduction pathways in other OXPHOS
disorders and related pharmacological models.

Background
Mitochondria generate most of the cellular energy in the
form of ATP, regulate cellular redox state, cytosolic con-
centration of Ca2+, are a source of endogenous reactive
oxygen species, and integrate many of the signals for initi-
ating apoptosis. By means of retrograde signaling mito-
chondria communicate all these events to the nucleus and
thus modulate nuclear gene expression and cell cycle.

In humans, mitochondrial dysfunction leads to a vast
array of pathologies, and hundreds of diseases result from
various defects of mitochondrial biogenesis and mainte-
nance, respiratory chain complexes, or individual mito-
chondrial proteins [1].

The most frequent group of mitochondrial diseases results
from genetic defects of the oxidative phosphorylation sys-
tem (OXPHOS) [2]. OXPHOS defects form a highly
diverse group of diseases that affect primarily energy
demanding tissues, such as the central nervous system,
heart, and skeletal muscles. Their prevalence is estimated
as at least 1:5000 [3]. About half of the OXPHOS defects
result from mtDNA mutations [4]. Diseases resulting
from mtDNA mutations usually show maternal mode of
inheritance and variable penetrance of the disease pheno-
type, reflecting levels of mtDNA heteroplasmy and thresh-
old effects in affected tissues. Remaining OXPHOS defects
result from mutations in genes encoded in nuclear DNA.
The majority of the nuclear encoded diseases are inherited
as autosomal recessive traits and produce severe and usu-
ally fatal phenotypes in infants [5]. Up to now, mutations
in approximately 50 nuclear genes have been identified,
but most of nuclear genetic defects remain unknown and
can involve any of approximately 1000 mitochondria
related genes [6]. These genes play an essential role in the
assembly or maintenance of individual OXPHOS com-
plexes, in maintenance of mtDNA integrity, and mito-
chondrial biogenesis.

Diagnostic process of OXPHOS defects requires a combi-
nation of biochemical, enzymatic, immunohistochemical
and molecular biology methods. To distinguish between
isolated and combined OXPHOS deficiencies, the diag-
nostic process starts with measurements of selected mito-
chondrial enzyme activities and activities of individual
OXPHOS complexes. The diagnostic procedure continues
with analysis of OXPHOS complex protein composition.
The origin of the molecular defect (mtDNA vs ncDNA) is
often apparent from clinical presentation and family his-
tory. If not, it can be determined by using transmitochon-
drial cybrid cell analysis. Final steps in the diagnosis
represent mutation analysis either in mtDNA or in nuclear
encoded candidate genes in accordance with observed
clinical and biochemical phenotypes. The diagnostic
process is experimentally demanding and time-consum-
ing and in majority of cases leads only to biochemical
diagnosis. The molecular basis of the disease, especially in
nuclear encoded defects, mostly remains unknown.

Identification of nuclear gene defects in OXPHOS defi-
ciencies requires combination of positional cloning, func-
tional complementation, and candidate gene analysis.
Application of these "standard" procedures is however
greatly hampered by limited number of affected patients,
complexity and overlap of observed diseases phenotypes,
difficulties in measurement of biochemical phenotypes in
vitro, and by the existence of many candidate nuclear
genes [7].

Another method having potential to contribute to differ-
ential diagnosis and research of OXPHOS defects relies on
gene expression profiling. This type of analysis has a
potential to provide information on putative diseases sub-
types [8], suggest candidate disease causing genes
[7,9,10], reveal pathogenic mechanism of the disease [11]
and define specific gene expression profiles usable in
future disease class prediction [12].
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One of the possibilities for long term studies selectively
targeted to mitochondrial gene expression analysis
involves development and application of a focused micro-
array interrogating set of all known and hypothetical
human mitochondrial genes, and several human mito-
chondria focused microarrays were prepared recently [13-
16]. All these microarray platforms were based on PCR
amplified probes prepared from selected IMAGE consor-
tium cDNA clones. This approach however poses a
number of technical obstacles. High rate of miss-annota-
tion and contamination in the commercially distributed
subset of the IMAGE Consortium cDNA clone collection
[17] requires resequencing of individual clone inserts, and
subsequent PCR preparation of individual probes is labo-
rious and time consuming. Given these difficulties it has
become very attractive to use sets of oligonucleotide
probes that obviate much of the probe preparation work.
Since the yield of long oligonucleotides has improved and
cost has fallen recently, the current trend in preparation of
low density, tailor-made microarrays favours oligonucle-
otide microarrays [18].

In this paper, we describe development and validation of
a focused oligonucleotide microarray for expression pro-
filing of human mitochondria related genes – "h-MitoAr-
ray" and report gene expression analysis of fibroblast cell
lines from 9 controls and 13 patients with isolated defi-
ciency of F1Fo ATP synthase caused either by microdele-
tion of mtDNA encoded ATP6 gene [19,20] or by
mutation of unknown nuclear genes [21,22].

Results
Microarray design and preparation
For microarray preparation we selected genes coding for
known or predicted mitochondrial proteins, genes known
to be involved in cell cycle growth and regulation, and
genes involved in apoptosis and free radical metabolism.

The final set contained 1632 genes, of which 992 are
"mitochondrial" genes, 42 lysosomal genes, 277 genes are
associated with apoptosis, and 321 are "oncogenes". For
normalization and background correction we included
146 human "housekeeping" genes, 10 Arabidopsis genes
and 32 blanks. Full list of selected genes with correspond-
ing symbols, accession and LocusLink codes is provided
[see Additional file 1]. Functional annotation of selected
genes and comparison of the gene content against whole
human genome set is provided [see Additional file 2].

Microarray validation
Hybridization properties and performance of designed
oligonucleotide probes and control features placed on h-
MitoArray were tested by hybridization of fluorescently
labeled panomers and fluorescently labeled cDNA pre-
pared from a pool of total RNA isolated from several cell

lines (test RNA). Gene expression signal was detected in >
77% of 1820 elements when fluorescently labeled cDNA
pool was used.

Following comparison of various labeling strategies and
optimization of hybridization conditions a series of self-
to-self experiments was performed using test RNA. Data
analysis showed acceptable reproducibility with Pearson
correlation coefficient ranging 0.987 – 0.991.

Gene expression analysis in ATP synthase deficient 
fibroblasts
Fluorescent cDNA probes labeled with Cy5 were prepared
from 13 patient and 9 control cell lines and were hybrid-
ized to common reference cDNA probe labeled with Cy3
in two technical replicates for each sample. Following
data acquisition, transformation, normalization and rep-
licate averaging, gene expression signals were obtained for
1264 genes. Ratios of Log2 sample gene intensities against
Log2 common reference gene intensities (M) were calcu-
lated and are provided [see Additional file 3]. Calculated
ratios of individual patient Log2 gene intensities against
the Log2 of average of controls gene intensities (M) are
provided [see Additional file 4].

Principal component analysis
To assess overall data quality and visualize relations
between analyzed samples, we removed from the original
data set 47 genes showing low expression variability
(based on criteria |Mmin; Mmax| ≤ 0.58, less than 1-fold
change across all the samples) and subjected resulting
data set to principal components analysis. Visual inspec-
tion of resulting plots showed no gross differences among
the individual samples but suggested that several samples
from nuclear defect patients group might be distinct from
the others (Figure 1B).

Hierarchical clustering
To reveal gene expression changes, survey variation in
patient samples, and better interpret the results of princi-
pal component analysis (PCA), gene expression signals
from individual patient samples were compared to aver-
age of gene expression signals from all controls. Hierarchi-
cal clustering of all gene ratios across all patient samples
was performed using Euclidean distance metrics and aver-
age linkage clustering algorithm. Resulting expression
map (not shown) and sample dendrogram shown in Fig-
ure 1A defined, in agreement with previous PCA, two dis-
tinct subgroups of patients with nuclear defect, (N1 and
N2 group) which were considered in subsequent gene
expression comparisons and functional evaluations.
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Overall gene expression changes triggered by ATP synthase 
deficiency
Comparison of gene expression patterns between ATP
synthase deficient and control fibroblast cell lines was
performed in R statistical environment as described in
methods. This analysis revealed 78 genes to be differen-
tially expressed at adjusted P < 0.01 significance level [see

Additional file 5]. Detailed inspection of expression map
and evaluation of individual gene expression profiles
showed, that although defined as significant, majority of
the identified genes was not uniformly altered across all
the patient samples.

Identification of subgroup specific gene expression profiles
To identify the subgroup specific gene expression changes,
the subgroups of patients defined by a mutation of the
MTATP6 gene of the mtDNA (M group), PCA and hierar-
chical clustering (N1 and N2 groups) were compared.
ANOVA analysis performed in MeV software revealed 97
genes to be differentially expressed at unadjusted P < 0.01
(Figure 2), [see Additional file 6].

Inspection of resulting data showed that the M group was
specifically characterized by reduced expression of mito-
chondria encoded ATP synthase subunit genes MTATP6,
MTATP8, nuclear encoded ATP synthase assembly factor
ATPAF1, cytochrome c oxidase subunit II gene MTCO2,
mitochondrial transcription factors TFAM and TFB1M,
peroxisome proliferator-activated receptor alpha
(PPARA), regulatory genes H2AFX, CCNB1, C11orf13
(RASSF7), TPR and ACO2. This was accompanied by
induction of NRF1.

The N1 group was characterized by reduced expression of
genes involved in cell growth, differentiation and trans-
duction pathways (FOS, NOV, MAGED1, IL15RA,
RARRES3, CTSK, UPLC1, PIM1), mitochondrial proteo-
synthesis (MRPS5), lysosomal metabolism and function
(cathepsins S, K and D, GBA, PPGB, NPC, CLN2, FUCA1,
HEXB), protein transport (AP2A1), protein phosphoryla-
tion (CDK5, PPAP2A), hydrolase activity (LIPA, LYPLA3),
reactive oxygen species metabolism (GPX4) and mem-
brane transport (SLC17A5, CTNS). This was accompanied
by elevated expression of several cell cycle regulatory
genes such WNT5A, IL3, CSNK1A1, BID, EIF4A1, and
ACO2.

The N2 group showed reduced expression of WNT5A,
EMP2, ADK, MDH2, SMAC and elevated expression of
PPARG and GLS. Extent and range of detected changes
were much less than that observed in M and N1 groups.

Following ANOVA analysis, which revealed only inter-
group specific differences, a list of group specific gene
expression changes was obtained by comparison between
defined patient subgroups and controls in R statistical
environment as described in Methods. The analysis
revealed 61, 215, and 54 genes to be differentially
expressed at adjusted P < 0.01 in the M, N1 and N2
groups, respectively. In addition to the above mentioned
genes revealed by ANOVA, we found in the M group ele-
vated expression of mitofusin and coordinately reduced

Results of unsupervised clustering methodsFigure 1
Results of unsupervised clustering methods. A) Den-
drogram resulting from two-dimensional hierarchical cluster-
ing of all genes across all patient samples performed using 
Euclidean distance metrics and average linkage clustering 
algorithm. B) Two-dimensional PCA plot of all expression 
data showing the separation of samples forming N1 group. 
Patients from M, N1 and N2 groups are shown in blue, black 
and red, respectively.
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expression of genes regulating G1/S phase transitions
(E2F1, MYC, CDC2, GAS1, CCNA2, CCNB, CDK2,
CDC25A, PCNA), thymidine metabolism (TK, TYMS) and
DNA topology (H2AFX, TOP2, LMN2). In the N1 group,
we observed reduced expression of genes regulating cell
growth and signaling (JUNB, MAPK3, WT1, CEBPA,
CEBPB) and lysosomal metabolism. We found elevated
expression in genes involved in apoptosis (FAS, CYTC,
SMAC, IGFBP3). In the N2 group, we found signs of
started apoptosis (SMAC, CASP8). Group specific gene
lists with expression values and corresponding P-statistics
are provided [see Additional file 7, 8, 9].

Biological consequences of identified gene expression 
changes
To reveal biological consequences and to identify path-
ways potentially involved in the pathogenesis of the stud-
ied defects, we extracted from original expression data for
each of the three defined groups all genes found to be dif-
ferentially expressed at unadjusted P < 0.05 and showing
expression change |M| > 0.2. Resulting expression datasets
were uploaded into the DAVID database [23] and gene
enrichment analysis was performed against h-MitoArray
gene list. Results are provided in Table 1.

As the enrichment analysis suggested group specific dys-
regulation of several metabolic and signaling pathways,
we further uploaded identical datasets into KEGGArray
software (KEGG pathway databases – Kyoto Encyclopedia
of Genes and Genomes) and inspected gene expression
changes in all the indicated pathways.

In the M group, generally reduced expression was
observed in cell cycle regulation (Figure 3), Krebs cycle
(OGDH, IDH1, ACO2) and gluconeogenesis (ALDOA,
LDHA, PGAM1) pathways. With an exception of MTATP6,
MTATP8 and MTCOX2, no multiple changes in OXPHOS
system, valine, leucine, isoleucine, lysine, β-oxidation and
MAP kinase pathway were observed. Reduced expression
of CytC and NFκB and elevated expression of FAS were
detected in the apoptotic pathway. In contrast to the N1
group, elevated expression of genes involved in N-glycan
and heparan sulfate was detected.

In the N1 group, the analysis revealed elevated expression
of several complex I subunit genes (ND1, ND2, ND4,
ND4L, Ndufs1, Ndufv2, Nufa9, Ndufb9 and Ndufa10) and
generally reduced expression of complex IV (COX4,
COX5A, COX6A, COX6B, COX6C and COX15) and com-
plex V subunit genes (ATPAF1, ATP5G2) in OXPHOS sys-
tem. Generally reduced expression of V-type ATP synthase
subunit genes was observed. Elevated transcription activ-
ity was found along valine, leucine, isoleucine, lysine and
fatty acid β-oxidation pathways. Elevated expression of
FGF, FGFR, Ras and PKC and reduced expression of Raf1,

Differentially expressed genes defined by ANOVA analysisFigure 2
Differentially expressed genes defined by ANOVA 
analysis. Heatmap of genes detected as differentially 
expressed between defined patient groups using ANOVA 
analysis and unadjusted P < 0.01 significance level. The results 
are shown as Log2 ratio of relative gene expression signal in 
each patient sample to average of this of control samples. 
Ratio values are represented as the pseudo-color whose 
scale is shown in corresponding lookup picture.
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MEF1, ERK, Elk1 and FOS were found in classical MAP
kinase pathway (Figure 4A). Reduced expression of IL1,
IL1R, AKT, Elk1, GADD153 and JunD with elevated expres-
sion of p53, p38 and Evi1 were found in JNK and p38 MAP
kinase pathways (Figure 4A). Reduced expression of STAT,
CPB, Pim-1, AKT and BclXL and elevated expression of

IL2/3 and IL3R were found in Jak-STAT signaling pathway.
Elevated expression of Bid and CytC with reduced expres-
sion of Bcl-2/XL and CASP9 were detected in the apoptotic
pathway. General decrease in expression of genes
involved in N-glycan, glycosylaminoglycan, and ganglio-
side degradation was found. In conjunction with 3-meth-

Table 1: Functional annotation of defined patient subgroups.

M N1 N2

category n p category n p category n p

DAVID IDs

258 383 238

Biological processes

230 344 203
DNA replication 13 5E-3 endodome transport 7 1E-3 development 38 9E-3
taxis 9 7E-3 vacuole organization and biogenesis 7 9E-3 reactive oxygen species metabolism 6 1E-2
carbohydrate metabolism 25 9E-3 response to chemical stimuli 23 1E-2 response to oxidatïve stress 5 3E-2
negative regulation of biological 
processes

26 1E-2 regulation of enzyme activity 20 3E-2 dephosphorylation 6 2E-2

nucleic acid metabolism 69 2E-2 vesicle mediated transport 18 3E-2 intracellular protein transport 18 3E-2

Molecular function

238 347 211
DNA binding 39 2E-2 protein dimerization activity 14 2E-2 protein domain specific binding 6 3E-2
protein dimerization activity 10 5E-2 hydrolase activity on glycosyl bonds 12 5E-2 GTPase activity 7 5E-2
nucleic acid binding 54 5E-2

Cellular component

285 342 195
chromosome 11 2E-3 vacuole 44 2E-8 chromosome 8 4E-2
chromatin 7 9E-3 lytic vacuole 39 2E-7
nucleus 70 6E-3 lysosome 39 1E-7 lytic vacuole 17 4E-2
lytic vacuole 20 2E-3 extracellular region 32 2E-2 lysosome 17 4E-2
lysosome 20 2E-3 endosome 8 4E-2 non-membrane bound organelle 28 4E-2

KEGG pathway

122 185 125
N-glycan degradation 5 2E-2 antigen processing 9 2E-3 Toll-like receptor signaling 10 2E-2
hematopoetic cell lineage 8 3E-2 glycosphingolipid metabolism 7 2E-2 glycosylaminoglycan degradation 6 2E-2

hematopoetic cell lineage 10 4E-2

Biocarta pathway

68 92 57
cyclins and cell cycle regulation 9 2E-2 role of ERB2 in signal transduction 9 5E-3 activation of Src 4 3E-2

IL 3 signaling pathway 7 1E-2 phospholipid signaling intermediates 5 4E-2
IL 6 signaling pathway 8 1E-2
Erk and PI-3 kinase pathway 7 2E-2
signaling pathway from G-protein 
families

7 3E-2

"n", number of genes involved in the corresponding annotation category; p, modified Fisher exact p-value of the gene enrichment for each category.
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ylglutaconic aciduria, which is a characteristic
biochemical feature of the patients from this group,
inspection of leucine degradation pathway showed mod-
erately reduced expression of 3-methylglutaconyl-CoA
hydratase gene, AUH, (Figure 4B). Although the extent of
the AUH expression changes neither directly implicates
the deficiency of 3-methylglutaconyl-CoA hydratase nor
explains 3-methylglutaconic aciduria present in these
patients, it is possible that such changes might be much
more pronounced and have functional effects during met-
abolic stress and/or in metabolically active tissues. In the
N2 group, reduced expression of GRB2, RAS and ERK and
elevated expression of FOS, JUND and Evi1 was found in
MAP kinase pathway. This was accompanied by elevated
expression of genes involved in N-glycan, glyco-
sylaminoglycan and ganglioside degradation. No multi-
ple changes in the apoptotic and valine, leucine,
isoleucine, lysine, β-oxidation degradation pathways were
found. All mentioned pathways and gene expression
changes identified by KEGGArray software are provided
[see Additional file 10 and 11].

Identification of patient specific gene expression profiles and 
definition of candidate disease causing genes
To get specific information on patient mitochondrial
genome expression, we extracted and clustered gene
expression data for all 37 mtDNA genes. Resulting mito-
chondrial genome expression map (Figure 5A) reflects rel-
ative mitochondrial DNA amount with generally elevated
expression in P11, P3, P10 and P6 and generally reduced
expression in P2, P4 and P8. Specific gene expression
changes were detected in P1 and P2, where the expression
map revealed reduced amount of MTATP6, MTATP8 and
MTCOXII transcript reflecting disease causing microdele-
tion of MTATP6, and in P12 with specifically reduced
expression of tRNAGly.

To obtain the information on patient specific ATP syn-
thase complex expression, we extracted and clustered gene
expression data for all of its structural genes and assembly
factors. Resulting expression map is provided in Figure 5B.
In P1 and P2, it shows reduced expression of mitochon-
drial subunits MTATP6, MTATP8 and also of ATPAF1.

Gene expression changes detected in selected pathways in M groupFigure 3
Gene expression changes detected in selected pathways in M group. General changes in cell cycle pathway detected 
in patients with mtDNA mutation (M group) using KEGGArray software.
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With the exception of reduced expression of ATP5G2 in P5
and maybe also ATP5C1 in P3 no additional subgroup
and/or patient specific profile were found.

To define potential candidate disease genes, we finally
compared gene expression data of individual patients
with a group of controls in R statistical environment as
described in methods, and searched for genes showing
significantly reduced expression and having known func-
tion either in ATP synthase biogenesis, mitochondrial
protein trafficking or mitochondrial biogenesis. In P1 and
P2, we detected reduced expression of ATP synthase struc-
tural subunits MTATP6, MTATP8 and also of ATPAF1. In
P3 we detected reduced expression of ATP5C1 and
ATP5O. In P4 and P8 we detected reduced expression of
TOM 7. Mitochondrial carrier homolog 1 (C. elegans)
(MTCH1) transcript was reduced in P6, P10, P11 and P12.

In P10 we detected reduced expression of mitochondrial
elongation factor EFG1 and TOM22. In P11 we found
reduced expression of TIM23, TIM8 and TOM34
homologs, ATP5H and ATP5E. In P12 we found reduced
expression of mitofusin and ATP5H. The lists of all the dif-
ferentially expressed genes are shown [see Additional file
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Confirmation of the hybridization results
To rule-out platform specific bias, we re-analyzed all RNA
samples from the N1 and control groups using the same
common reference RNA on Agilent 44 k arrays. We used
available annotations and extracted from the Agilent data
gene expression values for the genes identified as signifi-
cantly (P < 0.05), differentially expressed in the N1 group
on our platform. Correlation coefficient of expression val-
ues of 102 identified genes was 0.925.

Gene expression changes detected in selected pathways in N1 groupFigure 4
Gene expression changes detected in selected pathways in N1 group. A) Changes in MAPK, JNK and p38 MAP 
kinase pathways, B) reduced expression of AUH, 3-methylglutaconyl-CoA hydratase gene in leucine degradation pathway, 
detected in patients with nuclear defect (N1 group) using KEGGArray software.

A

B
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Correlation of expression data with available RT-PCR and 
Western blot results
ATP synthase deficiency of nuclear genetic origin is char-
acterized at the protein level by pronounced decrease of

the individual subunits and the mature ATP synthase pro-
tein complex amounts (Table 2). However, our data in
patient cell lines, in agreement with previous Q-PCR anal-
yses, did not show pronounced alterations in ATP syn-
thase subunits or of ATP synthase-specific assembly
factors mRNA levels that could explain it easily. Only in
the M group, the data showed decrease of MTATP6 and
MTATP8 mRNA levels which correspond with previously
performed Northern blot and Q-PCR analysis showing
that this mutation affects processing of ATP8/ATP6/COX-
III polycistronic transcript and results in decreased levels
and/or stability of mature ATP8/ATP6 mRNA [19,24].
Many of mitochondrial diseases are associated with com-
pensatory changes in the cellular content of mitochondria
and/or the content of one or more OXPHOS complexes.
Western blot analysis of fibroblasts with ATP synthase
deficiency has previously shown increased mitochondrial
content of complex I and complex III [25]. In agreement
with this observation, our data showed elevated expres-
sion of complex I subunit genes in N1 group. Expression
of complex III subunit genes was however decreased. Par-
allel analyses of the fibroblasts with nuclear ATP synthase
defects used in this study revealed variable changes in
fibroblast COX and/or SDH specific content (Table 2).
These changes were not associated with generally elevated
expression of COX and SDH subunit genes. Detailed
inspection of individual gene expression profiles [see
Additional file 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24] however suggested that elevated expression of
COX7A2L and SDHA may correlate with this observation
(P3, P5, P6, P8, P10).

Discussion
Platform selection and evaluation
In our work, we attempted to set up an experimental plat-
form which will allow in a cost-effective way prospective
gene expression analysis of cell lines and tissues from
patients with various genetically determined OXPHOS
defects. We considered availability of biological materials
for the analysis, estimated the number of informative
genes, evaluated gene content of commercially available
microarrays and took into account instrumentation avail-
ability and platform related running costs. Since cultured
skin fibroblasts are the most accessible, relatively well
standardized, and multiple analysis amendable source for
gene expression analysis especially in nuclear encoded
OXPHOS defects, we estimated (based on Gene Expres-
sion Omnibus database data), that in fibroblasts, reliable
expression signal may be obtained for approximately
6000 (HG-U95 array) to 10000 (HG-U133 Plus 2.0 Array)
genes, of which only part may be meaningful to detect
and understand anticipated changes in mitochondrial
biology and related basic cell responses. In addition, we
also evaluated representation of mitochondria encoded
genes on available whole genome arrays. We found that

Two-dimensional hierarchical clustering of patient samplesFigure 5
Two-dimensional hierarchical clustering of patient 
samples. A) Expression matrix of all 37 mtDNA encoded 
genes. B) Expression matrix of structural and assembly fac-
tor genes involved in ATP synthase complex biogenesis. 
Selected genes were clustered across all patient samples 
using Euclidean distance metrics and average linkage cluster-
ing algorithm.
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(at the time of project planning) no complete coverage of
mitochondrial tRNA, rRNA and OXPHOS structural subu-
nits have been available on() Affymetrix HG_U95Av2
Array (contained just TRNC, TRNY and TRNS1), HG-
U133 Plus 2.0 Array (no tRNAs, rRNAs and ND1, ND4L,
CYTB) and Agilent 44 k Array (no tRNAs, rRNAs and
ND4L). Considering this data and also available instru-
mentation, we then decided to construct focused an oligo-
nucleotide microarray and employ competitive two-color
hybridization approach with common reference experi-
mental design.

Selected gene content allows gene expression analysis of
the entire mitochondrial genome and almost all of "mito-
chondria" related genes in context of key DNA synthesis,
growth response, regulatory and apoptotic genes. Hybrid-
ization signal was obtained from 78% of the designed oli-
gonucleotides. Vast majority of the oligonucleotides
giving no hybridization signal were designed to detect reg-
ulatory genes and transcription factor transcripts probably
not transcribed in the analyzed materials. Interestingly,
we detected hybridization signals for almost all mito-
chondrial tRNA and rRNA probes which is, in respect to

oligo-dT labeling strategy, suggestive that all those tran-
script are also at least partially polyadenylated [26].

Gene expression analysis in patients with defect of F1Fo 
ATP synthase
In the work presented herein, we analyzed and compared
gene expression profiles in fibroblast cell lines from 9 con-
trol individuals and 13 patients with biochemically
proven but genetically heterogeneous F1Fo ATP synthase
deficiency. We aimed to identify gene expression changes
indicating how affected cells react to and compensate for
the common biochemical defect, use gene expression data
to assign patients into already defined and/or putative dis-
ease subgroups, identify candidate disease causing genes,
and define potential pathogenetic mechanisms associated
with the disease.

The magnitude of observed expression changes was mod-
erate with only several dozens of genes exceeding 2-fold
changes. Comparing all the patient cell lines with all con-
trol cell lines, we have not identified any common and
meaningful gene expression changes attributable to ATP
synthase deficiency per se. It has been suggested recently
that the degree and compartmentalization of ATP deple-

Table 2: Clinical, biochemical and molecular description of patients (P1 – P13).

Patient (group) Phenotype Biochemical data Genetic defect ATPase 
(% of C)

SDH 
(% of C)

COX 
(% of C)

Ref.

P1 (M) PMR, encephalomyopathy, spastic quadruparesis, 
microcephalia,

lactate: 1.0–3.4
3 MGA: <15

mt9205ΔTA *80–120 120–200 80–120 [19]

P2 (M) transient lactic acidosis, nystagmus, GR lactate: 3.9–10 mt9205ΔTA *80–120 80–120 80–120 [20]
P3 (N2) PMR, HCMP, hypotonia, peripheral neuropathy, lactate: 1.4–10

3 MGA: 133–281
ncDNA, unknown <30 120–200 120–200 [21]

P4 (N1) Fatal lactic acidosis, HCMP lactate: 30–36 ncDNA, unknown <30 120–200 80–120 [82]
P5 (N2) PMR, HCMP, hypotonia, dysmorphy, 

microcephaly
lactate: 1.6–8
3 MGA: 22–225

ncDNA, unknown <30 >200 >200 [21]

P6 (N1) PMR, HCMP, hypotonia, dysmorphy, 
microcephaly

lactate: 3.6–4.5
3 MGA: 28–260

ncDNA, unknown <30 >200 >200 NR

P7 (N1) PMR, HCMP, hypotonia, dysmorphy, 
microcephaly, epilepsy

lactate: 2.2–6.0
3 MGA: 28–161

ncDNA, unknown <30 80–120 120–200 NR

P8 (N1) PMR, hypotonia, dysmorphy, microcephaly lactate: 3.6–6.7
3 MGA: 56–252

ncDNA, unknown <30 120–200 >200 NR

P9 (N1) PMR, hypotonia, dysmorphy, microcephaly lactate: 2.2–10
3 MGA: 62–150

ncDNA, unknown <30 >200 >200 [21]

P10 (N1) PMR, hypotonia, dysmorphy, microcephaly lactate: 1.4–4.6
3 MGA: 64–270

ncDNA, unknown <30 120–200 120–200 NR

P11 (N2) PMR, hypotonia, GR, HCMP dysmorphy, 
microcephaly

lactate: 1.5–8.2
3 MGA: 34–254

ncDNA, unknown <10 80–120 80–120 [21]

P12 (N2) PMR, hypotonia, HCMP lactate: 2–6.0
3 MGA: 115–460

ncDNA, unknown <10 80–120 80–120 [25]

P13 (N2) PMR, GR, microcephaly, mild spasticity, 
hepatopathy

lactate: 1.2–3.9
3 MGA: 37–132

ncDNA, unknown <30 120–200 120–200 [21]

Patient assignment to groups is based on DNA sequencing data (M) and results of PCA and hierarchical clustering (N1, N2). PMR – psychomotor 
retardation, HCMP – hypertrophic cardiomyopathy, GR – growth retardation, lactate – blood lactate (mmol/l), 3 MGA – 3-methylglutaconic 
aciduria (mg/g creatinine). ATPase (complex V), SDH (complex II) and COX (complex IV) represent enzyme protein content in fibroblast 
homogenates quantified by SDS PAGE/WB as in [19], using specific primary antibodies (MitoSciences, OR), Alexa Fluor® 680-labeled secondary 
antibodies and an Odyssey® Infrared Imaging System (LI-COR Biotechnology, Lincoln, NE). Data are presented as % of control values. * Decreased 
content of subunit a (ATP6). NR means not reported.
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tion may be defect specific and may thus have also specific
biological consequences [27]. Our data support this view.

Cell lines with mtDNA mutation (M group) showed gene
expression changes suggestive of suppressed mitochon-
drial biogenesis and metabolism characterized by down
regulation of TFAM and TFB1M, master regulators of
mitochondrial transcription, accompanied by reduced
expression of other mitochondria encoded transcripts
(MTCO2, MTATP6, MTATP8, and MTND6), reduced
expression of ATPAF1, E2F1, ACO2 (component of mito-
chondria to nucleus retrograde pathway) and PPARA. This
"mitochondria silencing" activity seems to be sensed and
counterbalanced by elevated expression of NRF1, which is
however not accompanied by expression changes of any
NRF-1 target and/or coactivator genes [28,29]. Inhibition
of mitochondrial biogenesis is synchronized with reduced
expression of genes regulating the G1/S phase transition
(E2F1, MYC, Rb, CycA, CycD, CDK2, Cdc7, Cdc25A, PCNA)
and associated thymidine metabolism (TK, TYMS) [30].
We interpret this gene expression pattern as an ATP deple-
tion mediated G1/S arrest [31] associated with synchro-
nized replication arrest of mitochondrial genome [32]
and repression of NRF-1 activity [33]. Our observations
are quite similar to that made in Drosophila mutants, in
which low ATP levels lead to arrest in the G1 phase with-
out affecting cellular differentiation and cell viability
[34,35]. Furthermore, our observation conforms to the
view that mitochondria co-regulate cell cycle progression
and that this regulation is executed not only at posttran-
scriptional [34] but also at transcriptional level.

The N1 group differed from M group in that it showed
very minor signs of mitochondrial response suggested
only by slightly elevated expression of PPGC-1, TFAM,
TFB2M and ACO2. More significant and distinct changes
were however observed in signal transduction pathways
regulating mitochondrial oxidative phosphorylation [36].
The gene expression portrait, reduced expression of many
transcription factors and cytokines regulating cell growth
and differentiation (FOS [37], JUNB and MAPK3 [38],
CEBPA and CEBPB, CXCL1 and CXCL2 [39]), elevated
expression of IGFBP3 [40] and CAV2 [41], together with
activated apoptosis (BCL2L1, SMAC, CYCS, FAF1), signs
of oxidative stress (TR2) [42] and general decrease in lys-
osomal activities [43], resemble characteristic signs of
senescent fibroblasts [44,45]. However all the cell lines

from the N1 group have originated from very young
donors, all but one were in their early passages and all
showed the same passage frequency of 5–6 days, (Table
3). It has been shown that inhibition of oxidative phos-
phorylation may play an active role in the process of cel-
lular senescence in human fibroblasts [46], and that
changes in transcription activity may be governed by
changes in protein phosphorylation [47]. We therefore
interpret the observed gene expression pattern as acceler-
ated stress induced premature senescence phenotype
resulting from impaired oxidative phosphorylation and
profoundly reduced ATP availability for critical energy-
dependent cellular processes. Our explanation of N1 cel-
lular phenotype is the following. Mitochondrial ATP syn-
thesis is markedly decreased in fibroblasts derived from
patients with nuclear DNA-related disorders but only var-
iably so in patients with mtDNA mutations [48]. ATP
depletion is sensed by AMP-activated protein kinase
which acts as a metabolic sensor or "fuel gauge" that mon-
itors cellular AMP and ATP levels [49]. Once activated, the
enzyme switches off ATP-consuming anabolic pathways
and switches on ATP-producing catabolic pathways [50],
such as fatty acid oxidation (elevated expression of ECH1,
ECHS1, ETFDH, CABC1) and amino acid catabolism.
Despite this compensatory effort, mitochondrial ATP
depletion persists due to intrinsic ATP synthase defect,
activation of AMPK persist and leads to accelerated p53-
dependent cellular senescence [51]. AMPK activity also
leads to decrease of HuR cytosolic translocation, which
influences the mRNA-stabilizing function of HuR [52]
and diminishes the expression and half-lives of HuR tar-
get transcripts, such as FOS [53] or CDKN1A [54] which
also leads to the premature senescence phenotype [55].
ATP availability probably modulates cytoplasmic translo-
cation and recruitment of other RNA-binding proteins sta-
bilizing various mRNAs [56]. In this context it is
interesting that we have detected reduced expression (or
transcript abundance) of two RNA-binding protein genes
CUGBP1 and AUH. CUGBP1 affects translation of
CDKN1A [57] and CEBPB [58], and our data show
decrease in those two transcripts as well. AUH stabilizes
FOS and other immediate early mRNA's [59], and its defi-
ciency is also causing methylglutaconic aciduria [60], a
characteristic biochemical phenotype observed specifi-
cally in this group of nuclear encoded ATP synthase defi-
cient patients [21] (Table 2).

Table 3: Growth characteristics of the fibroblast cell lines.

patients controls
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9

passage number 17 19 15 4 20 9 6 6 28 12 28 17 12 22 22 14 27 16 17 11 16 13
passage frequency (days) 5 5 6 6 6 6 6 6 5 6 6 7 7 9 3 3 4 4 5 4 4 7
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Resulting transcriptional silencing and other ATP deple-
tion mediated disturbances of intracellular signal trans-
duction cascades lead thus to premature senescence
phenotype, reduced proteasome activity and accumula-
tion of oxidized proteins, which may explain observed
discrepancies between gene expression and Western blot
data. Patients forming this group are of common ethnic
origin, and this is suggestive that common genetic defect
may underlie this specific gene expression profile.

The N2 group showed neither signs of mitochondria
response observed in the M group, nor signs of premature
senescence observed in the N1 group. Expression profile is
suggestive of partly activated apoptosis (SMAC) and dis-
turbances of intracellular signaling transduction cascades
(down regulation of several cytokines, early genes, and
regulatory proteins). However, all these changes were not
uniformly present in all cell lines, which together with
variability in clinical and biochemical data is suggestive of
further genetic heterogeneity within this group of
patients.

Selection of candidate disease causing genes
As gene expression changes may be used for selection of
candidate disease causing genes [9,61], we evaluated
group specific and individual gene expression profiles.
This approach was successful in both patients from the M
group, in whom detected alterations clearly indicated the
involvement of ATP6/ATP8/COXIII transcript. In other
patients we first focused on expression of ATP synthase
subunits. Inspection of this expression profile (Figure 5B)
suggested involvement of ATP synthase assembly factor
ATPAF2 in several patients from N1 group. Mutation of
ATPAF2 has been found in the case with ATP synthase
deficiency [62] and this warrant sequence analysis of this
gene in this group of patients. Other candidate genes may
be ATP5G2, the expression of which is decreased in P5
and possibly also ATP5C1 found lowered in P3. From
other genes, no clear candidates for immediate sequence
analysis may be defined yet. However, more focused inter-
pretation will be possible once candidate disease genomic
intervals are defined by ongoing linkage studies.

Conclusion
We designed, produced, and validated an oligonucleotide
microarray focused on expression profiling of human
mitochondria related genes, and searched for gene expres-
sion changes in genetically heterogeneous group of 13
patients with F1Fo ATP synthase deficiency. The analysis
classified patients into three distinct groups and suggested
that site (mtDNA vs nucleus) and severity (residual con-
tent of ATP synthase) of underlying biochemical defect
have diverse effects on cell gene expression phenotype.
Comparisons with controls, between defined groups and
among individual patient cell lines did not show any uni-

form transcription changes explaining pronounced
decrease in ATP synthase content and alterations of the
other OXPHOS complexes observed at the protein level.
The analysis nevertheless confirmed the already known
and indicated candidate disease causing genes, and sug-
gested that defects in ATP synthesis lead to deregulation of
signal transduction pathways and affect mitochondrial
and nuclear DNA replication. These may be important
pathogenic mechanisms involved not only in F1Fo ATP
synthase deficiency but also in other OXPHOS defects.
Observed gene expression changes therefore warrant fur-
ther investigation of major cell cycle regulatory and signal
transduction pathways in other OXPHOS disorders and
pharmacological models. Full potential of the constructed
h-MitoArray platform will be further revealed in ongoing
positional cloning studies in herein analyzed patients and
in gene expression studies in other groups of OXPHOS
deficient cell lines.

Methods
Database of human mitochondrial genes
Lists of "mitochondrial" and "mitochondria related"
genes were extracted and merged from various public
databases such as Mitomap [63], Mitop [64], Migenes
[65], Mitoproteom [66], Molecular Signature Database
[67], OMIM, RefSeq and Unigene sections at NCBI [68],
Gene Ontology database [69] and UniProt resource [70].
Full annotation of selected genes has been obtained and
deposited in a locally installed database BASE [71].

Microarray preparation
For each of the selected 1632 genes, a single 5'-ami-
nomodified 40-mer oligonucleotide was designed using
Oligopicker software [72]. Blast searches were performed
with each candidate probe to exclude possibility of cross
hybridization with homologous genes prior to the synthe-
sis of oligonucleotide probes. Synthesized oligonucle-
otides, Generi Biotech (Czech Republic) and Illumina
(San Diego, CA), were resuspended at 20 μM concentra-
tion in 3 × SSC, printed in triplicates on aminosilane
modified slides, and immobilised by standard technique
using combination of baking and UV cross-link as previ-
ously described [61]. Qualities of arrays from individual
printing series were assessed using fluorescently labelled
panomers (Invitrogen, Carlsbad, CA).

Mixed RNA for microarray validation
As a standard for microarray optimisation, standardiza-
tion and validation total RNA was isolated from HeLa G,
ECV 304, 293, U 937, JURKAT and A 301 cell lines using
the TRIZOL solution (Invitrogen, Carlsbad, CA). Isolated
RNA samples were pooled, and aliquots were stored at -
80°C until the analysis.
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Reference RNA preparation
As a common reference RNA for gene expression studies,
total RNA from cultured HeLa cells was chosen. Total RNA
was extracted as above. Concentration was determined
spectrophotometrically at A 260 by NanoDrop (Nano-
Drop Technologies, Wilmington, DE) and quality was
checked on Agilent 2100 bioanalyser – RNA Lab-On-a-
Chip (Agilent Technologies, Santa Clara, CA). Aliquots of
isolated RNA were stored at -80°C until the analysis.

Control group
Selected control fibroblasts cell lines were used repeatedly
in previous diagnostic biochemical tests and showed no
signs of any mitochondrial or other metabolic defect.

Patients
Fibroblast cell lines from 13 patients were used in this
study. All the patients showed major clinical symptoms
associated with OXPHOS defect. Biochemical diagnosis of
ATP synthase deficiency was based on absence or signifi-
cant decrease of mature ATP synthase complex and of its
subunits in electrophoretic analysis of OXPHOS com-
plexes in cultured fibroblasts and other available tissues
[73]. Mitochondrial genome sequencing performed in all
patients revealed disease causing mitochondrial DNA
mutations in two patients (P1, P2, M group) [19]. Molec-
ular basis of defect in the other patients has not yet been
defined. Relevant clinical, biochemical and molecular
data and references on individual patients included in this
study are provided in Table 2.

Cell culturing
Growth characteristics of the cell lines used in this study
are provided in Table 3. Skin fibroblasts were cultured in
the Dulbecco's modified Eagle's medium supplemented
by 10% fetal calf serum, 20 mM HEPES pH 7.5, 0.2%
NaHCO3 and gentamycin 0.02 mg/ml at 37°C in a 5%
CO2 humidified atmosphere. For experiments, confluent
cell were harvested using 0.05% trypsine and 0.02%
EDTA. Detached cells were diluted in ice-cold culture
medium, sedimented by centrifugation (600 g) and
washed twice in phosphate buffered saline (140 mM
NaCl, 5.4 mM KCl, 8 mM Na2HPO4, 1.4 mM KH2PO4, pH
7.2).

RNA preparation, cDNA labeling and hybridization
Total RNA was extracted from cultured cells and QC con-
trolled as described above.

Five μg of total RNA was reverse transcribed and labeled
by Array 900 Expression Detection Kit (Genisphere, Hat-
field, PA) according to the manufacturer protocol. The
slides were pretreated by baking at 80°C, UV cross-linked
and washed twice in 0.1% SDS for 2 minutes, twice in 0.2
× SSC for 2 min, four times in MilliQ water, followed by

denaturation in boiling water for 2 minutes. Prehybridiza-
tion was performed using hybridization buffer (Geni-
sphere, Hatfield, PA) according to the manufacturer
protocol. All hybridizations were performed in humid
hybridization chamber, ArrayIt Hybridization Cassette
chamber (TeleChem International, Sunnyvale, CA).

Microarray scanning
The hybridized slides were scanned with GenePix 4200A
scanner (Axon Instruments, Union City, CA) with PMT
gains adjusted to obtain highest intensity unsaturated
images. GenePix Pro software (Axon Instruments, Union
City, CA) was used for image analysis of the TIFF files, as
generated by the scanner.

Experimental setup and data normalization
All 13 patient samples and 9 controls were hybridized to
common reference (HeLa cell lines) in two replicates of
each sample. All arrays were hybridized with a Cy5-
labeled sample cDNA and a Cy3-labeled reference cDNA.

Expression data were obtained using GenPix Pro software.
Comparative microarray analysis was performed accord-
ing to MIAME guidelines [74]. Normalization was per-
formed in R statistical environment [75] using Limma
package [76] which is part of the Bioconductor project
[77]. Raw data from individual arrays were processed
using Loess normalization and normexp background cor-
rection. Gquantile function was used for normalization
between arrays. The correlation between 3 replicate spots
per gene on each array was used to increase the robust-
ness. Linear model was fitted for each gene given a series
of arrays using lmFit function. The empirical Bayes
method was used to rank differential expression of genes
using eBayes function. Multiple testing correction was per-
formed using Benjamini & Hochberg method [78].

Quality control
Variation among feature replicates on the array was calcu-
lated by conversion of raw data to log-ratios. Data were
further normalized using Loess function. Features with
less than double background intensity (A < 8.5) were
removed. For each feature on the array the deviation from
the mean computed as the difference between the ratio of
the feature and the mean of the set of feature replicates
was calculated. Standard deviation of the error distribu-
tion using all of the replicates was calculated and con-
verted to coefficient of variability using equation.

The variability between the duplicate spots ranged from
8.1% to 27.5%. Arrays with variability higher then 18%
were removed from the analysis.

CV SD= ∗ −exp[(ln ) ]2 2 12
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Statistical analysis
Principal component analysis, hierarchical clustering,
ANOVA and SAM analyses were performed in TIGR Mul-
tiexperiment Viewer (MeV), version 4.0 [79], available
[80]. Significant gene expression changes between defined
subgroups were identified using t-test in R statistical envi-
ronment [75]. Applied parameters are provided in corre-
sponding result sections.

Functional annotation
Functional annotation and pathway enrichment analysis
was performed in DAVID (The Database for Annotation,
Visualization and Integrated Discovery [23]). Visualiza-
tion of gene expression changes along affected pathways
was performed in KEGGArray software (KEGG pathway
databases – Kyoto Encyclopedia of Genes and Genomes)
[81].

Data accession
Description of h-MitoArray platform and gene expression
data reported in this study are stored and available in
Gene Expression Omnibus repository under accessions
GPL5150 and GSE8648.
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