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ABSTRACT
A prominent layer of smooth muscle lining the luminal side of the atria

of freshwater turtles (Emydidae) was described more than a century ago.
We recently demonstrated that this smooth muscle provides a previously
unrecognized mechanism to change cardiac output in the emydid red-eared
slider (Trachemys scripta) that possibly contributes to their tremendous
diving capacity. The purpose of the present immunohistochemical study
was firstly to screen major groups of vertebrates for the presence of cardiac
smooth muscle. Secondly, we investigated the phylogenetic distribution of
cardiac smooth muscle within the turtle order (Testudines), including ter-
restrial and aquatic species. Atrial smooth muscle was not detected in a
range of vertebrates, including Xenopus laevis, Alligator mississippiensis,
and Caiman crocodilus, all of which have pronounced diving capacities.
However, we confirmed earlier reports that traces of smooth muscle are
found in human atrial tissue. Only within the turtles (eight species) was
there substantial amounts of nonvascular smooth muscle in the heart. This
amount was greatest in the atria, while the amount in proportion to car-
diac muscle was greater in the sinus venosus than in other chambers.
T. scripta had more smooth muscle in the sinus venosus and atria than the
other turtles. In some specimens, there was some smooth muscle in the
ventricle and the pulmonary vein. Our study demonstrates that cardiac
smooth muscle likely appeared early in turtle evolution and has become
extensive within the Emydidae family, possibly in association with diving.
Across other tetrapod clades, cardiac smooth muscle might not associate
with diving. Anat Rec, 303:1327–1336, 2020. © 2019 The Authors. The
Anatomical Record published by Wiley Periodicals, Inc. on behalf of Ameri-
can Association for Anatomy.

This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is
properly cited.

Grant sponsor: Danish Ministry of Higher Education and Sci-
ence; Grant sponsor: Danish Research Council; Grant sponsor:
Aarhus University; Grant sponsor: Natur og Univers, Det Frie
Forskningsråd.

*Correspondence to: William Joyce, Department of Zoophysiology,
Aarhus University, Aarhus, Denmark E-mail: william.joyce@bios.
au.dk
Received 24 May 2019; Revised 24 June 2019; Accepted 28

June 2019.
DOI: 10.1002/ar.24257

Published online 10 October 2019 in Wiley Online Library
(wileyonlinelibrary.com).

THE ANATOMICAL RECORD 303:1327–1336 (2020)

© 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association for Anatomy.

https://orcid.org/0000-0002-3782-1641
https://orcid.org/0000-0002-7750-8035
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:william.joyce@bios.au.dk
mailto:william.joyce@bios.au.dk


Key words: cardiac function; diving physiology; stroke volume;
heart anatomy

In the late 19th century, slow wave contractions (the so-
called tonuswaves) were observed in isolated atrial prepara-
tions from European pond turtles (Emys orbicularis) (Fano,
1887; Fano and Fayod, 1888; Bottazzi, 1897). The tonus
waves were soon attributed to the conspicuous amounts of
smooth muscle in the atria (Rosenzweig, 1903; Bottazzi,
1906), but despite a few decades of relatively intense
research into its pharmacological properties (Fano, 1887;
Fano and Fayod, 1888; Bottazzi and Grünbaum, 1899;
Gault, 1917; Gruber and Markel, 1918a, 1918b; Gruber,
1920a, 1920b, 1921, 1927; Sollmann and Rossides, 1927;
Gruber, 1934; Dimond, 1959), the scientific interest in the
atrial smoothmuscle waned after the 1920s. As part of other
studies, we also observed the tonus waves (Galli et al., 2006;
Joyce et al., 2014), and with a revived curiosity into their
functional role, we recently demonstrated that the atrial
smooth muscle may provide a powerful means to regulate
ventricular filling and hence cardiac stroke volume (Joyce
et al., 2019).We predicted that atrial smoothmuscle enables
fine-tuning of ventricular filling and thus stroke volume dur-
ing the characteristic rapid transitions from slow heart rates
in apnea to the tachycardia associated with intermittent
lung ventilation (Wang and Hicks, 1996; Joyce et al., 2018).
Our previous experiments (Joyce et al., 2018) were designed
with the atria in mind and we could not assess the presence
and impact of smoothmuscle in the sinus venosus or veins.

TheEuropean-based discoverers of the atrial smoothmus-
cle universally employed the Emydid turtle E. orbicularis
(formerly Emys europaea) (e.g., Fano, 1887; Bottazzi and
Grünbaum, 1899; Fano and Bodano, 1900; Rosenzweig,
1903; Oinuma, 1910), but were soon followed byNorth Amer-
ican studies on a wealth of other turtle species in the Emydid
family, including Trachemys scripta (Laurens, 1913; Gruber
and Markel, 1918a, 1918b; Pereira, 1924; Sollmann and
Rossides, 1927; Robb, 1952; Dimond, 1959). There are addi-
tional vague descriptions of tonus waves in atria from
Chelydra serpentina (snapping turtles;Chelydridae); very lit-
tle detail is given by Pereira (Pereira, 1924), where data
are indiscriminately combined with findings in Emydid tur-
tles, while Blinks and Koch-Weser (1963) cite their own
unpublished observations about this species. Gaskell (1900)
did not observe tonus waves in the atria of the land tortoise
(Testudinidae), Testudo graeca. In a more recent conference
abstract, Gannon et al. (2003)) did not locate atrial smooth
muscle in a side-necked turtle (Pleurodira), Emydura mac-
quarii, although it has been detected in the sinus venosus,
the chamber upstream of the right atrium in other reptile
hearts (Jensen et al., 2014, 2017). If atrial smooth muscle is
functionally related to cardiovascular regulation during div-
ing, we predict it would be prevalent in aquatic species that
exhibit large changes in heart rate and cardiac output during
ventilation, but absent or less conspicuous in terrestrial spe-
cies where the cardiorespiratory interactions are smaller
(Glass et al., 1978; Taylor andWang, 2009).

Bottazzi (1897) observed tonus waves in atrial prepara-
tions of anuran amphibians (frogs and toad), but atrial
smooth muscle has not been detected histologically

(Laurens, 1913; Blinks and Koch-Weser, 1963). Also, there
are numerous reports of endocardial smooth muscle in
human (Nagayo, 1909; Blinks and Koch-Weser, 1963; Park
et al., 2013; Okada et al., 2015) and sheep (Terasaki et al.,
1993). Possibly, this reflects contributions of the
Isl1-positive second heart field to the venous pole of the
heart and the common origin of smooth muscle and cardiac
muscle in mesodermal progenitors that express Isl1
(Douglas et al., 2006, 2009; Moretti et al., 2006).

The primary aim of this study was to unravel the evo-
lutionary history of atrial smooth muscle in Testudines.
To test the hypothesis that the smooth muscle may be
linked to diving capacity, we predicted that atrial smooth
muscle would be absent in terrestrial tortoises, but more
developed in aquatic species. We also took the opportu-
nity to describe smooth muscle in other parts of the heart,
including the sinus venosus (Carmona et al., 2018), pul-
monary veins, and ventricle. We finally considered the
possible broader distribution of atrial smooth muscle in
other vertebrates, including amphibians and mammals.

MATERIALS AND METHODS

The majority of the turtle species (Pelomedusa subrufa
[n = 3; 20–35 g], Chelodina mccordi [n = 3; 14–15 g],
Pelodiscus sinensis [n = 2; 5 g], Cyclanorbis senegalensis
[n = 2; 0.2–0.45 kg], Testudo hermanii [n = 3; 25–27 g],
Chelonoidis carbonaria [n = 3; 2.4–4.8 kg], and T. scripta
[n = 10; 0.3–1.7 kg], a skink,Cyclodomorphus gerrardii [n = 1;
0.44 kg], a spectacled caiman, Caiman crocodilus [n = 1;
4 kg], African clawed frogs, Xenopus laevis [n = 2; 50 g], cane
toads,Rhinellamarinus [n = 2; 100–200 g]) and Longnose gar
(Lepisosteus osseus [n = 1])were obtained from commercial
sources or donated from private collections and maintained
at the Aarhus University (Aarhus, Denmark). C. serpentina
(n = 3; 30–35 g) and Alligator mississippiensis (n = 1; 1 kg)
heartswere obtained fromanimalsmaintained at theUniver-
sity of North Texas (Denton, Texas). Mouse (Mus musculus
[n = 1]), and a bird, the lesser redpoll (Acanthis cabaret
[N = 1]), sections were obtained from archived samples (body
mass unknown) at the Amsterdam University Medical Cen-
ter (UMC) (Amsterdam, the Netherlands). One caecilian
(Idiocranium sp.) section was taken from unpublished data
associated with an earlier study (de Bakker et al., 2015).
Healthy human (Homo sapiens) cardiac samples were pro-
vided from the Department of Pathology, Amsterdam UMC,
AMC (Amsterdam, theNetherlands).

For the hearts used for immunohistochemistry, the ani-
mals were euthanized with an overdose of pentobarbital
(200 mg kg−1) before the brain was destroyed. All experi-
ments were performed in accordance with local animal
care regulations.

Immunohistochemistry

Hearts were fixed for 24 hr in paraformaldehyde (4% in
phosphate-buffered saline [PBS] ) and stored in 70% etha-
nol. The hearts were then embedded in paraffin (Paraplast,
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Sigma P3558) and cut into 10-μm transverse or coronal sec-
tions. A standard immunohistochemistry protocol was
followed as described elsewhere (Jensen et al., 2016; 2017),
where we demonstrated specific detection of cardiac muscle

and smoothmuscle in anole lizards, the Ball python, and the
American alligator. Briefly, cardiac muscle was detected
with rabbit polyclonal antibody to cardiac Troponin I (cTnI:
06/02-IV-4T21/2, HyTest Ltd, dilution 1:600) which was

Fig. 1. Luminal atrial smooth muscle was not detected in most vertebrates. Red represents cTnI and green represents SMA, as detected by
fluorescent immunohistochemistry. (A) American alligator, (B) pink-tongued skink, (C) African clawed frog, (D) longnose gar, (E) mouse, and
(F) lesser redpoll bird (all detected SMA in B, E, F was within arterial walls). Scale bars are 1 mm. a, atrium; as, atrial septum; pv, pulmonary vein;
sv, sinus venosus; v, ventricle; oft, outflow tract.
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detected with a secondary donkey anti-rabbit antibody con-
jugated to the fluorophore Alexa 647 nm (Mol Prob A31573,
dilution 1:250). Smooth muscle was detected with mouse
monoclonal antibody to smooth muscle actin (SMA, Sigma
A2547, 1:600) which was detected with a secondary donkey
anti-mouse antibody conjugated to the fluorophore Alexa
555 nm (Invitrogen A31570, 1:250). Images were acquired
with a Leica DM6000microscope under the control of LAS X
software (LeicaMicrosystems,Wetzlar, Germany).

Statistical Analyses

The number of pixels containing myocardium (red) and
smooth muscle (green) in composite images were deter-
mined by splitting the red and green colors using the

“Color Threshold” function of ImageJ (NIH, Bethesda,
MD, Version 1.51k), and then measuring the area on the
split colors allowing us to calculate relative smooth mus-
cle area as a percentage of the total muscle area (smooth
and cardiac muscle). To maintain standardization, only
transverse images of the atria were used for this quantifi-
cation, thus the final sample sizes in this analysis were
as follows: P. subrufa (n = 2), C. mccordi (n = 2),
P. sinensis (n = 1), C. senegalensis (n = 2), C. serpentina
(n = 2), T. hermanii (n = 2), C. carbonaria (n = 3) and
T. scripta (n = 6). For each heart, the % area of smooth
muscle was averaged from three or four equidistant sec-
tions from across the atria, although in some C. mccordi
(n = 1), P. sinensis (n = 1), and C. carbonaria (n = 2) only
two representative sections could be used. Due to the low

Fig. 2. Luminal smooth muscle was not detected in atrium from spectacled caiman (A), cane toad (B), or caecilian (C). Red represents cTnI and
green represents SMA, as detected by fluorescent immunohistochemistry. Scale bars are 1 mm. (r/l)a, (right/left) atrium; as, atrial septum; sv, sinus
venosus; c, conus.

Fig. 3. Smooth muscle in human atrial wall. Red represents cardiac cTnI and green represents SMA, as detected by fluorescent
immunohistochemistry. (A) left anterior atrium and (B) left atrial appendage. Scale bars are 1 mm.
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animal sample sizes available for most species, no statis-
tical comparisons were made between species. A linear
regression was performed to investigate the relationship
between body mass and atrial smooth muscle coverage in
T. scripta. To investigate whether there were chamber

differences in the proportion of the detected SMA relative
to all detected SMA and cTnI, we used the Plugin func-
tion “RGB Measure” of ImageJ after having delineated
the sinus venosus, atria, or ventricle with the Freehand
selections tool (epicardial vessels were excluded from this

Fig. 4. The phylogenetic distribution of smooth muscle in different regions of the heart in eight turtle species. Red represents cTnI and green
represents SMA, as detected by fluorescent immunohistochemistry. Scale bars are 100 μm for all species, except for C. senegalensis and T. scripta
(500 μm), and C. carbonaria (1 mm). Phylogeny based on Crawford et al. (2015).
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analysis to the extent it was possible). The output value
(mean) is a composite measure of the number of pixels
that contain each color and the color intensity. We only
used images that contained both sinus venosus and atria
(N = 73). In 25 of the 73 images, there was also ventricu-
lar tissue. Differences between the sinus venosus and
atria were tested with paired T-test. We used the Pearson
correlation test for significant relation between the pro-
portion of SMA in the sinus venosus as compared to the
atria and ventricle. Statistical analyses were performed
in SPSS (IBM SPSS Statistics version 24) or GraphPad
Prism (Version 8.0). Data are presented as means � SD.

RESULTS
Cardiac Smooth Muscle in Vertebrates

To resolve the evolutionary history of smooth muscle in
the heart, we selected a range of vertebrate species and per-
formed fluorescent immunohistochemistry against SMA and
cardiac muscle in the sinus venosus, atria, and ventricle.
Smoothmusclewas readily detected in the large arteries con-
nected to the ventricle and coronary arteries of all

investigated species. Luminal smooth muscle was not
detected in cardiac chambers from American alligator (Alli-
gators mississipinesis) (Fig. 1A), spectacled caiman
(C. crocodilus) (Fig. 2A), pink-tongued skink (C. gerrardii)
(Fig. 1B), longnose gar (L. osseus) (Fig. 1D), mouse
(M. musculus) (Fig. 1E), or lesser red poll bird (A. cabaret)
(Fig. 1F). Only in the African clawed frog (X. laevis) (Fig. 1C)
and cane toad (R. marinus) (Fig. 2B) did we detect a small
amount of smooth muscle in the sinus venosus, although
none was observed in another amphibian, the caecilian
(Idiocranium sp.) (Fig. 2C). We confirmed earlier reports
(Nagayo, 1909; Park et al., 2013) that atrial smooth muscle
could be detected in human atrium (Fig. 3), but most verte-
brates appear to have very little, if any, smooth muscle in
contact with chamber lumens.

Cardiac Smooth Muscle in Turtles

All eight turtle species exhibited both smooth and car-
diac muscle in the sinus venosus (Fig. 4). In proportion to
the total amount of smooth and cardiac muscle, the sinus
venosus had significantly more smooth muscle than the

Fig. 5. Assessment across turtles of the proportion of signal from SMA (green) out the total signal from SMA and cTnI (red), measured by the
ImageJ Plugin function “RGB measure.” The yellow lines indicate the region of interest within which the measurements were made. Two specimens
of the Pond slider with intermediate (A) and high (B) proportions (numbers in green) of SMA in the sinus venosus and atria. (C) Across turtles, the
sinus venosus was proportionally richer in SMA than the atria, which in turn were richer in SMA than the ventricle (P-values of paired two-tailed T-
tests, numbers in columns are the number of assessed sections). (D) The proportion of SMA in the sinus venosus was significantly positively
related to the proportion of SMA in the atria (Pearson correlation, P < 0.001).
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atria, which in turn had significantly more smooth muscle
than the ventricle (Fig. 5) (concerning the ventricle, in
some specimens much of the SMA signal came from the
walls of coronary arteries). The proportion of smooth mus-
cle in the atria was positively related to the proportion of
smooth muscle in the sinus venosus (Fig. 5), but the pro-
portion of smooth muscle of the ventricle was not
(Pearson correlation, P = 0.271). In T. scripta there was a
great amount of smooth muscle in the sinus venosus and
atria (Fig. 4) that represented 17.4 � 7.9% (mean � SD)
of total muscle area (Fig. 6A). Smooth muscle was
observed equally in the left and right atria, and appeared
homogeneously within each atrium. Smooth muscle was
also relatively prevalent (7.1 � 1.5% total muscle area) in
C. senegalensis, a distantly related soft-shelled turtle
(Fig. 6A,C). In the other species, smooth muscle on atrial
trabeculae was sparser, although positive identifications
were made in all species except land tortoises

(T. hermanii and C. carbonaria Fig. 6D) and one of the
side-necked turtles, C. mccordi (Fig. 4). Notwithstanding,
smooth muscle was identified on the atrial septum in all
species except P. sinensis, in which a limited sample size
may have precluded finding it, although it was minimal
in P. subrufa and C. carbonaria (Fig. 4). In all species,
except for T. scripta and C. senegalensis, the total contri-
bution of smooth muscle averaged less than 2% total mus-
cle area in the atria (including atrial septum) (Fig. 6A).
In T. scripta, smooth muscle was also observed on ventric-
ular trabeculae (Fig. 4), although this was clearly very
much sparser than in the atria so was not the main focus
of our study. Traces of smooth muscle were also found in
the C. senegalensis and C. serpentina ventricle.

Given the body mass range we encountered within and
between species, in T. scripta we established that there was
no relationship between body mass and atrial smooth mus-
cle area (R2 = 0.15, P = 0.44) (Fig. 7). Also, in T. scripta there

Fig. 6. The interspecific variation in atrial smooth muscle in turtles. (A) Mean area of smooth muscle as a percentage of total muscle (smooth + cardiac
muscle) area in eight species. Values are means � SD. (B–D) Red represents cardiac Troponin I and green represents smooth muscle actin, as detected
by fluorescent immunohistochemistry. (B) A prominent case of atria smooth muscle in T. scripta. (C) Intermediate levels of smooth muscle seen in
C. senegalensis. (D) Near absence of atrial smooth muscle in C. carbonaria. For B–D, scale bars are 1 mm. a, atrium; as, atrial septum; pv, pulmonary
vein; sv, sinus venosus; v, ventricle; oft, outflow tract.
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was no relation between the amount of SMA in the sinus
venosus and the atria (in proportion to the total amount of
smooth and cardiac muscle, R2 = 0.02). However, the propor-
tional amount of SMAwas greater in T. scripta compared to
the other turtles in the sinus venosus (unpaired two-tailed
T-test, unequal variance assumed, P < 0.001) and in the
atria (unpaired two-tailed T-test, unequal variance
assumed, P < 0.001) but not in the ventricle (unpaired two-
tailedT-test, unequal variance assumed,P = 0.939).

DISCUSSION

The cardiac output of T. scripta is dramatically reduced
when the smooth muscle of the atria is induced to contract
(Joyce et al., 2019) and we demonstrate here an extensive
layer of smoothmuscle in atria of this species.We also reveal
large amounts of smooth muscle in the sinus venosus, the
cardiac chamber between the systemic veins and the right
atrium (Jensen et al., 2014, 2017; Icardo, 2017), and we con-
sider it likely that contraction of the smooth muscle of both
chambers could reduce cardiac filling by impeding venous
return. Cardiac filling may also be limited by reduced com-
pliance of the chamber walls. From a functional point of
view, there are least two similar adaptations to altering
venous return among vertebrates. Diving mammals have a
vena caval sphincter that may impede venous return during
diving bradycardia (Harrison and Tomlinson, 1956; Elsner
et al., 1971; Blix, 2018; Lillie et al., 2018) and some terres-
trial snakes have a “corkscrew” caval vein that may facili-
tate venous return during gravitational challenges such as
during climbing (Lillywhite, 1987; Conklin et al., 2009). In
consistent with earlier descriptions (Shaner, 1923; Robb,
1952), smooth muscle was sparse but consistently identified
in the ventricle of T. scripta (and minute amounts were
found inC. senegalensis andC. serpentina).

Smooth Muscle in the Atria of Turtles

Our results suggest that (nonvessel) cardiac smooth mus-
cle appeared early in turtle evolution, possibly in the sinus
venosus before other chambers, as it was observed, at least in
small amounts, in representatives across the turtle phylog-
eny, including side-necked turtles (Pleurodira) that diverged
from other turtles over 150million years ago (Crawford et al.,
2015; Shaffer et al., 2017). It was not, however, observed in
other reptiles, including crocodilians or birds, which as
archosaurs represent the closest living relatives to turtles
(Chiari et al., 2012; Crawford et al., 2012, 2015; Fong et al.,
2012). This accords with our earlier observation on the lack
of tonus waves in atrial strips from crocodilians, lizards, or
snakes (Galli et al., 2006; Joyce et al., 2014).

The atrial smooth muscle was particularly extensive in
T. scripta, a species in the family (Emydidae) in which it was
first described and detailed (Fano, 1887; Bottazzi, 1906;
Gruber and Markel, 1918a; Shaner, 1923). Although we only
studied one Emydid species in our phylogenetic survey, the
extensive functional data suggest that atrial smooth muscle
is well developed across this family as tonus waves are preva-
lent in atrial preparations species in both major subfamilies
(Emydinae, e.g., E. orbicularis; Fano, 1887) (Deirochelyinae,
e.g., T. scripta; Joyce et al., 2014). Even in T. scripta, smooth
muscle was sparse in the ventricle, which concords with
Shaner’s (1923) anatomical description, and the fact that
Fano only observed ventricular tonus thrice in over 100 exper-
iments (Fano, 1887). It is surprising that tonus waves have
been reported in C. serpentina (Pereira, 1924), including in
the ventricle (Blinks and Koch-Weser, 1963), given its sparse
distribution, although the earlier descriptions in this species
were vague. Our anatomical data consolidate the absence of
atrial tonus in land tortoises (Testudinidae) (Gaskell, 1900).

Smooth Muscle in the Hearts of Other
Vertebrates

The phylogenetic distribution of atrial smooth muscle
within the hearts of nonreptilian vertebrates remains some-
what enigmatic. Bottazzi (1897)) provided a description of
atrial tonus in anuran amphibians (Bufo viridis and
Pelophylax esculentus), but these findings received little sub-
sequent attention and were not independently verified
(Blinks and Koch-Weser, 1963). Although we were able to
see smoothmuscle in the sinus venosus of bothX. laevis and
R. marinus, we did not locate smooth muscle in the atria.
This is consistent with previous functional studies on iso-
lated atrial preparations in these two species which did not
report on tonus waves, even upon treatment with adenosine
triphosphate (ATP) or acetylcholine (O’Donnell and
Wanstall, 1982; Meghji and Burnstock, 1983; Minerds and
Donald, 1997), which certainly activates the smooth muscle
tones in atrial preparations from turtles (Fano, 1887; Joyce
et al., 2014). Furthermore, although SMA is expressed tran-
siently in the embryonic heart ofX. laevis, no expressionwas
found in the adultX. laevis heart (Saint-Jeannet et al., 1992;
Warkman et al., 2005; Barillot et al., 2008).

We did, nevertheless, verify that human atria contain
traces of smooth muscle (Nagayo, 1909; Douglas et al., 2006;
Park et al., 2013). We cannot speculate on its possible func-
tion, but human atrium does not appear to exhibit tonus
waves (Meyer et al., 1996; Maier et al., 2000), including after
exposure to acetylcholine (Nadler et al., 2011), thus we do not
necessarily suggest it is functionally equivalent to atrial

Fig. 7. There was no significant relationship between atrial smooth
muscle (% area of total muscle) and body mass in Trachemys scripta
(linear regression).
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smooth muscle in turtles. It nevertheless demonstrates that
atrial smooth muscle, per se, may not be unique to the turtle
lineage.

Pulmonary Veins of Turtles

Extensions of left atrial myocardium that partially
envelop the pulmonary veins, known as “myocardial
sleeves,” have been well described in mammals and birds
(Nathan and Gloobe, 1970; Roux et al., 2004; Kroneman
et al., 2019), but were not seen in corn snakes or anole liz-
ards (Jensen et al., 2013). Where we could clearly observe
the pulmonary veins in T. scripta (Fig. 6B), it appeared
that there may be a small quantity of myocardium sur-
rounding the vein, but this is not well developed.

CONCLUSIONS

In summary, our comparative study indicates that atrial
smooth muscle evolved early in the order of Testudines. The
atrial smooth muscle is particularly scarce in terrestrial tor-
toises, but well developed in some aquatic species, which
lends tentative support to our hypothesis that it may be
involved in the regulation of cardiac output of turtles during
diving. All of the turtles investigated exhibited both smooth
muscle and cardiac muscle in the sinus venosus, which may
also be able to contribute to the regulation of cardiac output.
A mixture of smooth and cardiac muscle in the sinus
venosus was also evident in the anuran amphibians and
has previously been reported in fish (Yamauchi, 1980;
Icardo, 2017), so we believe it likely represents the ancestral
state in vertebrates. Although human atrial tissue also con-
tains traces of smooth muscle, there is little indication that
it is functionally homologous to that in turtles.
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