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Abstract
Spinal cord injury (SCI), for which there currently is no cure, is a heavy burden on patient physiology and psychology. The
microenvironment of the injured spinal cord is complicated. According to our previous work and the advancements in SCI
research, ‘microenvironment imbalance’ is the main cause of the poor regeneration and recovery of SCI. Microenvironment
imbalance is defined as an increase in inhibitory factors and decrease in promoting factors for tissues, cells and molecules
at different times and spaces. There are imbalance of hemorrhage and ischemia, glial scar formation, demyelination and
re-myelination at the tissue’s level. The cellular level imbalance involves an imbalance in the differentiation of endogenous
stem cells and the transformation phenotypes of microglia and macrophages. The molecular level includes an imbalance of
neurotrophic factors and their pro-peptides, cytokines, and chemokines. The imbalanced microenvironment of the spinal
cord impairs regeneration and functional recovery. This review will aid in the understanding of the pathological processes
involved in and the development of comprehensive treatments for SCI.
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Introduction

Spinal cord injury (SCI), a serious damage to the central
nervous system, has historically been considered an incur-
able impairment worldwide. Patients with SCI suffer a lot
both in terms of physiology and psychology1,2, and simul-
taneously, SCI has been a major burden on the society with
increasing prevalence1.

Currently, the prevalence of SCI is approximately
180,000 cases worldwide, with numbers still rising. Our
study found that the annual incidence was 23.7 cases per
million population, and SCI was more common in older
individuals in Tianjin, China3. Individuals with SCI had a
higher rate of death than controls4. According to an epide-
miological investigation of SCI, the most common causes of
SCI are falls and traffic accidents5. Current treatments of SCI
include traditional drug therapy1, surgery6,7, cell therapy8–10,
gene therapy and tissue engineering11–13. However, these
strategies cannot fully repair SCIs but can only improve
symptoms and reduce complications.

The spinal cord consists of the gray and white matter
which contains nerve cell bodies and ascending and des-
cending tracts. Thus, the different locations and the extent

of SCI can cause varying degrees of disability, from partial
loss of sensory or motor function to complete paralysis
below the injured location, as well as acute and chronic
complications14. The poor prognosis of SCI is associated
with the extremely weak regenerative capacity of the spinal
cord; although there is some inherent regenerative capacity
of the central nervous system, it is inadequate. The poor
regenerative capacity of the spinal cord is further compli-
cated by the fact that SCI is often accompanied by various
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molecular pathology cascades that interact with each other.
Traditionally, the pathophysiology of SCI is divided into two
phases: primary injury and secondary injury6,7,15,16. Recent
studies have provided a more detailed description of these
phases based on different times after injury reviewed in
Rowland et al.17 and Hayta et al.18, and which have demon-
strated the high complexity of SCI at different levels. The
complicated pathophysiology of SCI includes cell death,
axonal collapse and demyelination, glial scar formation,
inflammation and other pathological defects. However, there
is no systematic theory that can define these complicated
pathophysiological processes and guide the development of
therapies for SCI.

Thus, according to the developments in SCI research7,19–21

and our previous work, we defined ‘microenvironment
imbalance after SCI’ as the imbalance of tissue-, cell- and
molecule-promoting and inhibiting factors at different
times and sites that aggravate and accelerate the course
of SCI.

Microenvironment Imbalance After SCI

SCI can be divided into two categories: traumatic and non-
traumatic spinal cord injury. Traumatic SCI is much more
common and is typically caused by external physical
impact1. Non-traumatic SCI is often caused by compression
of tumor, vascular ischemia or congenital disease22. This
review will focus on traumatic SCI. Following contusion
injury, the balance of the spinal cord microenvironment is

disrupted, which leads to a series of pathophysiological
changes; beneficial factors become downregulated, and
harmful factors become upregulated after SCI. The micro-
environment imbalance consists of three levels at different
times and sites: molecules, cells and tissues. The cellular
level involves the activation of astrocytes, the differentiation
of endogenous neural stem cells, oligodendrocyte progeni-
tors and microglia, the infiltration of macrophages, etc. The
tissue level involves hemorrhage and ischemia, glial scar
formation, demyelination and re-myelination, etc. The mole-
cular level involves the expression of neurotrophic factors
and their pro-peptides, cytokines, chemokines, etc. These
imbalances impair regeneration and functional recovery
(Figs. 1 and 2).

Tissue Imbalance

Hemorrhage and Ischemia

Primary mechanical damage from SCI leads to the disruption
of the topical capillaries and the blood–brain-spinal cord bar-
rier (BSCB), which provides a specialized microenvironment
for the spinal cord parenchyma. The imbalance of hemorrhage
and ischemia was broken. (Fig. 1 �) A direct rupture of the
local capillaries induces bleeding into the parenchyma of the
spinal cord, especially into the gray matter23, which could
cause increased release of cytokines and chemokines from
macrophages, microglia and astrocytes into the extracellular
space. And the presence of red blood cells/heme in parench-
yma, a rich source of iron, is likely to induce free radicals and

Fig. 1. Microenvironment imbalance of spinal cord injury.
� Hemorrhage and ischemia.
� Scar formation.
� Demyelination and re-myelination.
� Differentiation balance of endogenous neural stem cells.
� Transformation of the phenotypes of microglia and macrophages.
� Imbalance of neurotrophic factors and their pro-peptides.
� Imbalance of the cytokines and chemokines.
Endo-NSC: endogenous neural stem cell.
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be toxic24, which is a potential mechanism for ferroptosis.
Venous stasis and distension would further cause the accumu-
lation of proteinaceous fluid in the tissues, leading to edema25.
On the other hand, neural tissue edema can also increase
interstitial pressure, which would compress the surrounding
vessels and subsequently cause ischemia26. In addition, dam-
age to the BSCB can increase its permeability, which would
cause macrophages infiltrated from injured blood vessels and
accumulate in the microenvironment of the spinal cord, and
the macrophages would express more cytokines and chemo-
kines; in turn, this would further increase permeability of the
BSCB. The lack of adenosine triphosphate (ATP) caused by
ischemia and ion channel defects would result in an ion
imbalance. Moreover, the accumulation of water in cells and
the extracellular compartment worsens the neural tissue
edema27.

Scar Formation

Glial scar formation is a vital part of the pathology of SCI,
which includes fibrous and glial components. The fibrous
component contains stromal cells at the center of the scar28,
which are derived from the vascular-related type A pericytes;
the glial component consists of astrocytes, which are derived
from self-replicating astrocytes and endogenous neural stem
cells (endo-NSCs), and the astrocytes from the endo-NSCs
reinforce the glial scar29. The glial scar is also composed of
microglia, macrophages and extracellular matrix and astro-
cytes. The extracellular matrix is mainly composed of chon-
droitin sulfate proteoglycans (CSPGs). From 2 days to
2 weeks after injury, astrocytes proliferate at the injured area,
and their large cell bodies and protrusions closely link
together to form glial scars; this separates the nerve tissue

Fig. 2. Microenvironment imbalance of spinal cord injury at different level.
The microenvironment at the molecule, cell and tissue level is shown separately. The tissue level imbalance includes hemorrhage and
ischemia, glial scar formation, demyelination and re-myelination; the cellular level imbalance involves an imbalance in the differentiation of
endogenous stem cells and the transformation phenotypes of microglia and macrophages; the molecular level includes an imbalance of
neurotrophic factors and their pro-peptides, cytokines, and chemokines.
BDNF: brain-derived neurotrophic factor; CXCR4: C-X-C chemokine receptor type 4; CXCL12: C-X-C motif chemokine 12; ICAM1:
intercellular adhesion molecule; IL: interleukin; LIF: leukocyte inhibitory factor; NGF: nerve growth factor; NT-3: neurotrophin-3; SDF-1:
stromal cell-derived factor 1; TNF-: tumor necrosis factor alpha; VCAM1: vascular cell adhesion protein.

Fan et al 855



from the inflammatory cells and reduces the early stage of
the neuroinflammatory response. From 2 weeks to 6 months
after injury, the astrocyte scar is considered mature. Due to
the presence of a glial scar and other inhibitory factors, such
as CSPGs and myelin-associated protein, axon regeneration
is limited. At 6 months after injury, the scar is continuously
reinforced as cysts and cavities are gradually formed17,30.
The scar forms a physical and molecular barrier, limiting the
spread of inflammation; however, this also hinders axon
regeneration and outgrowth.

Dual aspects of astrocytes. Damage to the BSCB causes
macrophage infiltration and microglial activation, which
could trigger the activation of local astrocytes. Furthermore,
the resulting lack of oxygen and glucose and the increase in
albumin would stimulate astrocyte accumulation in the cen-
ter of the injury site. This would simultaneously alter the
protein expression pattern of the astrocytes. Pekny et al.
reviewed that glial fibrillary acidic protein (GFAP), a kind
of III intermediate filamentous protein, was highly expressed
in the reactive astrocytes, and vimentin, nestin, S100β were
also upregulated, which would lead to cellular hypertro-
phy31. In addition, these astrocytes express inhibitory pro-
teins that contribute to the formation of the glial scar31. The
most important of these proteins, chondroitin sulfate proteo-
glycans (CSPGs)32, hinder axon outgrowth. Researchers at
the Department of Cell Biology and Program in Neu-
roscience at Harvard Medical School, USA have reported
that the tyrosine phosphatase receptor σ (PTPσ) is distributed
on the surface of neurons. PTPσ is a CSPG receptor, and the
PTPσ–CSPG interaction prevents axonal growth cone move-
ment, thus inhibiting axons from passing through the glial
scar33. This suggests that PTPσ functions in the spinal cord
injury microenvironment as a ‘molecular switch’ to directly
define the regenerative capacity of the axon. Our lab demon-
strated that axons could bypass CSPG by inhibiting PTPσ34.
The inhibitory proteins secreted by astrocytes combine with
other cells to form a physical and molecular wall to prevent
the expansion of the injury site into the intact area, and to
inhibit the regenerative axons from passing through this bar-
rier. Our team successfully established an isolation, culture
and purification protocol for spinal cord-derived astrocytes
in vitro, used small interfering RNA against PTPσ35 and
conducted photodynamic therapy using upconverting nano-
particles to inhibit astrocytes36. These studies suggested that
the inhibition of activated astrocytes at the subacute phase
could be used as an effective repair strategy to rebalance the
microenvironment in SCI patients.

Aside from the detrimental function, astrocytes play a
critical role in the restriction of inflammation and the lesion
area and contribute to endogenous neuroprotection. Sabel-
ström et al. generated the FoxJ1-CreER mouse strain and
demonstrated that astrocytes derived from endogenous stem
cells are necessary to reinforce the scar and restrict the area
of damaged tissue37. They further demonstrated that astro-
cytes derived from endogenous stem cells could express

ciliary neurotrophic factor, hepatocyte growth factor, and
insulin-like growth factor-1 (IGF-1)37. In addition, another
study showed that astrocytes could also express brain-
derived neurotrophic factor (BDNF), nerve growth factor
(NGF), glial cell-derived neurotrophic factor (GDNF), basic
fibroblast growth factor (FGF-2) and laminin and fibronec-
tin38. In contrast, Anderson et al. reported that astrocytes
promote axon regeneration, while fibroblasts inhibit axon
passage through the glial scar39. Thus, the astrocytes from
the endo-NSCs play a protective role in axon regeneration.

Altogether, the imbalance of dual aspects of astrocytes
can be regulated by inhibiting the overactivation of astro-
cytes and maintaining the protective aspects to repair SCI
(Fig. 1 �).

Demyelination and re-myelination. In the central nervous sys-
tem, each oligodendrocyte is responsible for generating and
maintaining myelin segments of 30–80 distinct axons40,41.
Myelin is essential to maintain the integrity of axons and
could facilitate axon signal conduction. After SCI, direct
damage and the imbalance of local microenvironment fac-
tors leads to demyelination (Fig. 1 �). However, the
mechanisms of demyelination are unclear. The necrosis and
apoptosis of oligodendrocytes are potentially the leading
causes of axonal demyelination. The level of oligodendro-
cyte apoptosis at the epicenter of a lesion peaks within a
week of contusion injuries to the spinal cord42. This results
in demyelination of the most injured axon; however, unin-
jured axons around the lesion remain myelinated43. Apopto-
sis of oligodendrocytes after SCI lasts for approximately
3 months, and then injured axons appear to become remye-
linated. The continued loss of oligodendrocytes in the
chronic phase of SCI is a major impediment to functional
recovery44. Mechanical injury, ischemia, proinflammatory
cytokines, oxidative stress, glutamate- and ATP-mediated
excitotoxicity and autophagy45,46 can all potentially cause
the death of oligodendrocytes due to the resulting imbalance
of demyelination and re-myelination. Molecules involved in
demyelination are potent inhibitors of axon regeneration,
such as neurite outgrowth inhibitor A (Nogo-A),
oligodendrocyte-myelin glycoprotein (OMgp) and myelin-
associated glycoprotein (MAG)47, which cause growth cone
collapse, neurite retraction and increases the risk of apopto-
sis. Thus, the process of demyelination inhibits the regenera-
tion of axons.

Re-myelination naturally occurs after SCI. The process of
re-myelination is mainly the process of replacement of oli-
godendrocytes45. The new oligodendrocytes have two
sources: progenitor oligodendrocytes and endogenous neural
stem cells. Progenitor oligodendrocytes become activated
and convert to an immature state; following increased pro-
liferation, these oligodendrocytes differentiate into myelinat-
ing oligodendrocytes, thus re-myelinating the spared and
regenerated axons45. Endo-NSCs remain quiescent in the
normal spinal cord, and become activated upon spinal cord
damage; these cells primarily differentiate into astrocytes but
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also differentiate into oligodendrocytes to a lesser degree.
This suppression of differentiation into oligodendrocytes is
mainly due to the lack of growth factors that shift the bal-
ance to favor differentiation into oligodendrocytes. Epider-
mal growth factor (EGF), bFGF, and platelet-derived growth
factor-AA (PDGF-AA) are important for oligodendrocyte
differentiation, and Neuregulin-1 could promote oligoden-
drocyte progenitor cell (OPC) differentiation into mature
myelinating oligodendrocytes. However, re-myelination-
inhibiting factors are also present in the microenvironment44.
Oligodendrocyte apoptosis causes the disruption of myelin,
and the prolonged presence of myelin debris inhibits re-
myelination. Wnt48 and LINGO1 signaling also inhibits
re-myelination. As a result, the extent and quality of re-
myelination are limited. Although spared and regenerated
axons are myelinated, the conductive function of the axons
does not change49. Thus, many studies demonstrated SCI
repair and recovered spinal cord function through the
restoration of the myelin sheath50–52. Our team transplanted
autologous activated Schwann cells into the spinal cord, and
we found relatively complete restoration of the myelin
sheath and improved microenvironment balance53, and
another study demonstrated similar results when co-
transplanting human umbilical cord mesenchymal stem cells
and human Schwann cells54. In addition, our clinical experi-
ment showed functional recovery of the spinal cord follow-
ing autologous activated Schwann cell transplantation55.

Cellular Imbalance

Differentiation Balance of Endogenous Neural
Stem Cells

Traditionally, stem cells were thought to be absent from the
mature central nervous system, especially from the spinal
cord. In the mature spinal cord, OPCs and astrocytes are the
main dividing cells29; SCI results in increased proliferation
of OPCs and activation of astrocytes56. However, OPCs and
activated astrocytes are not stem cells, as both lack pluripo-
tency. Recent studies have revealed that in the central canal
of the normal spinal cord, ependymal cells remain quiescent
but have the ability to differentiate into astrocytes and oli-
godendrocytes. Johansson et al. reported that cells derived
from ependymal cells could migrate to the olfactory bulb
and differentiate into neurons, as well as migrate to the
injured spinal cord and differentiate into astrocytes. Thus,
the use of endo-NSCs of the spinal cord for the treatment of
SCI attracted public attention57. Barnabe-Heider et al. fur-
ther demonstrated that new glial cells were derived from
ependymal cells using the construction of genetic fate map-
ping29. SCI caused a strong, persistent, long-distance prolif-
eration of ependymal cells58, which peaked after 3–7 days,
and there were 2 million new cells produced within 1 month
at the injured site59. Ependymal cells rapidly divide, produce
large amounts of astrocytes, and contribute to scar formation
and the small amounts of oligodendrocytes. However, the

activation of the ependymal stem cells is not sufficient to
promote functional recovery due to the lack of neuronal
differentiation.

As the imbalance in endo-NSC differentiation leads to the
overall cellular imbalance in SCI, the rebalance of the cel-
lular microenvironment of the injured spinal cord would
improve SCI recovery (Fig. 1 �).

The differentiation of neurons. The loss of neurons is the main
reason for the limited recovery after SCI. The ratio of
endo-NSCs to neurons directly impacts SCI recovery. The
differentiation of endogenous stem cells can be impacted by
inhibiting factors that are present in the microenvironment
after SCI, which promote endogenous stem cell differentia-
tion into more astrocytes. Thus, the population of neurons
derived from endogenous stem cells is inadequate to recon-
struct the synapses and nerve circle. Cell reprogramming
technology is currently the principal strategy used to pro-
mote neuron differentiation via enhancing growth factors
and decreasing inhibitors of the imbalance microenviron-
ment. Recent studies have used reprogramming technology
to convert endogenous glial cells into functional neurons
within the brain and spinal cord60,61. The differentiation of
endogenous neural progenitor cells into motor neurons is
insufficient because the ratio of Ngn2/Olig2 for neural pro-
genitor cells is 10 times lower than that for embryonic stem
cells (ESCs)62. The ratio of Ngn2/Olig2 determines the dif-
ferentiation of motor neurons and oligodendrocytes63. In the
brain, the single transcription factor SOX2 was sufficient to
reprogram the local astrocytes to neuroblasts, and these cells
could further differentiate into functional neurons when
combined with BDNF64. To decrease the impact of the inhi-
bitors in the microenvironment, Fan et al. used a modified
scaffold with a collagen-binding epidermal growth factor
receptor (EGFR) antibody Fab fragment to neutralize myelin
inhibitory molecules and repair SCI; they found that
enhanced neurogenesis of endo-NSCs and neurons could
reconnect the injured gap65. After transplantation into the
injured spinal cord, an NT-3 chitosan biomaterial, which
slowly releases NT-3, improved the local NT-3 concentration
and attracted endo-NSCs to migrate towards the lesion epi-
center and differentiate into neurons66. And there was study
demonstrated that melatonin combined with exercise could
also promoted endogenous stem cell differentiation into neu-
rons after SCI67. Furthermore, our team used small mole-
cules, valproic acid (VPA), combined with all-trans retinoic
acid to promote neural stem cell differentiation into neurons
in vitro. These results showed the promotion of neuron dif-
ferentiation and the suppression of astrocyte differentia-
tion68. For the imbalance of endo-NSC differentiation, the
selective use of small molecules can effectively achieve its
differentiation rebalance.

The differentiation of oligodendrocytes. Contusion or crushing
injury of the spinal cord results in the loss of oligodendro-
cytes. After SCI, oligodendrocyte apoptosis at the center of
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the injury peaks within a week42, which leads to the demye-
lination of the most injured axon. Thus, the imbalance of
differentiation of endo-NSCs can be caused by promoting
oligodendrocyte differentiation to improve the re-
myelination. Currently, there are limited studies focused on
the differentiation of oligodendrocytes from endo-NSCs.
The Nrg-ErbB network is essential for oligogenesis.
Gauthier et al. demonstrated that Nrg-1 could enhance the
differentiation of neural progenitor cells into oligodendro-
cytes in vitro. Administering rhNrg-1b1 in vivo increased
the number of new oligodendrocytes and promoted the pre-
servation of axons, whereas inhibiting its receptor, ErbB, had
the opposite effect69. Insufficient oligodendrocyte differen-
tiation was associated with the lack of neurotrophic factors
in the microenvironment following SCI. A previous study
transplanted human umbilical cord blood-derived mesench-
ymal stem cells into injured spinal cords and showed that
cell transplantation enhanced the proliferation of endogen-
ous neural stem cells and increased new oligodendrocytes70.
This study suggested that the neuroprotective trophic factors
secreted from graft cells contributed to the differentiation of
oligodendrocytes. In addition, Karimi-Abdolrezaee et al. uti-
lized chondroitinase and growth factors (EGF, bFGF and
PDGF-AA) to repair SCI and demonstrated that this strategy
promoted endogenous oligodendrocyte replacement and
improved the microenvironment71. In addition, electroacu-
puncture was shown to promote the proliferation of endo-
NSCs and oligodendrocytes72.

Transformation of the phenotypes of microglia and
macrophages. Microglia are the resident macrophages of the
central nervous system, and with regard to their cytokine
production and immune function, they remain quiescent to
a certain extent73. After SCI, the damaged neurons, astro-
cytes and other injured cells release cytokines and other
factors such as interleukin (IL)-1β, tumor necrosis factor
alpha (TNFα)74,75, signals of damage associated molecular
patterns (DAMPs)76, interferon gamma (IFN-γ)77, ATP78,79,
nitric oxide (NO)80, and growth factors81. The release of
these cytokines induces the activation of microglia and, con-
sequently, increases the proliferation of microglial cells. The
number of activated microglia becomes elevated on the first
day after SCI, and continues to increase within 7 days, until
the cell population plateaus between 2–4 weeks82. In the
central nervous system, activated microglia release trophic
factors for the survival and proliferation of infiltrating cells
as well as the growth and regeneration of axons in the lesion
site during earlier stages of SCI83–85; moreover, microglial
activation serves a protective role by limiting the expansion
of the lesion site86. However, activated microglia can also
express various proinflammatory cytokines, such as IL-1α,
IL-1β and TNFα75. At 2–3 days after injury, microglia can
induce macrophages from the peripheral circulation to infil-
trate the injured site and trigger the inflammatory response
through these cytokines. Macrophages can reach maximum
numbers 7–10 days after SCI87 and persist in the lesion area

for up to 42 days88,89. Macrophages, which are crucial for
the inflammatory response in the spinal cord90,91, can be
derived from two cell types: the resident microglial cells and
the peripherally circulating macrophages. The latter originate
from the bone marrow and infiltrate the injured site after
SCI. However, the appropriate activation of macrophages
can also aid in the repair and regeneration of the injured
central nervous system87.

Macrophages and microglia both have the ability to
become polarized92–94. There are two main polarization
phenotypes, M1 and M2 (Fig. 1 �); additionally, the M2
phenotype can be divided into M2a, M2b and M2c. The ratio
of M1 to M2 determines the homeostasis of the local micro-
environment. During the acute response to trauma, high lev-
els of reactive oxygen species (ROS) are detectable. With the
stimulation of these factors, the M1 macrophage/microglia in
SCI occupy a predominant state, which is detrimental to the
repair of SCI95. This ratio results in the production of proin-
flammatory cytokines, such as IL-6, IFN-γ, IL-12, IL-23,
IL-1β, and TNFα96. M1 macrophages are converted to the
M2 phenotype with the phagocytosis of myelin phenotype.
M2 macrophages are anti-inflammatory cells that exhibit
tissue repair properties (i.e. high production of IL-10 and
transforming growth factor beta (TGFβ)), exhibit defective
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) activation, upregulate arginase 1 and down-
regulate the expression of proinflammatory cytokines94.
Although apoptotic neutrophils and red blood cells (RBCs)
can transform the phenotype of macrophages from M1 to
M2, the number of M2 macrophages was low at the early
stage of SCI and further decreased after 7 days93,97. The
microenvironment post-SCI is unfavorable for M2 macro-
phages, such that the high expression of TNF would inhibit
the transformation of M1 to M291.

Molecular Imbalance

Imbalance of Neurotrophic Factors and Their
Pro-Peptides

There is an imbalance between growth promoting molecules
and growth inhibiting molecules among the SCI microenvir-
onment, where growth inhibitors occupy the dominant posi-
tion (Fig. 1�). This results in the death of neurons and
oligodendrocytes as well as the degeneration of axons.
Among the growth promoting molecules, neurotrophic fac-
tors play a critical role in the development, maintenance and
survival of cells in the central and peripheral nervous sys-
tem98,99. Neurotrophic factors significantly promote the sur-
vival and proliferation of different cells and axon
regeneration after SCI100,101. The neurotrophic factor family
consists of BDNF, NGF, and neurotrophin-3 (NT-3), neuro-
trophin-4/5 (NT-4/5). Recently, several studies have showed
that the pro-neurotrophins of NGF, BDNF and NT-3 are also
present and play a vital role in the cell death102. NGF, BDNF
and NT-3 are synthesized as uncleaved pro-peptides
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(proNGF, proBDNF and proNT-3), which are either secreted
from cells or cleaved intracellularly into mature neurotrophic
factors103,104. The balance of proneurotrophins and neuro-
trophins is disrupted after SCI, and the resulting elevated
expression of proneurotrophins accelerates apoptosis,
reduces synaptic plasticity, increases the inflammatory
response and induces degeneration105,106.

BDNF versus proBDNF. BDNF is mostly involved in the
repair of SCI. BDNF was first extracted from the brain by
Barde et al. in 1982107. BDNF can combine with the recep-
tor of tropomyosin receptor kinase (Trk)B and promote the
outgrowth of axons and survival of dorsal root ganglion
neurons,108,109 as well as promote the regeneration of axons
of corticospinal tract. In addition, BDNF can promote mye-
lination, regulate synaptic plasticity and affect synaptic
transmission110. Several studies have used BDNF to repair
SCI by direct administration, transplantation of cells over-
expressing BDNF and release by scaffold111; these studies
demonstrated a neuroprotective role of BDNF. Our team
used BDNF, NGF genetically modified Schwann cells and
fetal spinal cord cell suspension to repair SCI in rats. This
combination treatment elicited a robust growth response of
corticospinal axons and significant functional recovery112.
Following SCI, Wong et al. found that proBDNF levels were
upregulated in the spinal cord 1 to 3 days after injury but
downregulated after 7 days105. Moreover, the inhibition of
proBDNF promoted an increase in the number of neurons
and improved the functional recovery of the animals. Our
team used proBDNF-specific antibodies to antagonize the
inhibitory effect of proBDNF. This resulted in increased
proliferation of OPCs and cell division activity and pro-
moted the function of the animal113. These results suggested
that proBDNF in the spinal cord microenvironment sup-
pressed the survival of neurons and that, through the use
of proBDNF-specific antibodies, microenvironment reba-
lance can be achieved.

NGF versus proNGF. NGF has historically been thought to
function only in the peripheral nervous system. However,
recent studies have demonstrated a similar role for NGF in
the central nervous system. NGF binds to the Trk receptors
and pan-neurotrophin receptors (p75NTR) to maintain and
promote the survival of neural cells, which was reviewed
by Richner et al.114. Several studies have demonstrated that
NGF promotes the regeneration of axons and improves the
functional recovery. Romero et al. used conditional expres-
sion of NGF in the adult rat spinal cord and found that the
expression of NGF could promote the axonal sprouting of
the sensory afferents and achieve better behavioral out-
comes115. In addition, our team prepared genetically modi-
fied Schwann cells overexpressing NGF to repair SCI in rats,
which improved hind limb movement116. The precursor of
NGF could interact with Sortilin and p75 to form a complex
to lead to an apoptotic cascade117,118. Thus, the balance
between NGF and proNGF could determine the balance of

cell survival and death. Harrington et al. demonstrated that
proNGF was increased in the brain injuries and SCIs102.
ProNGF is the predominant form of NGF expressed in
nearly all brain tissue in mice, rat and human. Beattie
et al. reported that the expression of NGF and proNGF
were both upregulated in contusion SCIs and that the
expression of proNGF was equivalent to or higher than that
of NGF. They also demonstrated that proNGF induced the
p75NTR-mediated decrease in the number of oligodendro-
cytes106. In addition, proNGF was detected in the GFAP-
positive cells in the brain. Domeniconi et al. also demonstrated
that astrocytes from neonatal spinal cord could express
proNGFwith stimulation, which resulted in neuron death when
cultured in vitro, suggesting that astrocytes are potentially the
major source of proNGF119.

NT-3 versus proNT-3. The neurotrophin NT-3, plays an
important role in the development of the nervous system.
The mRNA of NT-3 is mainly expressed in the developing
brain and motor neurons of the spinal cord, whereas the
expression of NT-3 is low in the adult spinal cord. After
SCI, the expression of NT-3 dropped rapidly in the first 6
hours and recovered to normal levels by 12 hours120. Thus,
follow-up studies utilized NT-3 to repair SCI and obtained
functional recovery116,121. The pro-peptide of NT-3 is
proneurotrophin-3 (proNT-3). Tauris et al. demonstrated that
proNT-3 induces the neuron death in the inner ear using
Sortilin122. Furthermore, this study demonstrated that recom-
binant proNT-3 could induce sympathetic neuron death
through a p75NTR- and a Sortilin-dependent mechanism.
However, the role of proNT-3 in the process of SCI is
unknown. Thus, much remains to be understood about the
balance of NT-3 and proNT-3 in the SCI microenvironment.

Imbalance of the Cytokines and Chemokines

Cytokines. Cytokines can be divided into proinflammatory or
anti-inflammatory proteins that participate in neuroinflam-
mation, neurodegeneration, neuropathic pain123,124. After
SCI, neurons in the spinal cord express these cytokines
within 30 min, and microglia express these cytokines 5
hours later; however, the expression of both decreases by
the second day125. In addition, TNFα and IL-6 can be
secreted by other cells in the central nervous system (CNS),
such as astrocytes and epidermal cells126. Several cytokines,
such as IL-1, IL-6, TNFα, granulocyte-macrophage colony-
stimulating factor (GM-CSF) and leukocyte inhibitory factor
(LIF), participate in the dynamic changes of the SCI micro-
environment26,127. Some proinflammatory cytokines have
protective qualities at low concentrations due to their induc-
tion of neurotrophin expression as well as the induction of
adhesion molecules in the cell surface, which mediates
leukocyte activation/recruitment to the injury site128. Proin-
flammatory cytokines also activate endogenous stem cells.
However, the main function of these cytokines, as proin-
flammatory molecules, leads to neuronal damage and
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destruction when their concentration exceeds a certain
threshold. At higher concentrations, these proinflammatory
cytokines activate transcription factors (ATF) as well as fac-
tors that stimulate the expression of neurotoxic genes,
including cyclooxygenase 2 (COX-2), inducible nitric oxide
synthase (iNOS), and proinflammatory proteases such as
thrombin in different target cells129,130. Accumulation of
IL-1 in the spinal cord leads to enhanced vascular perme-
ability and lymphocyte recruitment. Moreover, the release of
IL-6 has been found to promote the activation and infiltra-
tion of macrophages and microglia. Several studies have
revealed that the continuous inhibition of IL-6 is detrimental
to functional recovery because it also participates in axonal
regeneration and gliosis131,132. TNFα is significantly upre-
gulated in neurons, glia, and endothelial cells following
SCI133. In addition, TNFα could recruit neutrophils to the
site of the lesion by the induction of adhesion molecules
such as intercellular adhesion molecule (ICAM-1) and vas-
cular cell adhesion protein (VCAM-1)134. With the increased
level of TNFα, the permeability of endothelial cells is
altered, which further resulted in the disabling of the
blood–spinal cord barrier. TNFα could induce cell death in
oligodendrocytes135 and lead to demyelination; and the sup-
pression of TNFα resulted in decreased demyelination136.
Neutralizing antibodies against TNFα improved functional
neurological recovery following SCI137. However, TNFα
signaling has also been demonstrated to have a neuroprotec-
tive role in vitro138 and promote functional recovery follow-
ing SCI139.

Chemokines. There are complex changes in the levels of a
variety of important chemokines at different times and sites
after SCI, among which stromal cell-derived factor 1α (SDF-
1α) binds to G-protein-coupled C-X-C chemokine receptor
type 4 (CXCR4) and plays an important role in the repair of
SCI. Kucia et al. reviewed that SDF-1-CXCR4 axis could
regulate stem/progenitor cell trafficking and the metastatic
behavior of tumor cells140. Our team used immunohisto-
chemistry to observe the changes in CXCR4 expression in
spinal cord tissue141. It was found that the expression of
CXCR4 in neurons, glial cells, macrophages and ependymal
cells in spinal gray matter was increased on the third day
after SCI in rats. The number of CXCR4-positive cells
peaked in the gray matter of spinal cord. In addition, a
previous study showed that the CXCR4-mediated stem cell
migration to the injured area to repair the injured spinal cord
tissue142. In addition, the expression of SDF-1α in the prox-
imal and distal SCI centers was significantly increased143.
The number of SDF-1α-positive cells in the spinal cord tis-
sue began to rise at 1 day after SCI, reaching its peak at 2
days after injury. The number of proximal SDF-1α-positive
cells at 7 days after injury was significantly higher than the
numbers in normal and sham-operated groups. The results
showed that proliferative astrocytes could release trophic
factors to promote damaged axon repair and regeneration,
high levels of expression of SDF-1α can strongly stimulate

the proliferation of astrocytes and play a role in repairing the
spinal cord. Thus, 48 h after acute SCI, continuous local
intrathecal injection of SDF-1α to restore local SDF-1α con-
centrations to a high level may be a viable option for early
treatment of SCI.

Ion Imbalance

In the pathological process of SCI, ion imbalance plays a
fundamental role in regulating other pathological changes.
The most important ions are K+, Na+, and Ca2+. After SCI,
the selectivity of the K+, Na+, and Ca2+ channels is altered
due to damage to the membrane of cells and the release of
proinflammatory factors by different cells. Subsequently, the
cellular and extracellular homeostasis of K+, Na+, and Ca2+

is disrupted. Finally, the concentrations of Na+ and Ca2+ are
upregulated in cells, while the concentrations of K+ and
Mg2+ are upregulated extracellularly144. With the Na+ influx
into the cell, water gradually accumulates in the cell, which
leads to cytotoxic cellular edema. This further leads to the
stimulation of intracellular phospholipase activity and pro-
motion of intracellular acidosis145. There were studies utiliz-
ing Na+ channel inhibitors, such as tetrodotoxin146,147,
riluzole148,149, and phenytoin150,151, to repair SCI, and these
study demonstrated that inhibition of the Na+ channel has a
neural protective effect. As Ca2+ participates in several
pathological processes (e.g. synaptic transmission), Ca2+

plays a vital role in responding to injuries of the central
nervous system. After SCI, the concentration of Ca2+ was
increased within 1 min after SCI and reached its peak at
8 hours; moreover, this high concentration of Ca2+ persisted
for 2 weeks. The high concentration of Ca2+ in cells could
cause apoptosis or necrosis through increasing the activation
of cellular enzymes, mitochondrial damage, acidosis, and the
production of free radicals145, and it could also further
impact the white matter after SCI152. The K+ channel is the
most extensively studied ion channel in SCI myelination153.
The myelin sheath of axons in spinal cord is disrupted after
SCI, which exposes K+ channels and disrupts K+ channel
distribution45. This could result in a number of detrimental
effects, including conduction failure and demyelination.
The conduction failure is ascribed to the increased activity
of K1 channels. In contrast, the voltage-gated K+ channels
are also important for re-myelination. There was a study
that injected 4-aminopyridine (4-AP), a K+ channel antago-
nist, subcutaneously into adult male C57BL/6 mice, and
found that 4-AP could decrease re-myelination in the cor-
pus callosum154.

Recently, iron has been shown to play a vital role in the
maintenance of the normal function of the CNS155,156. After
SCI, the accumulation of iron in the extracellular space is
caused by the influx of RBCs due to hemorrhage. Liu et al.
demonstrated that the level of iron was increased at 0.5 h157.
In addition, Liu et al. demonstrated that iron was rapidly
increased within 20 min155. Iron plays a significant role in
glutamate excitotoxicity, the formation of ROSs and the
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production of free radicals158,159, which inhibit the regenera-
tion of SCI. Our team utilized deferoxamine (DFO), an iron
chelator, in the repair of SCI. We found that the application
of DFO could decrease the total iron ion level, TNFα, IL1-β
and caspase-3 expression and glial scar formation after SCI
and promote the survival of cells and recovery of motor
function24.

Conclusions

The theory of ‘microenvironment imbalance after SCI’
describes the imbalance of molecules, cells and tissues in
the spinal cord following injury. This theory explains the
complicated intercorrelation of each level, which will pro-
vide guidance for the understanding of pathological process
and treatment of SCI.
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