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INTRODUCTION

Understanding the uncertainty in parameter estimates 
or in derived secondary variables is important in all data 
analysis activities. In pharmacometrics, this is often 
done based on the standard errors from the variance– 
covariance matrix of the estimates. Confidence inter-
vals derived this way are per definition depending on 
the assumed distribution and often symmetrical, which 
may lead to implausible outcomes (for example, that the 

confidence interval include negative elimination rates), 
and will require translation to generate uncertainties in 
derived variables. An often- used alternative is numeri-
cal percentile estimation by, for example, nonparametric 
bootstraps1 to circumvent the issues with the standard 
errors from the variance– covariance matrix. Visual 
predictive checks2 (VPCs), which is a commonly used 
model diagnostic tool in pharmacometric analyses, also 
rely on the estimation of percentiles through numerical 
approaches.
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Abstract
Understanding the uncertainty in parameter estimates or in derived secondary 
variables is important in all data analysis activities. In pharmacometrics, this is 
often done based on the standard errors from the variance– covariance matrix of 
the estimates. Confidence intervals derived in this way are by definition sym-
metrical, which may lead to implausible outcomes, and will require translation to 
generate uncertainties in derived variables. An often- used alternative is numeri-
cal percentile estimation by, for example, nonparametric bootstraps to circum-
vent these issues. Visual predictive checks (VPCs), which is a commonly used 
model diagnostic tool in pharmacometric analyses, also rely on the estimation of 
percentiles through numerical approaches. Given the cost in terms of run times 
and processing times for these methods, it is important to consider the trade- off 
between the number of bootstrap samples or simulated data sets in the VPCs, to 
the increase in precision related to a large number of bootstrap samples or simu-
lated data sets. The objective with this tutorial is to provide a quantitative frame-
work for assessing the precision in estimated percentile limits in bootstrap and 
visual predictive checks analyses to facilitate an informed choice of confidence 
interval width, number of bootstrap samples/simulated data sets, and required 
level of precision.
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When the nonparametric bootstrap is used to estimate 
confidence interval limits, the procedure involves re- 
estimation of the model on (many) resampled data sets to 
create a multivariate distribution of parameter estimates 
from which the marginal percentiles of interest can be 
derived. In VPCs, percentile- based confidence intervals 
are derived through (many) simulations from the model, 
which are then compared to the corresponding percentiles 
from the real data set.

The bootstrap confidence intervals are typically used 
for inferential purposes, for example, to report the preci-
sion in parameter estimates or covariate effects in Forest 
plots.3 VPCs are used as diagnostics during model devel-
opment or as a way to qualify a final model. In both cases, 
the reliability of the conclusions depends on the precision 
with which the percentile limits have been determined, 
and the precision depends on the number of samples, 
bootstrap or simulated, that is used and the percentile that 
is estimated. The more samples used (bootstrap resamples 
or simulations), the higher precision and more certain 
conclusions, although too few samples lead to more un-
certain conclusions. In addition, the more extreme per-
centiles that are estimated (for example, the 2.5th rather 
than the 5th percentile) the more samples are needed 
for the same level of precision. It is of course tempting 
to use a very high number of samples to avoid the small 
sample uncertainty but because there is a computational 
cost associated with each sample this strategy may not 
be feasible. In particular, the nonparametric bootstrap is 
computationally expensive because each bootstrap sam-
ple involves a re- estimation of the model, but run- times 
and/or disc space requirements may also be prohibitive 
for VPCs even if they are based solely on simulations. A 
practical consideration to keep in mind is that bootstraps, 
and to some extent also VPCs, are often end- of- analysis 
activities meaning that if there are time constraints, which 
is often the case in drug development, time may not allow 
a large number of samples and may make these methods 
impractical or be forced to be performed with too low 
precision. However, bootstraps and VPCs may also used 
as diagnostics during the model development, and given 
the computational burden involved it may be tempting to 
use fewer samples to save time and thereby making model 
development decisions that are not well founded. The 
challenge in either case is to find the balance between a 
sufficient degree of precision in the estimated percentiles 
so that decisions and inference can be made with ade-
quate certainty, and the practical constraints imposed by 
lengthy computations.

In the pharmacometric field, the required number of 
nonparametric bootstrap samples appear to have con-
verged at N = 1000. This statement is based on some re-
cent publications4– 7 and on an empirical investigation on 

the stability of the bootstrap estimates.8 In these investiga-
tions, the nonparametric bootstrap was used to estimate 
95% confidence intervals (i.e., the 2.5th and 97.5th percen-
tiles). There is no corresponding systematic investigation 
of the impact of the number of samples for VPC analyses 
but in the original publication on the prediction corrected 
VPC by Bergstrand et al.2 1000 VPC samples were used.

In practice, the choice of the number of samples used 
for percentile estimation is likely to be a mix between 
practical constraints, a perceived need to be on the “safe 
side” and a tendency to do what others have done. This 
means that across presentations of results based on per-
centile estimation, there will be a mix of more imprecise 
percentile limits (when a small sample number was used 
to manage practical constraints) and very precise but 
overly inefficient analyses (when a large sample number 
was used). Such differences will obviously occur between 
analyses but is likely to also occur within analyses (as will 
be illustrated below), and it is hard for readers of analy-
sis reports and papers to understand and assess on what 
level of precision conclusions are drawn and/or models 
are developed.

The objective with this tutorial is to provide a quanti-
tative framework for assessing the precision in estimated 
percentile limits in bootstrap and VPC analyses, to facil-
itate an informed choice between confidence interval 
width, the number of samples, and the required level of 
precision.

In the following, the focus will first be on the nonpara-
metric bootstrap, with which the quantitative framework 
for the precision in estimated percentile limits will be ex-
plained and exemplified. There will also be a section on 
an alternative use of the bootstrap to derive uncertain-
ties which does not require as many bootstrap samples. 
This will be followed by a section of the VPC and how 
the framework established in the bootstrap section can 
be used also in this setting. The tutorial will be concluded 
with a section with some concrete recommendations as 
well concluding remarks.

THE NONPARAMETRIC 
BOOTSTRAP

The bootstrap was originally suggested by Efron1 as a way 
to assess the uncertainty of parameters without making 
strong distributional assumptions. There are many ways 
the general principles of the bootstrap can be applied to 
pharmacometric models but the focus of this work is on 
the nonparametric case bootstrap (i.e., random sampling 
of complete individuals),6 with or without stratification.

In the nonparametric case bootstrap, complete indi-
viduals (all data records from an individual) are sampled 
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from the analysis data set with replacement. Typically, the 
number of sampled individuals is the same as the orig-
inal number of individuals. The sampling is repeated N 
times— this is the number of bootstrap samples discussed 
in the Introduction. The model is fit to each of the N sam-
pled data sets and the N sets of parameter estimates make 
up the multivariate distribution from which the bootstrap 
results is derived. Figure 1 shows a histogram of 1000 boot-
strap parameter estimates. The percentile estimates from a 
bootstrap analysis are derived from distributions like this. 
The x- axis indicates some percentiles, and, for example, 
the limits of a 90% confidence interval are defined by the 
5th and 95th percentiles, as indicated in Figure 1. In ad-
dition to the confidence interval for the model parameter, 
Figure 1 also indicates the (schematic) confidence interval 
for the percentile limits (p5% and p90%), in other words 
the confidence interval around the limits of another con-
fidence interval.

To separate the two confidence intervals, the acronym 
CI will be used for “higher” level confidence interval, for 
example, the confidence interval for the estimate of clear-
ance, whereas the confidence interval for the estimates of 
the upper and lower percentile limits will be denoted CIp,lo 
and CIp,up. If the percentile limit is irrelevant for the rea-
soning the lo and up may be dropped so that CIp refers to 
either of CIp,lo and CIp,up.

We will also denote the lower and upper limits of CI 
with CIlo and CIup, and the upper and lower limits of 
CIp,lo and CIp,up with CIp,lo,lo and CIp,lo,up, and CIp,up,lo, and 
CIp,up,up, respectively.

The width of CI is CI width  =  CIup − CIlo, for exam-
ple, CIup − CIlo = 0.975– 0.025 = 0.95 for a 95% confidence 
interval.

Finally, we will define the width of CIp,lo and CIp,up 
as CIp,lo width  =  CIp,lo,up − CIp,lo,lo and CIp,up width = 
CIp,up,up − CIp,up,lo, respectively, similarly to the CI width 
above. The notation is visualized in Figure 2.

The width of the CIp intervals define the precision with 
which the percentile limits are estimated and can be cal-
culated using the standard error (SE) for a binomial frac-
tion p (p = percentile/100) and the number of bootstrap 
samples. Under normality assumptions and provided the 
p of interest is not too close to the extremes (i.e., 0 or 1), 
the SEs can be computed according to Equation 1 and the 
corresponding relative SE (RSE) according to Equation 2.9

 

p is the percentile/100, N the number of bootstrap samples 
and SEp and RSEp are the SE and RSE of p, respectively.

The corresponding CIp is given by Equation 3.

(1)SEp =

√

p(1 − p)

N

(2)RSEp =

√

p(1−p)

N

p

(3)100 ×
(

p − z
�∕2SEp, p + z

�∕2SEp
)

F I G U R E  1  Histogram of 1000 
bootstrap estimates of a model parameter 
(e.g., clearance). The scale on the 
x- axis indicates the percentiles of the 
distribution (p0.5– p99.5%). Indicated 
is also the 90% confidence interval for 
the model parameter, based on the 5th 
and 95th percentile of the bootstrap 
distribution, as well as the confidence 
intervals around the percentile estimates
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 � is the desired width of the CIp and z
�∕2 is the correspond-

ing z values from the standard normal distribution (for ex-
ample, 1.96 for a 95% width of CIp).

The normality assumption involved in the above formu-
las are not uncontroversial, especially as p approaches 0 or 1, 
and many alternative ways to compute confidence intervals 
for binomial fractions have been proposed. Brown et al.10 
evaluates a number of these alternatives and concludes that 
the correction suggested by Agresti and Coull11 behaves as 
well as the other investigated alternatives for N greater than 
40 while being fairly straightforward to present.

In brief, the Agresti- Coull correction involves replacing 
p and N in Equation 1 with other, adjusted, values that pro-
duce confidence intervals with better coverage probabilities.

Let x be the number of “successes” (a “success” in our 
case would be the number of bootstrap samples that re-
sults in a value outside the defined percentile interval) and 
let N be the number of “tries” (the number of bootstrap 
samples), then the associated probability p is given by 
Equation 4.

The corrected x (=x*) and N (=N*) are given by Equation 5 
and the corrected p (=p*) by Equation 6.

� is the desired width of the confidence interval.

 The corrected versions of our SEp, RSEp, and CIp are given 
by replacing p and N with p* and N* in Equations 1– 3.

In the following, all calculations and results will use 
the Agresti- Coull adjusted p and N but for simplicity the * 
will be dropped from the notation.

The relationship among N, CI width, and 
precision in CIp

From Equation 1, it is clear that for a given true value 
of p, the smaller N is, the larger SEp (and therefore CIp) 

becomes, or in other words, the more uncertain the esti-
mate of p is. This is illustrated in Figure 3 where results 
from 3 × 3 bootstrap experiments are shown. All experi-
ments are based on the same data set of 100 random 
numbers and the objective is to compute the 90% confi-
dence interval around the mean. In the first experiment, 
this is done by sampling 100 values with replacement 
from the original data set 20 times and compute the 
mean from each of these 20 data sets. The 20 means from 
the first experiment is displayed in the top left corner of 
Figure 3. The second and third experiments are identi-
cal to the first except that 100 and 1000 data sets were 
sampled from the original data set, respectively. The re-
sults are shown in the top row in Figure  3. The three 
experiments were repeated twice (middle and bottom 
rows in Figure 3). Each of the panels in Figure 3 shows 
the estimated 90% confidence intervals as dashed blue 
lines. Because the confidence interval of interest should 
cover 90%, the target percentiles are (1 –  0.9)/2 = 5% and 
1 − (1 –  0.9)/2 = 95%, indicated on the x- axes as p5% and 
p95%, respectively.

In the experiments with N = 20, the histograms of the 
computed means vary substantially between experiments 
as do the estimated 90% confidence interval limits. When 
N = 1000, on the other hand, the histograms and the esti-
mated 90% confidence interval limits display considerable 
similarity. The N = 100 experiments fall in between the 
N = 20 and N = 1000 experiments, but, at least in these 
three experiments, appears to provide a lot less variable 
results compared to N = 20. The N = 1000 experiments 
are less variable than the N = 100 but, perhaps, not to the 
extent one would expect given the factor 10 increase in N. 
The reduced variability going from N = 20 to N = 100 (a 
factor 5) is much more pronounced.

This is more systematically illustrated in Figure 4. In 
the left panel, the RSE in the CIp interval limit for different 
CI widths are plotted versus the number of bootstrap sam-
ples. The RSEs initially decrease rapidly as N increases 
but at higher Ns the rate of decrease in RSE slows down. 
There is also a higher cost in terms of N to decrease the 
RSE in the wider 99% CI compared to the narrower CIs. 
The right panel illustrates the impact of the size of the CIp 
(via the Agresti- Coull correction). In the left, the results 
are conditioned on a desired CIp of 90%. In the right panel, 

(4)p = x ∕N

(5)x∗ = x +
z2
�∕2

2
and N∗ = N + z2

�∕2

(6)p∗ = x∗ ∕N∗

F I G U R E  2  Visualization of the 
notation used to refer to the various 
confidence intervals (CI) and confidence 
interval limits
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we can see that for a given CI width, the cost in terms 
of N increases the wider the desired CIp is. Without the 
Agresti- Coull correction the four lines would have been 
superposed.

How precise do we have to be?

Equation  2 express the relationship between N, p, and 
RSEp and describes that, for a given N, the smaller the p 

F I G U R E  3  Histograms of means from bootstrap samples. The columns strips indicate the sample size and the rows are different 
replicates. The dashed blue lines indicate the 5th and 95th percentile. See the text for details

F I G U R E  4  The left panel shows the RSE in CIp versus the number of bootstrap samples. The colored lines correspond to a certain CI 
width and the dashed horizontal line indicates an RSEp of 30% computed using Equation 2. The right panel shows CI width as a function of 
the number of bootstrap samples. The colored lines correspond to a certain CIp width. CI, confidence interval; RSE, relative standard error
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is the larger the RSEp becomes. In other words, the three 
factors involved are the desired width of CI, the desired 
degree of certainty in the estimation of the percentile lim-
its and the number of bootstrap samples. All three are 
controlled by the analyst and can be adjusted to find an 
acceptable balance between inferential precision (the CI 
width), certainty in the inferential conclusions (the width 
of CIp) and runtimes (the number of bootstrap samples, 
i.e., N).

The CIp width is the uncertainty in the estimated un-
certainty (i.e., CI) of the quantity of interest (e.g., a pa-
rameter estimate). Because an increasing CIp width will 
increase the required N and because the CIp width is not 
the primary interest (the CI is), it seems reasonable to 
choose a moderate value for the CIp width. In the remain-
der of this paper, we will therefore base the calculations 
on a CIp width of 90%.

The choice of N boils down to the question of how pre-
cise we need our estimated CI limits to be. Some analy-
sis questions, such as “Is there a significant drug effect?” 
probably warrants a larger N than confidence intervals 
used in a Forest plot to illustrate the potential impact of 
covariates. One strategy is to use as many N as time per-
mits and then choose a CI width that gives an acceptable 
precision in the CI limits. Another strategy is to choose 
a CI width and the level of precision in the CI limits we 
want and then derive the corresponding N.

In our organization, we have heuristically agreed on 
the rule that an acceptable precision in the CI limits is a 
90% CIp width of length 1 − CIup (i.e., the CIp will cover 
50% of the distance between CIlo/CIup and 0/1, respec-
tively). For example, if the CI width is 95% and, conse-
quently, the CIlo and CIup are 2.5% and 97.5%, respectively, 
then the target CIp width should be 1– 0.975 = 2.5% with 
the corresponding CIp,lo and CIp,up intervals of 1.25– 3.75% 
and 96.25– 98.75%, respectively.

With a rule like this, it is straightforward to calculate 
the desired N for different CI widths, as has been done 
in Table 1. It is obvious that wider CIs are disproportion-
ately more expensive in terms of N compared to narrower 
CIs. Included in Table 1 is also the corresponding RSE in 
CIlo and CIup. Interestingly, it appears as if the heuristic 
rule used in the calculations results in RSEs of around 30– 
31%, except for the 0% CI width, which get an RSE of 35% 
with N = 5. However, as pointed out by Brown et al.,10 the 
Agresti- Coull correction may not perform optimally for N 
< 40.

A CI of 95% would require 365 bootstrap samples to 
meet the criteria described above, whereas only 45 boot-
strap samples are needed for a 68% CI (i.e., ±1 SD/SE). 
A 75% CI, the interquartile range, requires 62 samples. 
The CI width of 0% corresponds to a confidence interval 
around the midpoint in the bootstrap distribution (i.e., 

the median, requires five bootstrap samples according to 
these calculations but, as mentioned above, should proba-
bly be interpreted carefully given the small N).

With Table 1 at hand it is possible to make an informed 
choice on the number of bootstrap samples to use. Using 
a default CI width of 90%, seems to represent a reasonable 
trade- off between precision and cost and is suitable for 
many applications, for example, in Forest plots. However, 
should more precise results be needed, it is possible to as-
sess the cost in terms of, for example, run- times and evalu-
ate if this is fit for purpose and/or predict when the results 
from the bootstrap analysis will be available.

Using a small bootstrap as an alternative to 
a nonparametric bootstrap for generating 
uncertainty estimates

Not directly related to percentile estimation, but still a 
pragmatic alternative in case a nonparametric bootstrap 
is too time- consuming, is to use the bootstrap to estimate 
only the standard errors of the primary or derived second-
ary parameters. This is done by running the bootstrap as 
usual and then take the standard deviation of the boot-
strap estimates as the standard error of the bootstrap es-
timate of the parameter (i.e., the mean of the estimates 
from each bootstrap sample). The benefit is that a sub-
stantially lower number of bootstrap samples is required 
to obtain sufficient precision in this type of standard error 
estimate compared to estimating the limits of a bootstrap 
confidence interval. The drawback is that any confidence 
interval computed using this method will be symmetric. 
The theory behind the method is described by Ahn and 
Fessler12 and shows that the RSE in an RSE estimate from 

T A B L E  1  The number of samples required for different interval 
CI widths assuming the target CIp,up width is 1 − CIup

CI width (%) Na RSEp (%)b

99 1880 30

95 365 30

90 175 31

80 81 31

75 62 31

68 45 31

0 5 35

Abbreviations: CI, confidence interval; RSE, relative standard error.
aThe number of required samples. Computed using the function calcN2 in 
the Supplementary Material S1.
bThe relative standard error computed according to Equation 2 and refers to 
the uncertainty in CIlo/up.
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a bootstrap (bootstrap SE/bootstrap estimate) is given by 
Equation 7, provided the number of bootstrap samples is 
>10.

With Equation 7, it is easy to derive the expected RSE 
for an RSE estimated with a small bootstrap as just de-
scribed. For example, the RSE in the estimated RSE for 
10, 20, and 30 bootstrap samples would be 24%, 16%, 
and 13%, respectively. The estimated precision is much 
higher than for the limits of a nonsymmetrical confi-
dence interval estimated with a nonparametric boot-
strap (Table 1).

THE VISUAL PREDICTIVE CHECK

The VPC is used as a goodness of fit and general model 
checking diagnostic.2 The principle is quite simple. The 
model is used to simulate a number of data sets (VPC 
samples) according to the same design as the original 
data set. Percentiles of the observed data across discrete 
points or bins of the dependent variable (usually time) are 
computed and plotted versus the independent variable. 
Typical percentiles are the 50th (the median), the 5th and 
95th. The median line is a structural model (i.e., the fixed 
effects part of the model), diagnostic, whereas the outer 
percentiles are informative for the variability components 
of the model. The same percentiles as is derived from the 
observed data are then computed for each simulated data 
set and are visualized as intervals overlaying the percen-
tiles from the observed data.

The simulated data used to illustrate the VPC below 
were generated using a single dose (=100 units), one com-
partment model with first order absorption, with the typi-
cal values of clearance, the volume of distribution, and the 
first order absorption rate constant set to 10, 100, and 2, 
respectively. Each of the parameters were associated with 
exponential interindividual variability (IIV) and an expo-
nential residual unexplained variability (RUV) was used. 
The default value for the IIVs and RUV were ~30% and 
15%, respectively. For illustration purposes, other values 
for IIV and RUV were also used (see below). The data were 
simulated with a very rich sampling design (40 samples per 
subject at identical timepoints across subjects, between 0 
and 12 h with denser sampling around the maximum con-
centration) to support the visual presentation of the VPCs. 
No binning of observations was made (i.e., the VPC per-
centile summaries were done for each discrete timepoint).

Figure  5 shows a VPC using the example described 
above. The red lines are based on the observed data and 

the shaded areas around the red lines are based on the 
simulated data. In the context of VPCs, there are two 
types of intervals, the prediction intervals (i.e., the inter-
val given by the difference between the outer percentiles 
of the observed data), and the confidence intervals (i.e., 
the shaded bands overlayed on the percentiles of the 
observed data), representing the confidence intervals 
around the percentiles of the simulated data.2 However, 
this naming convention may not be entirely appropri-
ate, see the Discussion. Both of these intervals are based 
on percentile estimation, similar to the nonparametric 
bootstrap, and are estimated with varying degrees of 
precision given by the number of subjects in the data set 
and the number of simulated data sets. It is worth point-
ing out that “simulating from the model,” as is done in 
a VPC analysis, is in fact the same as doing a parametric 
bootstrap13 but without the re- estimation of the model 
on each sample, and that we can use the same notation 
and principles as for the nonparametric bootstrap above. 
In this tutorial, it is assumed that each subject con-
tributes one observation per independent value on the 
x- axis. With more or less observations per subject per 
independent value, the situation becomes more compli-
cated but the general principles described herein still 
applies. Although there are similarities in the assess-
ment of the precision in the prediction and confidence 
intervals in a VPC, there are also differences. The two 
types of intervals will therefore be discussed separately, 
starting with the prediction interval.

The VPC prediction interval

The width of the prediction interval (the distance between 
the dashed red lines in the VPC figures) in a VPC is de-
termined by the variability in the data. This is illustrated 
in Figure 5, which is based on the simulations described 
above with alternative combinations of IIV (0%, 15%, and 
30%) and RUV (0% and 15%) values. The larger the IIV 
and RUV, the wider the prediction interval. In the top left 
panel where the IIV and RUV are both set to 0%, the me-
dian and the prediction intervals overlap completely.

That the width of the prediction interval is independent 
of the number of subjects and number of VPC samples is 
illustrated in Figure  6, where the default model param-
eters were used to simulate data sets of different sizes 
(columns) and different number of VPC samples (rows). 
Because the red lines are based on the observed data 
and not the simulated data sets (VPC samples), they are 
identical in the panels with the same number of subjects 
(columns) and consequently so are the width of the pre-
diction intervals. On the other hand, increasing the num-
ber of subjects in the observed data (left to right) reduce 

(7)RSE =
1

√

2(N − 1)
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the variability in the red lines. This is exactly what would 
be expected from Equation  1— increasing N (number of 
subjects), given a certain prediction interval (p = [1 − pre-
diction interval width]/2) will lead to a smaller SE.

How precise do we have to be?

Similar to the nonparametric bootstrap, the question is 
how precise we need to be in the estimation of the limits 
in a VPC’s prediction interval?

It is hard to imagine a situation where it is necessary to 
be more precise in the estimation of the prediction interval 
in a VPC than what is required for the estimation of the CI 
limits in a nonparametric bootstrap, and whatever crite-
ria we have for the bootstrap we can probably use for the 
prediction interval in a VPC. However, a difference in the 
VPC is that we cannot choose N for the prediction interval 
because it is given by the number of subjects. Instead, we 
need to adjust the prediction interval percentiles to obtain 
the desired precision.

Applying the heuristic rule described for the bootstrap 
on the prediction interval, we can use Table 1 to find the 
prediction interval width that is supported by different 
data set sizes (replacing CI with the prediction interval 
width). For example, 1000 subjects would support a 95% 
prediction interval with the desired precision and, simi-
larly, 200 subjects would support a 90% prediction interval. 
In other words, the precision requirements from Table 1 
for the 90% prediction interval used in Figure 6 are met 
by the 200 and 1000 subject data sets (middle and right 
columns) but not for the panels with 25 subjects, where 
the imprecision is larger than we want.

In many cases, it will be possible to adjust the predic-
tion interval width according to Table 1 to obtain the target 
precision in prediction interval limits. For example, with 
a data set size of 175 subjects or more, a 90% prediction 
interval is supported, whereas 45 subjects support a 68% 
(one standard deviation) interval. Even though it is possi-
ble to derive (smaller) widths for smaller data set sizes, it 
is probably of little use because the percentiles are mainly 
a diagnostic for the variability components of the model, 

F I G U R E  5  Schematic visual predictive check plots of a single dose concentration versus time profile. Each panel is based on 200 
subjects simulated 200 times with varying IIV and RUV as given by the row and column titles. The red lines are generated from the observed 
data. The solid red line is the median of the observed data and the dashed red lines indicates the prediction interval. The shaded areas are 
the estimated confidence intervals (CIs) for the percentiles based on the simulated data. IIV, interindividual variability; RUV, residual 
unexplained variability
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and the fewer subjects the less information about the vari-
ability. However, even a small data set can be informative 
for the median line (a CI width of 0% in Table 1), which is 
useful as a structural model diagnostic.

In a practical situation where we may want VPCs strat-
ified by covariates, we will likely have to handle different 
number of subjects in different strata. Figure  7 shows a 
VPC for our simulated example stratified by the covariate 
SEX. The number of male and female subjects are quite 
similar (95 vs. 105) and a prediction interval width of 80% 
has been chosen to match these numbers. In Figure  8, 
where the VPCs is stratified on the covariate study, it is 
only in the panel with study 1 among the top row pan-
els, that the precision criteria from Table 1 is met for the 
80% prediction interval that is used. This situation can be 
handled in different ways. One is to use different predic-
tion interval widths in each panel, but that is likely to be 
quite confusing to the reader. Another approach is to use 
a prediction interval width that matches the strata with 
the smallest number of subjects (this is the recommended 

approach). In Figure  8 (top row), the situation is com-
plicated by the small number of subjects in some of the 
studies, in particular study 5 with only six subjects. The 
solution, as mentioned above, is to not consider the pre-
diction interval at all but to instead focus on the median. 
Figure 8 (bottom row) shows the same VPC as in Figure 8 
(top row) but without the prediction interval. The relevant 
precision for the observed data in this plot is the uncer-
tainties in the median lines, and they meet the criteria in 
Table  1. A display like this can preferably be combined 
with a prediction corrected VPC without stratification, or 
with an alternative stratification in which the strata are 
large enough to support the outer percentiles. However, 
another possibility is to make the conscious decision to still 
visualize the outer percentiles so that the appropriateness 
of the variability components of the model can be assessed 
in the strata with a higher number of subjects. In this case, 
the strata with the smaller number of subjects should not 
be over interpreted. The impact of stratification and bin-
ning in VPCs are discussed further below.

F I G U R E  6  Schematic visual predictive check plots of a single dose concentration versus time profile. The data is generated using the 
default parameter values (30% IIV and 15% RUV). The number of subjects and number of samples used in each panel is given in the column 
and row titles The red lines are generated from the observed data. The solid red line is the median of the observed data and the dashed red 
lines indicates the prediction interval. The shaded areas are the estimated confidence intervals for the percentiles based on the simulated 
data. CI, confidence interval; IIV, interindividual variability; RSE, relative standard error; RUV, residual unexplained variability
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The VPC confidence interval

So far, we have focused on the VPC prediction intervals (the 
red lines), which are only dependent on the observed data. 
The confidence intervals in a VPC (the shaded bands over-
laying the red lines) are generated by simulating several data 
sets from the model given the design of the observed data. 
In contrast to the nonparametric bootstrap, where CIlo and 
CIup is known without error and where the CIps therefore 
only depend on the number of bootstrap samples, the preci-
sion in the confidence interval limits in a VPC (which are 
analogous to CIlo and CIup) are also dependent on the uncer-
tainty due to the number of subjects. The width of the confi-
dence intervals in a VPC is given by the combination of the 
variability due to the number of subjects and the variability 
due to the number of VPC samples (Equation 8).

SDCI is the standard deviation of the percentile estimates 
from the simulated data sets, pPI is 1 –  the prediction 

interval/2 and Nsubj and Nsamples are the number of subjects 
and the number of VPC samples, respectively.

The precision in the confidence interval limits, on the 
other hand, is related to the total number of simulated 
data points for each value (or bin) or the independent vari-
able (Equation 9).

 

SECI,limit is the standard error of the confidence interval 
limit, and pCI is 1 − the confidence interval/2.

This means that there is a minimum width of the con-
fidence interval which is given by the number of subjects 
(Equation 8) and this minimum width is independent of 
the number of VPC samples. This can be seen in Figure 6. 
Going from the top row to the bottom in the figure (i.e., 
keeping the number of subjects constant while increasing 

(8)SDCI =

√

pPI
(

1 − pPI
)

Nsubj
+
pPI

(

1 − pPI
)

Nsamples

(9)SECI,limit =

√

pCI
(

1 − pCI
)

Nsamples ×Nsubj

(10)
RSECI,limit =

√

pCI(1−pCI)
Nsamples ×Nsubj

pCI

F I G U R E  7  Visual predictive check plots based on the default example, stratified on the covariate Sex. The number of subjects in each 
panel is given in the panel title and each subject was simulated 200 times. The prediction interval widths are 80% and the confidence interval 
widths for the percentiles based on the simulated data are 90%. RSE, relative standard error
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the number of VPC samples), the width of the confidence 
interval stays the same. On the other hand, going from left 
to right in Figure  6 (i.e., increasing the number of sub-
jects while keeping the number of simulated data sets the 
same), decreases the width of the confidence interval in 
accordance with Equation 8.

Increasing the number of simulated data sets while 
keeping the number of subjects the same will decrease 

the uncertainty in the limits of the confidence intervals 
(Equation 9) (i.e., will generate smoother confidence in-
tervals). This can be seen in, for example, the left column 
in Figure  6. In the top left panel, there is 25 × 25  =  625 
observations for each timepoint, whereas there are 
200 × 25 = 2000 and 1000 × 25 = 25,000 observations for 
each timepoint in the middle left and bottom left panels, 
respectively.

F I G U R E  8  Visual predictive check plots based on the default example, stratified on the covariate Study. The number of subjects in each 
panel is given in the panel title and each subject was simulated 200 times. In the top row, the prediction interval widths are 80% whereas 
only the median is shown in the in the bottom row. The confidence interval widths for the percentiles based on the simulated data in both 
rows are 90%. CI, confidence interval; RSE, relative standard error
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How precise do we have to be?

Because the number of subjects will be the main deter-
mining factor for the uncertainty in a VPC’s confidence 
interval limits in most cases, there is no need to use a large 
number of VPC samples. Table 2 lists the RSEs for differ-
ent combinations of number of subjects and number of 
VPC samples. The certainty in the estimation of the con-
fidence interval limits very quickly becomes very high as 
the number of VPC samples increase.

If Table  1 is used to determine the width of the pre-
diction interval (i.e., ~30% RSE), then it may be reason-
able to require that the RSE in the confidence interval is 
lower than 30%. However, because the impact of uncer-
tainty in the confidence limits is fairly limited (Figure 6) 
and because VPCs are not used for formal inference, it 
should not be necessary to use more than 200 simulated 
data sets (targeting an RSE < 10% for a data set/strata of 
10 subjects). It should be acknowledged, though, that the 
assumption behind Table 2 is that there is one observation 
from each subject in the data set for each unique value of 
the independent variable or each bin in case the indepen-
dent variable is binned, which should be kept in mind in 
case the actual situation is substantially different.

Impact of stratification and binning

In reality, it is likely that the VPCs are either stratified 
and/or use bins of the independent variable. The impact 
on the choice of prediction interval when one or more of 
the strata include only a few subjects has been discussed 
above. This also has implications for the number of VPC 
samples (Table  2), but the impact is lower because the 

precision is quite high already for small data sets and low 
sample numbers. However, binning adds an additional 
level of complexity. It may well be that not all bins con-
tain observations from all subjects, or include only a hand-
ful of observation from only a few subjects. This means 
that some bins within a VPC plot may be associated with 
different degrees of certainty, both in the prediction in-
terval limits, as well as in the confidence interval limits. 
Imbalances of this kind are hard to avoid but is worth 
paying attention to, for example, by choosing prediction 
interval widths and bin borders carefully so that too large 
precision differences are avoided.

DISCUSSION

Numerical percentile estimation as done in the nonpara-
metric bootstrap and the VPCs are associated with uncer-
tainty. In this tutorial, we have provided a quantitative 
framework for assessing the precision in estimated per-
centile limits in bootstrap and VPC analyses, to facilitate 
an informed choice among confidence interval width, 
number of VPC/bootstrap samples, and required level of 
precision.

It is worth pointing out that a very precise bootstrap 
estimate of uncertainty is not the same as that the esti-
mated uncertainty is a good reflection of the true uncer-
tainty. In the paper by Dosne et al.,14 they showed that the 
bootstrap was unsuitable for datasets including up to 70 
individuals but concluded that the number of subjects by 
itself is not sufficient as a predictor of bootstrap appro-
priateness. Other aspects, such as individual study design, 
model misspecifications, overparameterization, boot-
strap stratification strategies, and handling of boundary 

Nsubj
a

Nsamp25

b 
(%)

Nsamp50
 

(%)
Nsamp100

 
(%)

Nsamp200
 

(%)
Nsamp500

 
(%)

Nsamp1000
 

(%)

10 27.6 19.5 13.8 9.7 6.2 4.4

25 17.4 12.3 8.7 6.2 3.9 2.8

50 12.3 8.7 6.2 4.4 2.8 1.9

75 10.1 7.1 5 3.6 2.3 1.6

100 8.7 6.2 4.4 3.1 1.9 1.4

125 7.8 5.5 3.9 2.8 1.7 1.2

150 7.1 5 3.6 2.5 1.6 1.1

175 6.6 4.7 3.3 2.3 1.5 1

200 6.2 4.4 3.1 2.2 1.4 1

500 3.9 2.8 1.9 1.4 0.9 0.6

1000 2.8 1.9 1.4 1 0.6 0.4

Abbreviations: RSE, relative standard error; VPC, visual predictive check.
aThe number of subjects in the data set.
bThe number of samples, as indicated by the subscript.

T A B L E  2  The RSE (according to 
Equation 10) in a 90% VPC confidence 
interval across different data set sizes and 
samples
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conditions, in the bootstrap re- estimations also influence 
the appropriateness of the bootstrap results. However, in 
this tutorial, which focuses on how well the uncertainty is 
estimated and not how good the uncertainty estimate is, it 
is assumed that the concerns raised by Dosne et al.14 are 
appropriately handled.

The VPCs in this tutorial do not include any param-
eter uncertainty (but can be added using the $PRIOR 
functionality in NONMEM, for example). Including the 
parameter uncertainty will lead to wider confidence 
intervals (i.e., making it easier for a bad model to look 
“good” in the VPC analysis), but would not affect the 
uncertainty in the confidence interval limits. We believe 
that the performance of a model should always be il-
lustrated without the parameter uncertainty included. 
If there is a need to motivate why an apparent model 
misspecification is inside the possibilities of the poste-
rior parameter distribution, this can be illustrated with 
a second VPC in which the uncertainty is included or 
using other methods in which the parameter uncer-
tainty is accounted for.

In the case of the bootstrap, the precision in the uncer-
tainty can be controlled by the user through the number 
of bootstrap samples and the width of the confidence in-
terval. In the case of the VPC, the amount of observed data 
determines the precision in the prediction interval limits 
(the observed data) and, together with the number of VPC 
samples, the precision in the confidence interval limits 
(the simulated data). The combined influence of the num-
ber of subjects and the number of VPC samples, together 
with stratification and binning, makes it more complicated 
to control the confidence interval uncertainty in the VPC 
than in the bootstrap. On the other hand, the VPCs are not 
used for making the type of inferential decision that the 
bootstrap can be used for so the lower degree of control of 
the uncertainty is probably less of a problem. One import-
ant difference, however, is that in the bootstrap it is pos-
sible to use the number of bootstrap samples to minimize 
the uncertainty in the confidence interval limits while in 
the VPC, the minimum uncertainty is given by the num-
ber of observed data points.

In the bootstrap, given the run- time cost of adding 
bootstrap samples, the question is how many bootstrap 
samples that are required to meet a particular certainty 
level, whereas in the VPC the question is more about 
avoiding an unnecessary large number of VPC samples. 
Note that we have referred to the interval around the pre-
dicted percentiles in the VPC as “confidence interval” 
to be consistent with the original paper.2 It is, however, 
debatable if this is strictly a confidence interval because 
the width of this interval in a VPC depends on both the 
amount of observed data (Nsubj in Table 2) and the number 
of VPC samples and will not become narrower than what 

is given by the first term in Equation 8. The precision in 
the confidence interval width, on the other hand, will in-
crease with the number of VPC samples regardless of the 
number of subjects.

The computational cost of the nonparametric boot-
strap has been mentioned several times in this tutorial and 
is a practical limitation of the method. The longer the run 
time of the model, the more costly the bootstrap. Because 
bootstraps are usually carried out toward the end of an 
analysis it is important to choose the number of bootstrap 
samples, or width of the target confidence intervals, in 
such a way so that the delivery of the final results is not 
delayed. If the heuristic rule behind Table 1 is accepted, 
then 175 bootstrap samples for a 90% confidence interval 
is sufficient (or 365 for a 95% confidence interval, in case a 
higher degree of confidence is needed), which is substan-
tially smaller than the 1000 that is often used.4– 7

The computational cost of the VPC is often smaller 
than for the bootstrap, because it is purely based on sim-
ulations, but the VPC is commonly carried out more 
frequently during a pharmacometric analysis than the 
bootstrap. The VPC is a powerful overall goodness of 
fit assessment tool that can be used in most stages and, 
indeed, after most runs in a pharmacometric project. 
However, even if the VPC only involves simulations it can 
still take time, as can the required post- processing calcu-
lations to summarize the simulations into confidence in-
tervals. Both the simulation and post- processing times are 
proportional to the number of simulated data sets (VPC 
samples) as well as to the size of the observed data, and 
may be prohibitive for frequent use if a large number of 
simulated data sets is used. Fortunately, it seems as if a 
large number of simulated data sets is rarely needed, espe-
cially if the number of subjects is high (Table 2). By care-
fully assessing the minimum number of data points in the 
bins in the smallest strata and adjusting the bin borders to 
avoid bins with only a few observations, it should be possi-
ble to select a sample size that makes it possible to use the 
VPC as standard goodness of fit instrument for all runs in 
a pharmacometric project. Specifically, it seems likely that 
less than 200 simulated data sets should be sufficient in 
most situations.
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