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The convolutional neural networks (CNNs) are a powerful tool of image classification

that has been widely adopted in applications of automated scene segmentation and

identification. However, the mechanisms underlying CNN image classification remain to

be elucidated. In this study, we developed a new approach to address this issue by

investigating transfer of learning in representative CNNs (AlexNet, VGG, ResNet-101, and

Inception-ResNet-v2) on classifying geometric shapes based on local/global features or

invariants. While the local features are based on simple components, such as orientation

of line segment or whether two lines are parallel, the global features are based on the

whole object such as whether an object has a hole or whether an object is inside of

another object. Six experiments were conducted to test two hypotheses on CNN shape

classification. The first hypothesis is that transfer of learning based on local features

is higher than transfer of learning based on global features. The second hypothesis

is that the CNNs with more layers and advanced architectures have higher transfer

of learning based global features. The first two experiments examined how the CNNs

transferred learning of discriminating local features (square, rectangle, trapezoid, and

parallelogram). The other four experiments examined how the CNNs transferred learning

of discriminating global features (presence of a hole, connectivity, and inside/outside

relationship). While the CNNs exhibited robust learning on classifying shapes, transfer

of learning varied from task to task, and model to model. The results rejected both

hypotheses. First, some CNNs exhibited lower transfer of learning based on local features

than that based on global features. Second the advanced CNNs exhibited lower transfer

of learning on global features than that of the earlier models. Among the tested geometric

features, we found that learning of discriminating inside/outside relationship was the

most difficult to be transferred, indicating an effective benchmark to develop future

CNNs. In contrast to the “ImageNet” approach that employs natural images to train and

analyze the CNNs, the results show proof of concept for the “ShapeNet” approach that

employs well-defined geometric shapes to elucidate the strengths and limitations of the

computation in CNN image classification. This “ShapeNet” approach will also provide

insights into understanding visual information processing the primate visual systems.
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classification
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INTRODUCTION

Over the past six decades, investigations of visual system
anatomy, physiology, psychophysics and computation have
resulted in a general model of vision, which begins from
extracting the local features of the retinal images in the
lower visual areas [e.g., Lateral Geniculate Nucleus (LGN),
V1], then integrates the local features to extract the global
features in the higher visual areas (e.g., V4 and IT) (Hubel
and Wiesel, 1977; Marr, 1982). The convolutional neural
networks (CNNs) are primarily inspired by this local-to-global
hierarchical architecture of the visual pathways. Similar visual
neurons that encode visual properties of a special region of
the visual field (i.e., receptive fields), the CNN units perform
computations using inputs from special regions of the image
and the receptive fields of units at different CNN layers
exhibit different properties. With roots in biology, math and
computer science, the CNNs have been the most influential
innovation in the field of computer vision and artificial
intelligence (AI). The CNNs can be trained to classify natural
images with accuracies comparable to or better than humans.
It has become the core of top companies’ services, such as
Facebook’s automatic tagging algorithms, Google’s photo search,
and Amazon’s product recommendations.

Despite the commercial success of the CNNs, however, little
is known about how the CNNs achieve image classification
and whether there are inherent limitations. This knowledge
is important for avoiding catastrophic errors of the CNN
applications in critical areas. To provide insight into the CNNs
limitations vs. advantages, we developed a new approach of
training and testing the CNNs, which is an alternative to
the popular ImageNet approach. The body of literatures (Liu
et al., 2018; Hussain et al., 2018) reported the performance of
CNNs transfer learning based on image classification. Instead of
using natural images to train and test the CNNs, we employed
geometric shapes as the training and testing datasets (Zheng
et al., 2019). In addition to training the CNNs to perform
shape classification tasks, we focused on assessing how the
CNN learning in the training datasets is transferred to new
datasets (i.e., transfer datasets), which have new shapes that
share local/global features with the training datasets. By varying
the train and transfer datasets, we will be able to determine
whether a local/global feature is extracted by the CNNs during
the learning process. The goal was to directly test two hypotheses
on CNN image classification. The first hypothesis is that transfer
of learning based on local features is higher than transfer
of learning based on global features. The second hypothesis
is that the CNNs with advanced architectures have higher
transfer of learning based on global features. In this study, we
analyzed transfer of learning in four representative CNNmodels,
i.e., AlexNet, VGG-19, ResNet-101, and InceptionResNet-v2,
which have been trained on the ImageNet and achieved high
accuracies in classifying natural images. We found that the
results rejected the two hypotheses. Although preliminary,
the present study provided proof of concept for this new
“ShapeNet” approach.

CONVOLUTIONAL NEURAL NETWORKS

Overview of Convolutional Neural
Networks
In this study, four representative CNN models were tested,
including the first deep-CNN (AlexNet), a significantly
improved CNN model (VGG-19), and two milestones of the
advanced CNNs (ResNet-101 and Inception-ResNet-v2). Their
characteristics are summarized in Table 1. All the CNN models
take color images as inputs, thus three-channel grayscale images
are created for training. All shape images are scaled to proper
size according to each model prior to training and testing. The
four CNNs have been pretrained with the ImageNet.

AlexNet
AlexNet (Krizhevsky et al., 2012) is a deep CNN for image
classification that won the ILSVRC (The ImageNet Large Scale
Visual Recognition Challenge) 2012 competition (Russakovsky
et al., 2015). It was the first model performed so well on the
historically difficult ImageNet. AlexNet has eight layers with
a total of 63M parameters (Table 1). The first five layers are
convolutional and the last three layers are fully connected. The
AlexNet uses Relu instead of Tanh to add non-linearity and
accelerates the speed by six times at the same accuracy. It uses
dropout instead of regularization to deal with overfitting. AlexNet
was trained using batch stochastic gradient descent (SGD), with
specific values formomentum and weight decay.

VGG-19
Simonyan and Zisserman (2014) created a 19-layer (16 conv., 3
fully-connected) CNN that strictly used 3 × 3 filters with stride
and pad of 1, along with 2 × 2 max-pooling layers with stride
2, called VGG-19 model1 To reduce the number of parameters in
such a deep network, it uses small 3× 3 filters in all convolutional
layers and best utilized with its 7.3% error rate. The VGG-19 has
a total of 143.7M parameters. As the winner of ILSVRC 2015, it
is one of the most influential models because it reinforced the
notion that the CNNs need to have a deep network of layers for
hierarchical representation of visual data.

ResNet-101 and Inception-ResNet-v2
As the winner of ILSVRC 2015, the ResNet-101 (He et al., 2016)
has 101 layers, consisting 33 three-layer residual blocks plus
input and output layers. Identity connections learn incremental,
or residual, representations, which creates a path for back-
propagation. The identity layers gradually transform from simple
to complex. Such evolution occurs if the parameters for the f (x)
part begin at or near zero. The residual block helps overcome the
hard training problem in DeepNet (> 30 layers) due to vanishing
gradients. The ResNet-101 model uses 3 × 3 filters with stride of
2, and 3× 3 max-pooling layers with stride 2.

Inception-ResNet-v2 is a hybrid inception version with
residual connections, which leads to dramatically improved
recognition performance and training speed in contrast with

1Very Deep Convolutional Networks for Large-Scale Visual Recognition, http://

www.robots.ox.ac.uk/\simvgg/research/very_deep/.
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TABLE 1 | Summary of the four CNN models.

CNN Model AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

Top-1 Accuracy (on ImageNet) 57.1% 71.3% 77.1% 80.0%

Number of Layers 8 19 101 164

Number of Parameters 63M 143.7M 44.5M 56M

Input Image Size 227 × 227 × 3 224 × 224 × 3 224 × 224 × 3 299 × 299 × 3

the inception architecture (Szegedy et al., 2017). The inception
model uses variant kernel size (in v1) to capture the features
from variant object size and location, introduces batch (weight)
normalization (in v2) and factorizing convolutions (in v3),
and uses bottleneck layers (1 × 1) to avoid a parameter
explosion. The combination of the two most recent ideas:
residual connections (Szegedy et al., 2016) and the latest revised
version of the inception architecture (Szegedy et al., 2016). It
is argued that residual connections are inherently important
for training very deep architectures (He et al., 2016). Since
inception networks tend to be very deep, it is natural to
replace the filter concatenation stage of the inception architecture
with residual connections. This would allow Inception to
reap the benefits of the residual approach while retaining its
computational efficiency.

EXPERIMENTAL RESULTS

Experimental Design and Datasets
As shown in Table 2, there were 24 categories of shapes
(540 images per category), which were generated in MatLab
with variations created with transforms including translation,
rotation and scaling. For the learning tasks, 85% of the learning
datasets were used for training and 15% of the learning
datasets were used for measuring validation accuracies, which
are reported as learning accuracies. For the transfer tasks,
classification accuracies in the transfer datasets are reported as
transfer accuracies. Notice that the training datasets and the
transfer datasets were different and separated. For example,
in Experiment A.1, the CNNs were trained with squares and
trapezoids, but never with rectangles. The four CNNs, which
were pretrained with the ImageNet, were retrained with the
learning datasets for 20 epochs.

To quantitatively evaluate transfer of learning (Figures 1–6),
we define transfer index (TFI) as

TFI = HAUCTransfer/HAUCLearn×100%, (1)

where the Half Area Under Curve (HAUC) is calculated using
the (Accuracy 50) and Epoch number. In general, we are
interested in classifiers with accuracies higher than 50%. Using
(Accuracy 50) instead of Accuracy is also for normalization
purpose. HAUCTransfer can be negative. The higher the TFI, the
higher the transfer of learning of a CNN. A perfect transfer,TFI=
100% can be achieved when both transfer accuracy and learning
accuracy are 100%.

In the following discussion and all tables (Tables 3–8), we use
the TFI values to measure the performance of transfer learning.

The bold TFI values in each table indicate the best CNNmodel in
that experiment.

Classification With Local Features:
Different Shapes
In Experiment A, the CNNs were trained to discriminate squares
vs. trapezoids. If the classification was based on angles of
neighboring sides or parallelism of opposing sides, we expect
the models to classify rectangles vs. trapezoids as squares
vs. trapezoids in Experiment A.1 (see the red curves labeled
“Transferring 1” in Figure 1). In general, we expect that a trained
model recognizes Column 1 images in the transfer dataset as
Colum 1 images in the training dataset (Table 2) if the shared
geometric invariants were used for classification. Note that the
parallelograms appear in both columns, which partially explains
that the accuracies of Transfer 2 and Transfer 3 are lower than
that of Transfer 1 (Figure 1 and Table 3). The Inception-ResNet-
v2 model performed the best and achieved 62.94, 42.26, and
20.68% of transfer index on the three transfer tests (Table 3).

In Experiment B, squares vs. parallelograms were used to train
the CNNs. Trapezoids were listed in both columns, which caused
lower accuracies of Transfer 1 and Transfer 3 (shown in red and
green curves in Figure 2). The VGG-19 model was the best and
reached 47.4, 61.3, and 13.88% of transfer index (Table 4). The
low transfer accuracies indicate that similarity extraction were
not complete. Transfer of learning was the worst when classifying
two unseen shapes (Transfer 3 in Experiment A and Experiment
B, green curves in Figures 1, 2). Note that the transfer curves
were in “parallel” with the learning curves, indicating the CNNs
did extract similarities between the training dataset and the
transfer datasets. Linear regressions were performed to quantify
the relationship between learning accuracy and transfer accuracy
(Supplemental Materials). Slope and R of the regressions were
used to assess the correlation between transfer accuracy and
learning accuracy.

Classification With Global Features:
No-Hole vs. One-Hole
The CNNs were trained to discriminate disks (no-hole) vs.
rings (one-hole), and transfer of learning was tested on triangles
vs. triangle-rings in Experiment C.1 and squares vs. square-
rings in Experiment C.2, respectively. A perfect transfer would
be expected if the presence of a hole was used to perform
the classification. The Inception-ResNet-v2 performed the best
(Figure 3) and achieved 77.2 and 81.48% of transfer index for the
two transfer tasks, respectively (Table 5).
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TABLE 2 | Examples of shapes for the learning and transfer tasks.

Exp. # Sample images for learning tasks Sample images for transfer tasks Description

A.1 Learning: Square vs. Trapezoid

Transfer: Rectangle vs. Trapezoid

A.2 Learning: Parallelogram vs. Trapezoid

Transfer: Rectangle vs. Parallelogram

A.3 Learning: Square vs. Trapezoid

Transfer: Rectangle vs. Trapezoid

B.1 Learning: Square vs. Parallelogram

Transfer: Trapezoid vs. Parallelogram

B.2 Learning: Square vs. Parallelogram

Transfer: Rectangle vs. Parallelogram

B.3 Learning: Square vs. Parallelogram

Transfer: Rectangle vs. Trapezoid

C.1 Learning: Disk vs. Ring

Transfer: Triangle vs. Triangle-ring

C.2 Learning: Disk vs. Ring

Transfer: Square vs. Square-ring

D.1 Learning: Irregular-disk vs. Irregular-ring

Transfer: Irregular-triangle vs. Irregular-triangle-ring

D.2 Learning: Irregular-disk vs. Irregular-ring

Transfer: Irregular-square vs. Irregular-square-ring

E Learning: Isosceles-triangle vs. Disassembled-Isosceles-triangle

Transfer: Irregular-triangle vs. Disassembled-irregular-triangle

F Learning: Dot-inside-circle vs. Dot-outside-circle

Transfer: Dot-inside-square vs. Dot-outside-square

Similar tests with irregular shapes were conducted in
Experiment D. The VGG-19 model had high transfer index
of 94.68 and 97.22% for the two transfer tasks, respectively

(Figure 4 and Table 6). The high transfer performance were
impressive when considering the fact of that the model had never
been exposed to shapes in the transfer datasets, indicating that
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FIGURE 1 | Experiment A. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

presence of a hole (a topological invariant) was likely extracted
and used for classification.

Note that the transfer index values of irregular shapes are

higher than that of regular shapes. More experiments are needed
to identify the underlying mechanisms.

Classification With Global Features:
Connectivity
In Experiment E, the four CNNs were trained with
isosceles-triangles (connected) vs. its three sides separated
(not connected), and transfer of learning were tested
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FIGURE 2 | Experiment B. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

on irregular-triangles vs. its three sides separated. If
connectivity (a topological invariant) was extracted
during the learning, we would expect high transfer
accuracies in this task. Among the four models, VGG-19
exhibited the highest transfer index of 92.78% (Figure 5
and Table 7).

Classification With Global Features:
Inside/Outside Relationship
In Experiment F, the CNNs were trained to discriminate dot-
inside-circle vs. dot-outside-circle, and transfer of learning was
tested on dot-inside-square vs. dot-outside-square (Figure 6).
While the VGG-19 achieved a moderate transfer index of 65.92%
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FIGURE 3 | Experiment C. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

(Table 8), the other three models, including the two advanced
models, exhibited lower transfer index of 46.74 and 13.11%,
respectively, indicating that inside/outside relationship was not
extracted for classification during the learning phase.

SUMMARY AND DISCUSSION

In this study, we trained four CNNs to perform shape
classification tasks based on local or global features and
further examined how learning of classifying shapes in the
training datasets was transferred to classifying shapes in the
transfer datasets, which share local or global features with
the training datasets. Experiments were designed to test two
hypotheses on transfer of CNN learning. First, we wanted

to test whether learning tasks based on local features have a
higher transfer accuracy than that based on global features.
This hypothesis was motivated by the local-to-global hierarchical
organization of the CNN architecture, where local features are
fully extracted and represented by the early layers. Second,
we wanted to test whether the advanced CNNs have higher
transfer accuracy for learning tasks based on global features
than the early CNNs. This hypothesis was motivated by
the fact that the advanced CNNs employ more layers and
recurrent connections, which had advantages of extracting
global features by integrating inputs from a large region.
Although this is a pilot study using the ShapeNet approach,
our results provide clear evidence that does not support the
two hypotheses.
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FIGURE 4 | Experiment D. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

As expected, the CNNs performed well in the learning tasks,
regardless classifying shapes using local features (Experiments
A and B) or global features (Experiments C–F). After 20
epochs of training, they classified the shapes in the training
datasets at high accuracies (>95%), indicating feasibility of
employing pre-trained CNNs to learn new tasks on a small
dataset. However, their performance in the transfer experiments
varied from task to task, and from model to model. Regarding
the first hypothesis, we found that transfer accuracies for local
features (Experiments A and B) were lower than those with
global features (Experiments C–F). In the example of Resnet101,
after it was trained to discriminate squares from trapezoids,
they were tested to discriminate rectangles from trapezoids.

The squares share many local features with squares, such as
four angles of 90 degrees, two pairs of sides parallel to each
other, etc. If the model learned to discriminate the pair of
shapes based on these shared features, we should expect a
perfect transfer, TFI = 100%. Contrary to this prediction, we
found that Resnet101 only had 53.36% transfer to rectangles
and 24.94% transfer to parallelograms. On the other hand, after
Resnet-101 was trained to discriminate regular triangle from
their separated sides, they were tested to discriminate irregular
triangles from their separated sides. If Restnet101 learned to
discriminate connected shape from disconnected shapes (i.e.,
connectivity, a topological invariant), we would expect to observe
a high transfer accuracy. Indeed, it showed a transfer index
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FIGURE 5 | Experiment E. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

of 77.06%, much higher than the transfer accuracy based on
local features. This finding is counterintuitive, suggesting a
lack of understanding of the mechanisms underlying CNN
image classification. However, the ShapeNet analysis provides a
quantitative approach to gain insight into this difficult problem.
Future studies will systematically manipulate the differences
between the learning datasets and the transfer datasets to tease
out the features used in the learning tasks.

Regarding the second hypothesis, we found that the more
advanced CNNs do not have higher transfer accuracies based
on global features. For example, Inception-ResNet-v2 has 192
layers and VGG19 has 19 layers. However, VGG19 exhibited
higher transfer accuracies on learning based on global features,
such as connectivity (Table 7, 92.78 vs. 87.91%) and inside-
outside relationship (Table 8, 65.92 vs. 13.11%). Among the
three global (topological) invariants, we found that inside/outside
relationship had the lowest transfer performance in the CNNs
(Figure 7). In the training datasets of dot-inside-circle/dot-
outside-circle, circle size, circle position and dot position

with respect to the circle varied from image to image. The
high learning accuracies (>99%) indicate that the CNNs
successfully extracted the common features of the learning
datasets. However, after only replacing circle by square, the
models performed poorly in classifying dot-inside-square and
dot-outside-square. The most advanced CNN model only had
a transfer index of 13.11%. This counterintuitive result suggests
that the CNNs achieved shape classification by adopting different
strategies than extracting inside/outside relationship. Note that
different from the other tasks, where the transfer curves
are in parallel with the learning curves, indicating extracting
shared properties between the training datasets and the transfer
datasets (Supplementary Figures 1, 2), the transfer curve for
the Inception-ResNet-v2 did not increase in parallel with the
learning curve. In fact, the correlation coefficient between the
transfer accuracy and learning accuracy was −0.17. Among the
three tested global features, inside-outside relationship seems to
be a limitation of the CNNs, which is not overcome by increasing
depth and recurrent connections. This task may be an effective
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FIGURE 6 | Experiment F. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

TABLE 3 | Exp. A. Learning accuracies and transfer index (TFI, percentage) of the four CNNs (Epoch 1 and 20) and the slope and R of the regression.

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 69.44 76.94 69.91 63.70

20 (learning) 75.28 93.43 90.09 91.20

Transfer Exp. A.1 A.2 A.3 A.1 A.2 A.3 A.1 A.2 A.3 A.1 A.2 A.3

1 (TFI) 4.78 7.15 −2.37 12.03 3.45 8.57 18.58 13.01 5.58 41.24 45.26 −4.09

20 (TFI) 22.35 4.39 17.96 46.49 22.82 23.67 53.36 24.94 28.41 62.94 42.26 20.68

Slope of regression 0.738 0.029 0.708 0.868 0.548 0.320 0.809 0.366 0.443 0.733 0.462 0.271

R of regression 0.959 0.163 0.943 0.990 0.989 0.921 0.981 0.952 0.974 0.987 0.966 0.912

The bold values denote the best CNN model corresponding to the highest TFI values in each experiment.

benchmark for developing new CNNs that can extract global
features under various conditions.

In summary, this pilot study presented a proof of concept
of the “ShapeNet” approach that can be used to elucidate the
mechanisms underlying CNN image classification. Rejecting the
two intuitive hypotheses indicate clear knowledge gaps in our

understanding of CNN image processing. Since the same stimuli
and tasks can be used to study visual information processing
in humans and monkeys, the “ShapeNet” approach may be
an effective platform to compare CNN vision and biology
vision. In fact, in addition to the well-known local-to-global
approach, there are accumulating evidence for an alternative
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TABLE 4 | Exp. B. Learning accuracies and transfer index (TFI, percentage) of the four CNNs (Epoch 1 and 20) and the slope and R of the regression.

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 70.00 73.98 70.00 59.07

20 (learning) 83.43 100.00 97.13 79.54

Transfer Exp. B.1 B.2 B.3 B.1 B.2 B.3 B.1 B.2 B.3 B.1 B.2 B.3

1 (TFI) 19.45 42.60 23.15 4.63 18.14 13.51 8.80 19.45 10.65 50.06 9.15 −40.79

20 (TFI) 20.49 36.82 16.33 47.40 61.30 13.88 41.65 36.16 −5.50 38.25 44.82 6.57

Slope of regression 0.435 0.483 0.048 0.766 0.941 0.175 0.723 0.566 −0.157 0.341 0.581 0.240

R of regression 0.692 0.780 0.223 0.955 0.983 0.876 0.970 0.974 0.822 0.880 0.970 0.873

The bold values denote the best CNN model corresponding to the highest TFI values in each experiment.

TABLE 5 | Experiment C. Learning accuracies and transfer index (TFI, percentage) of the four CNNs (Epoch 1 and 20) and the slope and R of the regression (N/A mean

not applicable).

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 96.76 100.00 99.17 84.91

20 (learning) 100.00 100.00 100.00 100.00

Transfer Exp. C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2

1 (TFI) 10.01 32.93 −5.26 19.50 3.56 24.77 43.83 34.06

20 (TFI) 13.06 61.20 −5.26 5.84 4.88 33.14 77.20 81.48

Slope of regression 0.729 4.436 N/A N/A 0.724 3.767 1.690 1.980

R of regression 0.754 0.758 N/A N/A 0.412 0.707 0.940 0.967

The bold values denote the best CNN model corresponding to the highest TFI values in each experiment.

TABLE 6 | Experiment D. Learning accuracies and transfer index (TFI, percentage) of the four CNNs (Epoch 1 and 20) and the slope and R of the regression.

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 95.27 100.00 89.20 64.68

20 (learning) 100.00 100.00 100.00 99.72

Transfer Exp. D.1 D.2 D.1 D.2 D.1 D.2 D.1 D.2

1 (TFI) 34.26 72.61 86.58 85.64 36.33 44.87 87.67 86.85

20 (TFI) 79.86 96.30 94.68 97.22 46.76 50.70 93.34 86.36

Slope of regression 5.218 3.188 N/A N/A 0.909 0.721 0.584 0.610

R of regression 0.907 0.909 N/A N/A 0.641 0.584 0.911 0.813

The bold values denote the best CNN model corresponding to the highest TFI values in each experiment.

TABLE 7 | Experiment E. Learning accuracies and transfer index (TFI, percentage)

of the four CNNs (Epoch 1 and 20) and the slope and R of the regression.

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 61.67 98.98 75.83 75.83

20 (learning) 94.91 100.00 99.26 98.98

1 (TFI) 38.05 87.71 45.88 83.51

20 (TFI) 52.57 92.78 77.06 87.91

Slope of regression 0.639 3.514 1.134 0.967

R of regression 0.967 0.897 0.976 0.967

The bold values denote the best CNN model corresponding to the highest TFI values in

each experiment.

TABLE 8 | Experiment F. Learning accuracies and transfer index (TFI, percentage)

of the four CNNs (Epoch 1 and 20) and the slope and R of the regression.

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 80.46 100.00 89.81 70.19

20 (learning) 100.00 100.00 99.91 99.44

1 (TFI) 36.18 35.00 29.77 41.26

20 (TFI) 55.92 65.92 46.74 13.11

Slope of regression 0.838 N/A 1.138 −0.167

R of regression 0.764 N/A 0.824 0.393

The bold values denote the best CNN model corresponding to the highest TFI values in

each experiment.
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FIGURE 7 | Evaluation and comparison of transfer learning of the four CNN models using transfer index.

global-to-local approach, such as object-superiority (Weisstein
and Harris, 1974), early detection of topological properties
(Chen, 1982, 1990), and rapid processing of global features
in non-human primates (Huang et al., 2017). While the exact

underlying mechanisms and differences between CNN models
and primate visual systems are unknown, the results suggested
that the primate visual systems process local and global features
in different ways than the CNNs. By recognizing the differences,
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future studies will be focused on extending the analysis to
other local/global geometrical invariants to understand the
CNNs and the biological visual functions. In particular, we
will test how humans and monkeys transfer their learning
based on inside/outside relationships (topological invariant). We
believe comparison between the CNN vision and biological
vision using the “ShapeNet” approach will provide insight into
a better understanding of visual information processing in
both systems.
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