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Abstract

Purpose

Regional-level measures can complement national antimicrobial stewardship programs. In
Japan, sub-prefectural regions called secondary medical areas (SMAs) provide general
inpatient care within their borders, and regional antimicrobial stewardship measures are fre-
quently implemented at this level. There is therefore a need to conduct antimicrobial use
(AMU) surveillance at this level to ascertain antimicrobial consumption. However, AMU esti-
mates are generally standardized to residence-based nighttime populations, which do not
account for population mobility across regional borders. We examined the impact of popula-
tion in/outflow on SMA-level AMU estimates by comparing the differences between stan-
dardization using daytime and nighttime populations.

Methods

We obtained AMU information from the National Database of Health Insurance Claims and
Specific Health Checkups of Japan. AMU was quantified at the prefectural and SMA levels
using the number of defined daily doses (DDDs) divided by (a) 1,000 nighttime population
per day or (b) 1,000 daytime population per day. We identified and characterized the dis-
crepancies between the two types of estimates at the prefectural and SMA levels.

Results

The national AMU was 17.21 DDDs per 1,000 population per day. The mean (95% confi-
dence interval) prefectural-level DDDs per 1,000 nighttime and daytime population per day
were 17.27 (14.10, 20.44) and 17.41 (14.30, 20.53), respectively. The mean (95% confi-
dence interval) SMA-level DDDs per 1,000 nighttime and daytime population per day were
16.12(9.84, 22.41) and 16.41 (10.57, 22.26), respectively. The nighttime population-stan-
dardized estimates were generally higher than the daytime population-standardized
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estimates in urban areas, but lower in the adjacent suburbs. Large differences were
observed in the main metropolitan hubs in eastern and western Japan.

Conclusion

Regional-level AMU estimates, especially of smaller regions such as SMAs, are susceptible
to the use of different populations for standardization. This finding indicates that AMU stan-
dardization based on population values is not suitable for AMU estimates in small regions.

Introduction

Antimicrobial resistance is a major global health concern, and there is an urgent need to
reduce inappropriate antimicrobial use (AMU) as a countermeasure [1]. In 2016, the Japanese
government published the National Action Plan on Antimicrobial Resistance, which
highlighted the integral role that regional cooperation plays in complementing national anti-
microbial stewardship programs [2]. In order to improve AMU within a specific region, it is
first necessary to ascertain the region’s actual drug consumption patterns. However, there is a
lack of information on best practice methodologies for regional-level AMU surveillance.

Under Japan’s universal healthcare system, patients are free to seek care at any medical
institution across regional borders without restriction. Furthermore, regions can experience
daily fluxes in population size due to the inflow and outflow of people across borders for work
and schooling. Attempts to characterize AMU at the regional level may therefore be hindered
by differences between the locations where antimicrobials are prescribed and where patients
reside. Accordingly, there are fundamental difficulties in accurately ascertaining the actual
AMU of a region. In regions characterized by construction and air pollution, population
migration has been reported to affect urban development and exposure to pollutants [3, 4].
We also posit that the impact of population inflow and outflow on AMU estimates would
increase as the size of the target regional unit decreases, but the extent of such an effect has yet
to be explored.

To date, AMU in Japan has been examined at the prefectural level [5], but there is a lack of
information on sub-prefectural regions. Because healthcare policies are frequently imple-
mented at the sub-prefectural level, understanding the trends in AMU at this level can help to
identify region-specific problems and support the development of more precise and effective
antimicrobial stewardship programs.

National-level AMU is generally indicated using the number of defined daily doses (DDDs)
per 1,000 inhabitants per day (DID) based on population statistics. Regional-level DID esti-
mates are dependent on the definition of each region’s population, which in turn is affected by
population mobility across borders. However, the effects of different population definitions on
DID estimates at the regional level are unknown. To improve our understanding of regional-
level AMU surveillance methodologies, this study aimed to elucidate the impact of population
inflow and outflow on sub-prefectural DID estimates in Japan.

Materials and methods
Japan’s health insurance system and secondary medical areas

In Japan, all residents are required to enroll in health insurance, which enables them to receive
healthcare at any medical institution throughout the country. Each enrollee’s insurance plan is

PLOS ONE | https://doi.org/10.1371/journal.pone.0248338 March 18, 2021 2/11


https://doi.org/10.1371/journal.pone.0248338

PLOS ONE

Effect of rural-urban population mobility on regional antimicrobial use surveillance

dependent on his/her age and occupation. Enrollees pay monthly premiums to their insurers,
and also pay a portion of the medical charges (i.e., copayments) at the point of care when
receiving insurance-covered treatments and medications. These copayments range from 10%
to 30% depending on the enrollee’s insurance plan and income level. The healthcare providers
send insurance claims to the applicable insurers through a claims processing agency in order
to be reimbursed for the remaining charges.

Japan’s healthcare provision infrastructure involves three increasing levels of geographical
divisions—designated primary, secondary, and tertiary medical areas—that serve as units for
the implementation of healthcare policies. Primary medical areas comprise the nation’s
municipalities, and are equipped to provide basic primary outpatient care. Secondary medical
areas (SMAs) are sub-prefectural regions comprising several primary medical areas, and are
designed to meet each region’s need for general inpatient care (including emergency care).
Tertiary medical areas are mostly represented by prefectures, and provide specialized care that
requires advanced technology and equipment. Although primary and tertiary medical areas
generally use existing regional borders, SMAs are delineated based on the presence of health-
care facilities that enable them to fulfill their designated functions. SMAs, which are most fre-
quently used as the basic unit for healthcare planning, include designated core hospitals that
treat critically ill inpatients, specialized outpatient clinics, and hospitals that provide routine
in-hospital treatment. As of December 2020, there are 344 SMAs located throughout Japan
(see S1 Table for the list of SMAs and their constituent municipalities).

Data source

For this retrospective study, data were obtained from the National Database of Health Insur-
ance Claims and Specific Health Checkups of Japan (NDB). The NDB has collected and main-
tained insurance claims data provided by the Ministry of Health, Labour and Welfare since
April 2009, and these data can be used for research purposes through the submission and
approval of an application [6]. Because insurance-covered care accounts for the majority of
medical treatments provided in Japan, the NDB represents a near-comprehensive database of
all treatments performed throughout the country. However, the database does not include
claims data from patients with fully publicly funded healthcare (e.g., patients with intractable
diseases, atomic bomb survivors, patients on welfare, patients with tuberculosis, and patients
with human immunodeficiency virus infections) and patients who personally pay for all of
their medical expenses (e.g., foreign travelers and cosmetic surgery patients). In this study, we
calculated the number of prescriptions generated for systemic antimicrobial drugs (both oral
and injection) in each SMA in 2015. We also identified the SMAs where each prescribing
healthcare facility and dispensing pharmacy were located. The NDB data were accessed in Jan-
uary 2020.

Data processing

Antimicrobial drugs were identified using the J01 classification in the Anatomical Therapeutic
Chemical/Defined Daily Doses system established by the World Health Organization’s Collab-
orating Centre for Drug Statistics Methodology [7]. The populations used for analyses were
the national population stratified by municipality (i.e., cities, towns, villages, and wards) and
the daytime population published by the Statistics Bureau of the Ministry of Internal Affairs
and Communications [8]. The national population estimate is the estimated size of the popula-
tion on every October 1st that reflects the natural population growth, social dynamics, and
nationwide migration of Japanese nationals. These parameters are reported for each year
(from October Ist of the previous year to September 30th of the index year) based on
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population data obtained from a national census of all households (conducted every five years)
and the annual population inflow and outflow estimates. These population estimates have con-
ventionally been used to calculate the national DID for AMU surveillance. As these estimates
are based on residences, they represent the nighttime population. The daytime and nighttime
populations at the national, prefectural, and SMA levels are presented in S2 Table.

The daytime population of a region accounts for the number of people at work or school,
and was calculated based on the national census using the formula shown below.

Daytime population = Nighttime population — (Outflow population + Inflow population)

The nighttime and daytime populations of each SMA were calculated by totaling the respec-
tive populations of its municipalities.

Analysis

The study period was 2015, which was the most recent year with available statistics on the day-
time population. For this study, AMU was quantified using DID estimates. National-level, pre-
fectural-level, and SMA-level DDDs were shown in S3 Table. We calculated and compared the
national-level, prefectural-level, and SMA-level DID values that were standardized to either
the nighttime population or daytime population. To calculate the AMU at the various levels,
the DID values of their constituent regions were totaled. Next, we evaluated the distributions
of daytime and nighttime population-standardized DID values at the prefectural and SMA lev-
els using the Kolmogorov-Smirnov test. The mean DID values were compared with the
national AMU using the one-sample -test. The population-standardized DID at the prefec-
tural and SMA levels were used to generate violin plots, which were examined to identify
regions with notable discrepancies between the two types of populations. Correlations between
nighttime and daytime population-standardized DID values were examined using Pearson’s
correlation coefficients.

We then calculated the difference between the nighttime population-standardized DID val-
ues and the daytime population-standardized DID values for each prefecture and SMA. Chor-
opleth maps were created based on these differences, and the distributions of regions with
substantial differences were examined. The Tokyo/Ku-chuoubu SMA was excluded from the
choropleth map as it was an extreme outlier. Furthermore, we identified the SMAs with the
largest positive and negative differences in DID values, as well as the SMAs with the smallest
absolute differences.

Finally, we used the population number for each age category (children: <15 years, work-
ing-age adults: 15-64 years, and older adults: >65 years) for each SMA, and analyzed the cor-
relation between the absolute difference in DID values and each age category. For this analysis,
the Tokyo/Ku-chuoubu SMA was excluded as it was an extreme outlier.

Data management

The mapping of prefectures was performed using Tableau version 2019.1.0 (Tableau Software,
Washington, USA). For the visualization of the SMAs, geocoding was performed using the
geographical information in Tableau based on the National Land Numerical Information pub-
lished by the National Spatial Planning and Regional Policy Bureau of the Ministry of Land,
Infrastructure, Transport and Tourism. Finally, correlations between the absolute difference
in DID values in each SMA and the population age categories were examined using Pearson’s
correlation coefficients. Statistical analyses were performed using R ver 4.0.0 (R Core Team,
Vienna, Austria), and P values below 0.05 were considered statistically significant.
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Ethics

The study did not involve any interventions in human subjects, and the NDB data were anon-
ymized before being received by the authors. This study was approved by the institutional
review board of the National Center for Global Health and Medicine (Approval Number:
NCGM-G-002505-00).

Results

Fig 1 shows the national-level, prefectural-level, and SMA-level DID values that were standard-
ized to either the nighttime population or daytime population. When standardized with the
nighttime population, the mean DID was 17.27 (95% confidence interval [14.10, 20.44]) at the
prefectural level and 16.12 (95% confidence interval [9.84, 22.41]) at the SMA level. When
standardized with the daytime population, the mean DID was 17.41 (95% confidence interval
[14.30, 20.53]) at the prefectural level and 16.41 (95% confidence interval [10.57, 22.26]) at the
SMA level. Both the prefectural-level and SMA-level DID values were normally distributed
regardless of the population used for standardization. The daytime and nighttime population-
standardized mean DID values at the prefectural level were not significantly different from the
national-level DID values (nighttime: P = .385; daytime: P = .811); however, the corresponding
mean DID values at the SMA level were significantly different from the national-level DID val-
ues (nighttime: P < .001; daytime: P < .001). As shown in Fig 1, daytime population-standard-
ized DID at the SMA level had a narrower dispersion and a median value (center of the widest
section in the violin plot) that was closer to the national-level DID than the nighttime popula-
tion-standardized DID. In contrast, the daytime population and nighttime population-stan-
dardized DID at the prefectural level exhibited similar shapes in the violin plot.

Fig 2 shows scatter plots of nighttime population-standardized DID values against daytime
population-standardized DID values. The correlation coefficient between nighttime and day-
time population-standardized DID values was higher at the prefectural level (0.90; P < .001)
than at the SMA level (0.80; P < .001). At the prefectural level, the nighttime population-
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Fig 1. Violin plots of prefectural-level and SMA-level DDDs per 1,000 nighttime population per day and DDDs
per 1,000 daytime population per day. The blue broken line represents the national-level antimicrobial use. DDD,
defined daily dose; SMA, secondary medical area.

https://doi.org/10.1371/journal.pone.0248338.9001
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day. (A) Prefectural level and (B) Secondary medical area level. The dotted lines represent y = x. DDD, defined daily
dose.

https://doi.org/10.1371/journal.pone.0248338.9002

standardized DID values were higher than the daytime population-standardized DID values
in central urban areas such as Tokyo and Osaka, but lower in surrounding prefectures such as
Saitama, Kanagawa, Chiba, Gifu, and Mie. At the SMA level, the nighttime population-stan-
dardized DID value for Tokyo/Ku-chuoubu—which has a high concentration of companies
and schools—was extremely high. In addition, the nighttime population-standardized DID
values were higher in the urban SMAs of Tokyo/Ku-seibu and Osaka/Osaka-shi, but lower in
surrounding SMAs such as Aichi/Ama, Wakayama/Naga, Fukuoka/Munakata, Tokyo/Kita-
tama-hokubu, and Kyoto/Yamashiro-minami.

Fig 3 shows choropleth maps of the differences between the nighttime population-stan-
dardized and daytime population-standardized DID values at the prefectural and SMA levels.

A ) B

¥
Difference of defined daily doses per 1,000 daytime population o Difference of defined daily doses per 1,000 daytime population
and per 1,000 nighttime population per day by prefectures B and per 1,000 nighttime population per day by second metlical area
a E ; _— ’ [ 3 ] |
1911 2842 + -4.419 4943

Fig 3. Choropleth maps of Japan showing the differences between DDDs per 1,000 nighttime population per day
and DDDs per 1,000 daytime population per day. (A) Prefectural level and (B) Secondary medical area level. The
numbers represent the differences between DDDs per 1,000 nighttime population per day and DDDs per 1,000 daytime
population per day. The red and blue colors represent positive and negative differences, respectively. Data from Tokyo/
Ku-chuoubu are not shown in Fig 3B because it was an extreme outlier (43.08). DDD, defined daily dose.

https://doi.org/10.1371/journal.pone.0248338.g003
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Among the prefectures, a positive difference (indicating that the nighttime population-stan-
dardized DID values were higher than the daytime population-standardized DID values) was
observed for prefectures that contained more urban areas, such as Tokyo, Osaka, Aichi, and
Kyoto. In contrast, a negative difference (indicating that the nighttime population-standard-
ized DID values were lower than the daytime population-standardized DID values) was
observed for prefectures adjacent to the urban areas. Prefectures showing substantial differ-
ences in DID values were limited to the eastern Kanto (which includes the Greater Tokyo
Area) and western Kansai (which includes Osaka, Hyogo, Kyoto, and surrounding prefectures)
metropolitan regions, with no notable differences observed in the other regions. Similarly, a
positive difference in DID values was generally observed in urban SMAs, whereas a negative
difference was observed in the surrounding SMAs.

The SMAs with the largest positive, largest negative, and smallest absolute differences
between the nighttime population-standardized and daytime population-standardized DID
values are presented in Table 1. Highly urbanized SMAs in Tokyo, Osaka, Aichi, and Fukuoka
prefectures showed large positive differences. In contrast, SMAs in Kyoto, Tokyo, Fukuoka,
Kanagawa, and Saitama prefectures (which are adjacent to urbanized areas) showed large neg-
ative differences. SMAs with the smallest absolute values were mostly found in rural prefec-
tures such as Hokkaido, Shimane, and Kagoshima.

The nighttime population-standardized and daytime population-standardized DID values
according to age group were calculated. Fig 4 shows the correlations between the absolute dif-
ference in DID values and the proportion of each age group in the population. The correlation
coefficients were 0.14 (P = 0.0082) for children, 0.49 (P < 0.001) for working-age adults, and
-0.44 (P < 0.001) for older adults.

Discussion

In this retrospective nationwide study, we comparatively examined the effects of using the
nighttime population and daytime population to adjust regional-level AMU in Japan. Previous
studies have examined the effects of using different denominator values when calculating
AMU in hospitals [9-12]. However, these effects on regional AMU surveillance have not been
explored. Even the World Health Organization’s AMU surveillance methodology does not
address the appropriate methods for analyzing sub-national regions [13]. In our analysis,
SMA-level AMU (standardized using either the daytime or nighttime population) was found
to be significantly different from the national-level AMU. This suggests that the population-
standardized DID values of smaller regions are susceptible to the effects of population inflow
and outflow, which can lead to erroneous results.

As more medical examinations and prescriptions are received during the day than at night,
the calculation of regional AMU indices should account for the effects of population inflow
and outflow. At the SMA level, daytime population-standardization produced fewer outliers,
narrower 95% confidence intervals, and mean DID values that were closer to the national DID
than nighttime population-standardization. These findings showed that when analyzing
smaller regional units such as SMAs, the use of different populations for standardization has a
considerable effect on DID estimates in central urban areas and their surrounding regions.
Our insights indicate that AMU standardization based on population values is not suitable for
AMU estimates in small regions.

When comparing the daytime population-standardized DID values with the nighttime
population-standardized values at the prefectural level, the former tended to be higher in bed-
room communities such as Gifu, Nara, Kanagawa, Chiba, and Saitama, but lower in the central
urban areas of Tokyo and Osaka. A similar trend was observed at the SMA level. These

PLOS ONE | https://doi.org/10.1371/journal.pone.0248338 March 18, 2021 7/11


https://doi.org/10.1371/journal.pone.0248338

PLOS ONE Effect of rural-urban population mobility on regional antimicrobial use surveillance

Table 1. Difference between nighttime population-standardized and daytime population-standardized defined
daily doses per 1,000 population per day.

Rank ‘ Prefecture/Secondary medical area Difference

Difference in AMU between nighttime population-standardized and daytime population-standardized (ranked in
descending order)

1 Tokyo/Ku-chuoubu 30.94
2 Osaka/Osaka-shi 4.94
3 Tokyo/Ku-seibu 4.50
4 Tokyo/Ku-seinanbu 3.15
5 Fukushima/Soso 2.30
6 Aichi/Nagoya 2.24
7 Tokyo/Ku-nanbu 1.99
8 Fukuoka/Itoshima 1.49
9 Fukuoka/Noogata, Kurate 1.34
10 Aichi/Nishimikawa-hokubu 1.25

Difference in AMU between nighttime population-standardized and daytime population-standardized (ranked in
ascending order)

1 Kyoto/Yamashiro-minami -4.42
2 Tokyo/Kitatama-hokubu -3.78
3 Fukuoka/Munakata -3.70
4 Kanagawa/Kawasaki-hokubu -3.69
5 Wakayama/Naga -3.28
6 Saitama/Nanbu -2.91
7 Aichi/Ama -2.86
8 Saitama/Keno -2.85
9 Nara/Seiwa -2.82
10 Chiba/Toukatsu-hokubu -2.82

Absolute value of the AMU difference between nighttime population--standardized and daytime population--
standardized (ranked in ascending order)

1 Shimane/Masuda 0.00
2 Hokkaido/Tokachi 0.00
3 Yamagata/Murayama 0.00
4 Hokkaido/Kushiro 0.00
5 Gifu/Hida 0.01
6 Fukushima/Kennaka 0.01
7 Kouchi/Chuou 0.01
8 Kagoshima/Nansatsu 0.01
9 Kagoshima/Amami 0.01
10 Ehime/Matsuyama 0.01

https://doi.org/10.1371/journal.pone.0248338.t001

observations may be explained by the higher concentration of people in the city centers during
the day for work or schooling (i.e., population outflow from bedroom communities during the
day). In particular, there was a large difference between the DID values standardized for night-
time population (43.08) and daytime population (12.15) in the Tokyo/Ku-chuoubu SMA,
which experiences high population inflow during the day. However, substantial differences
were mainly observed in the Kanto and Kansai regions that are centered around large metro-
politan areas, with many other regions unaffected. An exception was the Fukushima/Soso
region, which underwent evacuations due to the nuclear power plant disaster in 2011. The
SMAs with small absolute differences tended to be located in rural regions and remote islands
with higher levels of medical self-sufficiency (e.g., Hokkaido/Tokachi, Yamagata/Murayama,
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https://doi.org/10.1371/journal.pone.0248338.9004

Kagoshima/Amami, and Hokkaido/Kushiro), which would therefore have low population
outflow.

Based on a hypothesis that population age structure may affect mobility across regional bor-
ders, we examined the correlations between the proportion of each age group in the population
and the absolute difference in DID values. There was a significant and positive correlation
between the proportion of working-age adults (who would be the most mobile among the age
groups) and the absolute difference in DID values. Regions with a high proportion of work-
ing-age adults would experience higher population mobility, resulting in a larger difference in
DID values between the different populations. In contrast, a significant and negative correla-
tion was observed for older adults, who would have the least mobility among the age groups.
Therefore, regions with many older adults would experience lower population mobility, result-
ing in a smaller difference in DID values between the different populations.

This study has several limitations. First, the NDB does not include information on the treat-
ment of patients who pay their own expenses and those for whom the municipality shares the
cost. However, almost all necessary medical services in Japan are covered by health insurance.
Therefore, the NDB covers the majority of healthcare provided throughout the country. Next,
daytime population statistics are only published once every five years in Japan. As these statis-
tics are based on weekday estimates, weekends and holidays (accounting for approximately
30% of the year) are overlooked. Finally, the SMAs may differ from year to year due to the
merging of municipalities. Although not examined in this study, AMU surveillance should
consider such regional changes over time. Despite these limitations, our findings demon-
strated the effects of population inflow and outflow on the population-standardized AMU.

Although regional AMU estimates would help to inform AMU-related policymaking, we
recommend avoiding AMU evaluation in small regions standardized by the population num-
ber. If we wish to monitor AMU evaluations in small regions, only the temporal change in a
region should be considered, for example.

Conclusion

AMU surveillance has conventionally used the nighttime population for standardization.
However, regional-level AMU estimates, especially of smaller regions such as SMAs, are more
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susceptible to the influence of whatever population is used for standardization, which can lead
to erroneous estimates. Therefore, new approaches are required to monitor AMU evaluations
in small regions, for example, observing only the temporal changes in a region.
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