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TranSPHIRE: automated and feedback-optimized
on-the-fly processing for cryo-EM

Markus Stabrin@® ', Fabian Schoenfeld!, Thorsten Wagner® ', Sabrina Pospich® !, Christos Gatsogiannis® ' &

Stefan Raunser® 1®

Single particle cryo-EM requires full automation to allow high-throughput structure deter-
mination. Although software packages exist where parts of the cryo-EM pipeline are auto-
mated, a complete solution that offers reliable on-the-fly processing, resulting in high-
resolution structures, does not exist. Here we present TranSPHIRE: A software package for
fully-automated processing of cryo-EM datasets during data acquisition. TranSPHIRE trans-
fers data from the microscope, automatically applies the common pre-processing steps, picks
particles, performs 2D clustering, and 3D refinement parallel to image recording. Importantly,
TranSPHIRE introduces a machine learning-based feedback loop to re-train its picking model
to adapt to any given data set live during processing. This elegant approach enables
TranSPHIRE to process data more effectively, producing high-quality particle stacks. TranS-
PHIRE collects and displays all metrics and microscope settings to allow users to quickly
evaluate data during acquisition. TranSPHIRE can run on a single work station and also
includes the automated processing of filaments.
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ingle particle electron cryomicroscopy (cryo-EM) has suc-

cessfully established itself as a prime method to determine

the three-dimensional structure of macromolecular com-
plexes at near-atomic resolution!-2, The technique has therefore
the potential to become a key tool for drug discovery research3.
However, single particle analysis (SPA) studies still require large
amounts of processing time, expert knowledge, and computa-
tional resources. With the number of modern high-throughput
microscopes growing rapidly, there is an urgent demand for a
robust, automated processing pipeline that requires little to no
user intervention. This need is felt especially in the field of drug
discovery. Automated data processing does not necessarily aim
at the highest possible resolution. However, resolutions at 3-4 A
already allow identifying the position of small molecules in the
binding pocket of a protein, especially when ligand-free high-
resolution structures are available as exemplified by previous data
of the TRPC4 channel and actin filaments*>. Consequently,
automated processing especially facilitates the effective screening
of many drug candidates. Recent advances in both hardware and
software, which led to the first 1.2 A resolution structures®”’,
further demonstrate the potential of cryo-EM for drug discovery
research in the near future.

In many cases, data sets that were recorded for several days and
can include 10,000-20,000 movies turn out to be unusable for
high-resolution structure determination during subsequent data
processing. It is therefore necessary for users to obtain feedback
on the quality of their data immediately during recording. This
enables them to decide whether or not to continue a session,
adjust any of the acquisition parameters at the microscope, and
compare different grids. This can only be achieved when pro-
cessing the data in parallel to data acquisition. A fully-automated
pipeline requires streamlined data transfer, automated pre-
processing and processing workflows, free of any user bias.

Several software packages partially address these issues. For
example, CryoFLARES, Focus, Scipion!®!1, Appion!!, WARP!2,
RELION IT13, and CryoSPARC Live perform live analysis and
processing in parallel to data acquisition. This is done by chaining
together the different tools of the single particle analysis pipeline,
but it lacks any automatic data optimization. The Cianfrocco lab
recently published a deep learning-based pre-processing routine
that can filter particles of insufficient quality automatically. Their
approach is based on 2D classification results analyzed by a deep
learning based classifier'¥. However, this tool has not been
designed to run live during data acquisition. The Liu lab went one
step further and published a self-supervised workflow for particle
picking!®. Their software automatically selects 2D class averages
based on the %/Res value provided by Relion!® and uses them to
re-train their model for particle picking. Although significant
progress has been made towards both automatic data optimiza-
tion and on-the-fly processing, a fully automated SPA pipeline
that facilitates data analysis and data optimization in parallel to
data acquisition is still missing.

Here we present TranSPHIRE, a fully automated pipeline for
on-the-fly processing of cryo-EM data. It combines deep learning
tools for particle picking and 2D class selection with a novel,
feedback-driven approach to re-train the integrated crYOLO
particle picker!” during ongoing pre-processing. This allows
TranSPHIRE to perform GPU accelerated 2D classification to
provide high-quality 2D class averages and, subsequently, 3D
reconstructions from clean data. This gives experimentalists the
means to quickly evaluate both the quality of their data sets as
well as their chosen microscope settings during data acquisition.
A combination of new and improved tools allows TranSPHIRE to
provide users with the strongest early results in the shortest
amount of time, without the need for user intervention. While
TranSPHIRE can run on a single GPU machine, it additionally

offers the possibility to outsource the computationally expensive
3D reconstructions via SSH connection to a separate machine or
computer cluster. Importantly, it allows users to perform auto-
mated high-throughput on-the-fly screenings for different buffer
conditions or ligands of interest as well as to fine-tune the
workflow for the respective target-protein and perform digital
purification during image acquisition.

Results

General setup, functionality, and layout of TranSPHIRE.
TranSPHIRE is an automated pipeline for processing cryo-EM
data sets (Fig. 1). It is developed in Python 3 to run on Linux, and
is available online for free. TranSPHIRE performs parallelized
data transfer and flexibly integrates a range of commonly used
pre-processing tools, as well as the advanced processing tools of
the SPHIRE package!8. Using these tools, TranSPHIRE imple-
ments a fully-automated pipeline to process cryo-EM data on-
the-fly during data acquisition. TranSPHIRE is designed to allow
users to make the best use of their available resources by prior-
itizing data analysis, presenting early results, and using machine
learning tools to identify and process only those parts of the data
that contribute to high-quality results.

TranSPHIRE is controlled via an easy-to-use GUI that allows
users to set up a session, and choose and configure the desired
tools to use (Supplementary Fig. 1 and Table 1). For pre-
processing, the TranSPHIRE pipeline integrates MotionCor2!®
and Unblur?® for beam induced motion correction with dose
weighting; as well as CTFFIND42!, CTER?2, and GCTF?3 for CTF
estimation. This modularized integration is entirely parameter-
ized, allowing experimentalists to both choose their preferred
tools as well as configure them as needed—all without leaving the
TranSPHIRE GUI Available parameters are sorted by level of
usage (“main”, “advanced”, and “rare”) to highlight and help
identify the most commonly adjusted parameters for each tool.

During the session, TranSPHIRE automatically parallelizes the
batch-wise processing of incoming micrographs, outsources
computationally expensive steps to available GPUs, and produces
preliminary 2D class averages and 3D reconstructions based on
the most recently processed batch of data (Fig. 2 and
Supplementary Fig. 2). Specifically, every process type, e.g.
motion correction, CTF estimation, and particle picking, runs
in parallel to each other in separate threads. Every thread
monitors its respective queue and starts processing of new data
upon its arrival. Afterwards, the output data is put into the queue
of the consecutive processing step. To allow for efficient usage of
the available resources, an optimized queueing system has been
developed within TranSPHIRE to distribute the jobs which run
on GPUs (Table 1). This avoids oversubscription of the limited
GPU memory. In contrast, oversubscription of available CPU
resources does usually not lead to a loss in performance, therefore
the task of CPU resource scheduling is left to the operating
system. In addition to the actual computation, each thread
performs organizational tasks like creating the command of the
process or to check the output for errors and values that are
outside of the specified range. Since these tasks are sometimes
time consuming but not computational intensive, the number of
assigned threads for all tasks within TranSPHIRE usually exceeds
the maximum available CPUs of the respective workstation to run
at maximum speed (also see Fig. 2).

Through this optimal distribution of processes, TranSPHIRE
runs on-the-fly for a wide range of data acquisition settings using
a single workstation (Supplementary Fig. 3; see “Methods” for
details about hardware). Moreover, TranSPHIRE can catch-up
with the speed of the acquisition after the initial delay due to the
feedback loop (see below) for routinely used data acquisition
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Fig. 1 The TranSPHIRE pipeline and the SPHIRE backend. a Upper register (solid line): Overview of the integrated TranSPHIRE pipeline and all automated
processing steps. The pipeline includes file management tasks, i.e., parallelized data transfer, file compression, and file backup (gray); 2D processing, i.e.,
motion correction, CTF estimation, particle picking, 2D clustering, and 2D class selection (turquoise); and 3D processing, i.e., ab initio 3D reconstruction
and 3D refinement (red). Additionally, the pipeline includes an automated feedback loop optimization to adapt picking to the current data set during
runtime (purple). Lower register (dotted line): The SPHIRE software package forms the backend for TranSPHIRE and offers the tools used for 2D and 3D
processing. SPHIRE includes additional tools for advanced processing, such as heterogeneity analysis and local resolution determination. b The TranSPHIRE
feedback loop. Gray arrows indicate the flow of data processing. Purple arrows indicate the flow of the feedback loop. Left (input): Micrographs are initially
picked using the crYOLO general model. Center (processing): Particles are picked and extracted. Once a pre-defined number of particles have been
accumulated, the pipeline performs 2D classification; the resulting 2D class averages are labeled as either “good” or “bad” by Cinderella. Class labels and
crYOLO box files are then used to re-train crYOLO and adapt its internal model to the processed data. In the next feedback round this updated model is
used to re-pick the data. Right (output): After five feedback rounds, the complete data set is picked with the final optimized picking model and 2D classified
in batches. For every batch a particles stack of “good” particles is created and available for 3D processing.

schemes (Supplementary Fig. 3c). Thus, initial 2D class averages
and 3D reconstructions are available within a few hours after
starting the data collection (Fig. 2 and Supplementary Fig. 3).

Throughout the processing, TranSPHIRE collects all data
quality metrics produced by its individual tools, links them with
the relevant micrographs where appropriate, and presents them
front and center in its GUI (Supplementary Fig. 1).

Optionally, notifications for early milestones such as 2D
class averages and preliminary 3D maps, can also be sent via
email. These features enable experimentalists to both identify
and address any issues as soon as they surface during

data acquisition, without requiring constant user supervision.
Additionally, all results produced by the integrated tools
during processing are also copied in parallel to the pre-defined
workstation and backup locations (Supplementary Figure 1).
To support interoperability with existing packages, all pre-
processing steps until particle picking support the file formats
used in both SPHIRE and RELION; for later processing
steps the SPHIRE package!8 provides utilities to easily convert
SPHIRE files into RELION!® star files, which can then be
used for further processing in many other cryo-EM
software tools.
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Transfer and pre-processing. Once a session starts, TranSPHIRE
automatically detects and transfers new micrographs from the
camera computer of the microscope (Fig. 1 and Supplementary
Fig. 2). These data are moved in parallel to several, user-specified
locations e.g. a work station or cluster for processing, and a
backup storage server. In case of the latter, TranSPHIRE also
automatically compresses the data to preserve storage space. Copy
locations may also include additional spaces such as transportable
hard discs. If desired, TranSPHIRE further renames files, and
deletes images from the camera workstation in order to free up
more space to enable continuous data collection. It also extracts
meta data, such as acquisition time, grid square, hole number and
coordinates, spot scan, and phase plate position from .xml files

Table 1 Hardware utilization for software tools supported by
TranSPHIRE.
Task Program name GPU CPU Reference
Motion correction  Unblur X 20
MotionCor2 X 1
CTF estimation CTER X 22
GCTF X 3
CTFFIND4 X 2
Particle picking crYOLO X 17,34
2D classification GPU ISAC X Based on
ISAC24
2D class selection  Cinderella X 25
3D ab initio RVIPER X 18
reconstruction
3D refinement MERIDIEN X 18
Utilities programs ~ SPHIRE X 18
EMAN2 X 27
IMOD X 35
List of all currently supported software tools indicating if the given software runs on CPUs or
GPUs within the TranSPHIRE pipeline. Tools are grouped corresponding to the pipeline task they
are utilized for.

Data acquisition

provided by EPU (FEI Thermo Fisher Scientific) or .gtg files
provided by Latitude S (Gatan) (for details see Table 2).

During the ongoing data transfer, any data that has already
been copied is pre-processed in parallel (Fig. 2 and Supplemen-
tary Fig. 2). During setup, users can choose to perform motion
correction using either MotionCor2!® or Unblur?’. While motion
correction is performed, TranSPHIRE presents all relevant
metrics, such as the average shift per frame, or the overall shift
per micrograph (Supplementary Fig. 1). For CTF estimation,
users can set up TranSPHIRE to use either CTFFIND42],
CTER??, and GCTF?3. Depending on whether or not CTF
estimation on movies is activated in TranSPHIRE, CTF
estimation is performed in parallel to motion correction or
afterwards (Supplementary Fig. 2). The metrics extracted and
displayed by TranSPHIRE include defocus, astigmatism, and the
resolution limit (Supplementary Fig. 1). Combined with the
information gathered during motion correction, these values
allow experimentalists to assess the performance and align-
ment of the microscope during acquisition, and adjust any
thresholds to automatically discard low-quality micrographs as
necessary.

For particle picking the TranSPHIRE pipeline integrates
crYOLOY, our state of the art deep learning particle picker.
During picking, TranSPHIRE displays the particles picked per
micrograph, which allows users to assess the picking performance
and overall sample quality (Supplementary Fig. 1).

Once a fixed threshold of picked particles is reached
(Supplementary Fig. 4; also see “Methods”), TranSPHIRE
launches 2D classification using a GPU accelerated version of
ISAC2%* (Fig. 1). ISAC2 limits the number of class members to
spread the given particles across multiple classes which prevents
individual classes from growing too large. This results in sharp,
equal-sized, and reproducible classes that contain all possible
orientations exceeding the minimum class size. They enable
experimentalists to reliably assess particle orientations and overall
quality, and help to identify possible issues such as preferred
orientations or heterogeneity.

Data transfer
Data compression

Meta data import

Motion correction

CTF estimation

Particle picking

2053 micrographs, 188 micrographs per hour

8 parallel threads

9 parallel threads

6 parallel threads

6 parallel threads

6 parallel threads

Particle extraction 14h [ ] 6 parallel threads
2D classification f Il B B B |
2D class selection | | | | | | | |
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Fig. 2 Timeline of the TranSPHIRE pipeline. Timeline depicting the parallel execution of the processes of the TranSPHIRE pipeline. Timings are based on a
Tc holotoxin data set consisting of 2053 micrographs, each containing 36 particles on average, collected at a speed of 188 micrographs per hour (K2 super-
resolution, 40 frames). TranSPHIRE ran on-the-fly up to the creation of an ab initio 3D reconstruction using default settings. Important milestones are

denoted in black: a first 2D class averages produced after 1.4 h; b end of the feedback loop after 7.3 h; ¢ ab initio 3D reconstruction after 9.1 h; and d final 3D
reconstruction of the first batch of particles after 15.5 h. Due to the internal scheduling of modern operating systems, and because not every TranSPHIRE
thread is always working to capacity, the number of available CPUs (12/24 hyperthreading) and assigned TranSPHIRE threads (45) is not identical, and

does not limit the speed of the computations.
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Fig. 3 Processing the TRPC4 membrane channel using a deliberately hampered picking model. a To simulate low quality picking, only 10% of the initial
crYOLO picks were used while the remaining 90% were re-positioned randomly (left). After the feedback loop crYOLO reliably picks the TRPC4 particles
(right). b Total amount of 2D class averages produced in the first iteration of the feedback loop (top) and 21 representative averages produced in the final
iteration of the feedback loop (bottom). ¢ Progression of the number of particles labeled “good” when applying the intermediate picking models of

the feedback loop to a fixed subset of 500 micrographs. The curve flattens out in the final iterations, indicating the convergence of the feedback

loop optimization. d Fourier shell correlation (FSC) curves of the individual 3D reconstructions computed from particles labeled “good” (also see ¢).

e Representative a-helix (amino acids 600-615) illustrating the improvement of the density when using the final (bottom) compared to the initial (top)
picking model. f 3D reconstruction of TRPC4 computed from 500 micrographs using the optimized picking model.
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Table 2 Overview of all meta information extracted by
TranSPHIRE.

Meta data

Stage coordinates
Microscope defocus
Applied defocus

Pixel size

Exposure time
Number of fractions
Image dimensions
Microscope voltage
Microscope dose
Phase plate information
Super resolution mode
Gridsquare number
Hole ID

Spotscan ID
Acquisition time

Beam tilt information

EPU Latitude S

XX X X X X X

XXX XXX XX XXXXXXXX
X X X X

List of meta data automatically extracted by TranSPHIRE during data acquisition using either
EPU (FEI Thermo Fisher Scientific) or Latitude S (Gatan).

The 2D class averages are then sorted by Cinderella2, our
integrated deep learning tool for 2D class selection. Cinderella
labels the given 2D classes as either “good” or “bad” and
determines which class averages and, thereby, particles are used
for further processing. This results in an automatic cleaning of the
data and allows TranSPHIRE to process only the relevant subset
of a given data set, thereby dramatically lowering the amount of
data processed by the computationally expensive steps of 3D
reconstruction and refinement. Since a working Cinderella model
is essential for the success of the following feedback loop, it is
important to correct an inadequate Cinderella model as quickly as
possible. For this purpose, a built-in tool to re-train Cinderella is
available within the TranSPHIRE GUI which enables the user to
iteratively adjust the model to the specific needs of the data at
hand. Specifically, all 2D class averages that have been generated
up to this point can be manually labeled as either “good” or “bad”
and then used for re-training Cinderella. A reliable model can
usually be produced from 40 manually labeled classes, that should
be approximately evenly distributed into “good” and “bad”. As
soon as the re-training is complete, TranSPHIRE shows a preview
of the 2D selection using the new Cinderella model. The model
can then be further refined if required or green-lit to be used in
the TranSPHIRE pipeline. For data sets that require re-training of
Cinderella, it is usually sufficient to re-train once on the very first
set of obtained 2D class averages. However, further re-training
can be performed if deemed necessary by the user to adapt to the
2D class averages of higher quality produced in later stages of the
feedback loop. In case of sample heterogeneity, which cannot be
accounted for on a 2D level, it is important to run a 3D sorting
procedure after data acquisition. An FAQ section for common
pitfalls and problems is available in the TranSPHIRE wiki
(https://transphire.readthedocs.io).

Feedback loop to optimize particle picking. For any cryo-EM
pipeline the ability to reliably perform high-quality picking irre-
spective of the data at hand is essential. This poses a challenge
when processing is to be automated, as this immediately excludes
any user intervention such as manual inspection of the picking
results. The latter is especially relevant if a sample is unknown to
the picking procedure, or is otherwise difficult to process, e.g. due
to contamination or interfering conformational states — issues

that usually need to be identified by a qualified expert before
processing can continue.

TranSPHIRE solves these issues by introducing a machine
learning-based feedback loop that repeatedly re-trains the fully-
integrated crYOLO!7 deep learning particle picker during data
acquisition to adapt picking to the given data set (Fig. 1b). This
enables crYOLO to specifically target those particles that end up
in stable 2D class averages, while, at the same time, learning to
disregard particles that do not. First, incoming motion corrected
micrographs are forwarded to crYOLO for picking. Once a batch
of 20,000 picked particles has been accumulated, it is handed over
to our GPU accelerated version of the 2D classification algorithm
ISAC2%* (Supplementary Fig. 3). Here we determine which
particles can be used to create stable 2D class averages, and reject
the particles that cannot be accounted for. The newly produced
2D class averages are given to our deep learning tool Cinderella®?,
which labels each class average as either “good” or “bad”. At this
point, the particles of the “good” classes are used to re-train
crYOLO and update its internal model. Specifically, we randomly
select a maximum of 50 micrographs that contain particles that
ended up in the “good” classes for the re-training (for details see
“Methods™). Once the training and thus the first feedback round
has completed, processing re-starts using the optimized picking
model (Fig. 1b).

The TranSPHIRE feedback loop iterates five times, which has
proven sufficient to achieve convergence in our experiments. As a
consequence, this is not repeated for the remainder of the data
acquisition. Re-training crYOLO!7 to become increasingly more
proficient at targeting particles that end up in “good” classes has
the additional benefit of trimming down the overall size of the
data set. Though the pre-processing of cryo-EM data is already
time consuming, the following 3D refinement requires even more
computational power. While it is usually customary to process as
much data as possible, the computational cost of 3D refinement
usually does not scale linearly, and such an approach will not be
sustainable in the near future. This limitation in scalability is
further exacerbated by the fact that image acquisition speeds and
sizes of data sets are both growing rapidly. Therefore, the aim
should be to process as little and as homogeneous data as
possible, without harming the quality of the final reconstruction.
Fortunately, it is known that cryo-EM data sets contain a large
amount of unusable data that can be safely discarded—if we have
a way to reliably ensure that we keep those data that we are
actually interested in. The TranSPHIRE feedback loop offers this
functionality and provides quality in quantity.

Ab initio 3D model reconstruction and 3D refinement. To
compute a 3D reconstruction, the particles included in all classes
labeled “good” by Cinderella are extracted and form a clean, high-
resolution particle stack. If there is no initial 3D reference pro-
vided to TranSPHIRE, the pipeline waits until at least 200 (by
default) “good” classes have been accumulated. The respective 2D
class averages are then used to create a reproducible, ab initio 3D
reconstruction using SPHIRE RVIPER!8:26 (Fig. 1). This provides
a first view of the structure of the target protein and a first
impression of the conformational state. In case an external
starting model, either map or atomic model, is already available,
the SPHIRE and EMAN2 package!827 provides straight-forward
tools to convert, rescale and clip it to the desired box and
pixel size.

The initial 3D reference is then used by TranSPHIRE to
initialize the 3D refinement using SPHIRE MERIDIEN (Fig. 2).
While the initial map is computed only once, a new 3D
refinement is started every time another set of 40,000 (by default)
“good” particles has been accumulated.
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Table 3 Summary of the feedback loop statistics for the TRPC4 data.

Feedback round Good classes Good particles Picks/Mic Good picks/Mic Resolution Relative good picks
2 28 2504 20 5 4.71 0.25
3 236 22,154 104 44 3.65 0.43
4 349 32,513 132 65 3.60 0.49
5 355 33,415 152 67 3.60 0.44
6 361 34,018 147 68 3.55 0.46
6+ T 0.257 331 31,237 14 62 3.6 0.55

for 500 micrographs.

For every feedback round as well as the final run after optimization of the picking threshold (6 + T x.xx) the number of classes labeled “good” by Cinderella; the number of particles included in these
classes; the total number and the number of good particles picked per micrograph; the final resolution of the 3D reconstruction; and the relative amount of good particles (highlighted in bold) are listed

Note that in contrast to SPHIRE RVIPER, which only uses the
first 2D class averages, SPHIRE MERIDIEN uses all particles
subsumed by the last batch of “good” particles. The fully-
automated creation of an initial 3D map and continuous
production of a series of refined reconstructions based on that
latest data enables TranSPHIRE to present high-resolution
structures already during data acquisition.

This enables for a more detailed, on-the-fly evaluation by the
user, such as analyzing the conformational state and/or confirm-
ing whether and where a ligand is bound if a ligand-free high-
resolution reference structure is present. By providing a series of
reconstructions—one for every batch, TranSPHIRE also offers a
time-resolution of the data set, enabling experimentalists to gauge
the quality of their data over time throughout data acquisition.

With the following three experiments we illustrate the
capabilities of TranSPHIRE to automatically adapt to unknown
data, make use of prior knowledge to selectively target the
conformational subpopulation within a sample and process
filamentous data.

Learning to pick a membrane channel without user interven-
tion. Similar to crYOLO, many modern particle picking pro-
grams are based on machine learning, where an internal model is
trained to recognize particles within micrographs!>28:29. While
this method features an inherent capacity to generalize to unseen
data sets, this ability is limited. Therefore, reliable picking can
usually not be guaranteed out of the box when samples differ too
much from the original training data of the network. Samples
might also be of unusually low contrast, or an unknown form of
contamination is encountered. While such issues can be over-
come by adding the problematic data to the training set, this
requires manual user intervention on multiple levels. First, the
insufficient picking capability has to be detected; second, an
experienced experimentalist has to pick a small amount of
training data by hand; and third, the network has to be re-trained
manually.

The TranSPHIRE feedback loop resolves this issue and entirely
foregoes the need for user intervention even when facing data that
is either unknown to the picking model or yields insufficient
picking results for any other reason. To demonstrate this ability,
we processed a data set of the TRPC4 membrane protein channel
with the TranSPHIRE feedback loop using a picking model
without any prior knowledge of this protein (Fig. 3). Specifically,
to ensure the sample was unknown to crYOLO at the start of the
feedback loop, we removed all four TRP channel data sets
normally included in the training data of the crYOLO general
model. Additionally, in order to simulate a bad generalization of
crYOLO we randomized 90% of all picks in the first iteration of
the feedback loop (Fig. 3a). This was done by replacing 90% of the
particle boxes determined by crYOLO with randomly positioned
boxes within the same micrographs. In combination, these
measures ensured that the initial picking results were almost

entirely unusable and successful re-training had to take place in
order to enable further processing of the data.

Despite the bad starting point, by the final feedback loop
iteration the repeatedly re-trained model has successfully learned
to pick the previously unknown TRPC4 particles resulting in
high-resolution 2D class averages (Fig. 3a, b). An evaluation of
the performance of the feedback loop on a fixed subset of 500
micrographs (see Methods for details), illustrates that the number
of “good” particles increases sharply within the early iterations of
the feedback loop from an initial 25% of particles to a stable value
of ~50%, (Table 3 and Fig. 3c) and a final resolution of 3.6A
(FSC = 0.143). This increased ability to identify a greater number
of usable particles on the same subset of micrographs is also
reflected in the map quality and achieved resolution when using
the intermediate crYOLO models produced during the individual
feedback rounds to process the fixed set of 500 micrographs
(Fig. 3d-f).

This experiment furthermore demonstrates the ability of
crYOLO to adapt to unknown data even if only sparse training
data is available. In the initial round of the feedback loop a mere 5
particles per micrograph ended up in “good” classes on average —
and, consequently, are all that was available to re-train the picking
model (Table 3).

In summary, the TranSPHIRE feedback loop is able to
automatically optimize the internally used picking model and
provide reliable, high quality picking results even when proces-
sing challenging samples that initially are barely recognized by the
model. We have shown that in such a case, after five feedback
rounds, crYOLO is able to pick the TRPC4 membrane protein to
completion, without requiring the user to continuously monitor,
let alone disrupt the ongoing data processing. The feedback loop
optimization is fully-integrated into the TranSPHIRE pipeline
and works entirely automated out of the box. Its capabilities
extend to difficult data sets such as membrane proteins, and
enable advanced processing methods, such as targeting specific
conformational states, or processing filamentous data sets, as
demonstrated in the following.

Targeting a conformational state using prior knowledge. A
basic assumption of most algorithms currently used to process
cryo-EM data is that all particles in a data set are projections of
the same structure, hidden behind a curtain of noise. In reality,
however, cryo-EM samples are often more complex, and can
contain multiple conformational states of the target structure,
impurities, and aggregates. Filtering such unwanted data and
selectively targeting only a subset of the structures found within a
sample is one of the fundamental issues in cryo-EM, and often
requires significant efforts to address and resolve.

The TranSPHIRE feedback loop offers a straightforward
solution to this issue by allowing the injection of additional
knowledge into the pipeline, either before or during runtime. This
enables users to incorporate and make use of information that is
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Fig. 4 Using prior knowledge to extract a pre-selected conformational state. a The processed data set contains the Tc holotoxin in both the pre-pore
state (left) and the more rare pore state (right). In this experiment, we specifically target the pore state. b Progression of the number of picked particles
(blue), those accounted during 2D classification (gray) and particles labeled “good” i.e. representing the pore state (green) when applying the intermediate
picking models of the feedback loop to a fixed subset of 500 micrographs. Initial picking is dominated by pre-pore state particles. This overhead is reduced
with each iteration, while the amount of picked pore state particle remains stable. ¢ Representative 2D class averages depicting the decrease of unwanted
classes (pore state or low quality; marked magenta) from an initial 68% in the first feedback round (left) to 26% after the last feedback round (right).
d Representative 2D class averages depicting the pore state as selected by Cinderella in the final iteration of the feedback loop. e 3D reconstruction of the
Tc holotoxin pore state computed from 500 micrographs using the final optimized picking model.

already available, as well as information that was just produced
during acquisition. Specifically, a set of 2D class averages of the
target structure can be used to train Cinderella?® to only
recognize these averages as representatives of “good” classes,
and, consequently, everything else as “bad”. If such averages are
available beforehand, Cinderella can be pre-trained; otherwise,
the feedback loop can be paused once the first set of 2D class
averages are produced in the TranSPHIRE pipeline and
continued after manual re-training of Cinderella. This additional
training step to embed additional knowledge into the TranS-
PHIRE pipeline enables us to steer the re-training of the picking
model during the feedback loop iterations. More precisely,
particles that end up in sharp classes depicting a different
particle, a subcomplex, and/or the target protein in the wrong
conformational state (for example) will now also be labeled as
“bad” by Cinderella, despite their high quality. During the
feedback loop, crYOLO will thus be taught to only focus on
particles that end up in quality classes depicting the wanted
particle or state, while, at the same time, reject anything else,
including sharp classes from an unwanted subpopulation.

To demonstrate the capability of the TranSPHIRE feedback
loop to use prior knowledge and target a pre-selected conforma-
tion, we processed a sample of the Tc holotoxin that contained
particles in two conformational states, namely the pre-pore and
pore state (Fig. 4a). Of these, we only targeted the pore state,
which is significantly more difficult to find as it only accounts for
~19% of the particles within the data set (Table 4 and Fig. 4b).
Cinderella was trained with 318 examples of “good” classes (side-
views of the pore state) and 664 examples of “bad” classes (views
of the pre-pore state and contamination). During the feedback
loop crYOLO was then re-trained with only those particle picks
that ended up in “good” classes showing views of the pore state.

To evaluate the performance of the feedback loop we used the
intermediate picking models produced during the individual
feedback rounds to separately process a fixed set of 500
micrographs once the feedback loop had finished (see Methods
for details). We observed a steady decrease of particles
representing the pre-pore state—that we are not interested in—
together with an initial rise and then level amount of pore state
picks (Fig. 4b and Table 4). While initially only 19% of the
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Table 4 Summary of the feedback loop statistics for the Tc holotoxin data.

Feedback round Good classes Good particles Picks/Mic Good picks/Mic Resolution Relative good picks
1 130 12,595 130 25 428 0.19
2 145 10,406 100 21 4.24 0.21
3 151 14,534 74 29 4.36 0.40
4 146 14,081 71 28 4.28 0.40
5 155 14,935 68 27 4.28 0.40
6 140 13,566 69 27 424 0.39
6+T 0.194 145 13,954 55 28 4.24 0.50

for 500 micrographs.

For every feedback round as well as the final run after optimization of the picking threshold (6 + T x.xx) the number of classes labeled “good” by Cinderella; the number of particles included in these
classes; the total number and the number of good particles picked per micrograph; the final resolution of the 3D reconstruction; and the relative amount of good particles (highlighted in bold) are listed

particles resembled the pore state, slightly more than 50% of all
picks ended up in 2D class averages depicting our targeted
conformation when using the final optimized picking model
(Fig. 4c, d). As in the previous experiment, the percentage of
relative good picks per micrograph steadily increases. Notably,
this happens while neither the number of good classes, nor the
number of good particles seem to follow suit (Table 4). This
means that our re-training efforts are working as intended: Over
the course of the feedback loop, crYOLO learns to discard quality
class averages of the pre-pore state that we are not interested in
and instead focus on picking the less common pore state.
Consequently, the amount of picked particles changes slowly,
while, at the same time, the relative amount of “good” particle
picks steadily increases, resulting in a 4.2 A (FSC=0.143) 3D
reconstruction of the pore state from no more than 500
micrographs (Fig. 4e).

Taken together, these results illustrate how additional knowl-
edge can be used to pre-train Cinderella, allowing TranSPHIRE to
steer the re-training of the picking model during the feedback
loop and to target a known subpopulation within the data. Using
a picking model optimized for a specific conformation offers a
two-fold advantage. First, reconstruction efforts will be more
effective, as we gain more particles of the subpopulation that we
are interested in. Second, reconstruction efforts will be more
efficient, as the rejection of particles that end up in “bad” classes
significantly shrinks the overall size of the data set. In our
example, we reduce the number of picked particles from an initial
total of 67,117 to a set of only 27,646 particles, without reducing
the achieved resolution or the number of pore state particles that
we are interested in (Fig. 4b). Any follow-up computations, such
as costly 3D reconstructions, benefit greatly from such a
reduction in data set size as it results in much more efficient
use of the available computational resources.

Automatic processing of filamentous proteins. Filamentous
proteins such as the actomyosin complex are notoriously difficult
to process. This is because their structure is by definition not
limited to a single element but rather forms a continuous strand
that both enters and exits the enclosing frame of any picked
particle image. Consequently, filamentous proteins are traced,
rather than picked, and overlapping segments have to be identi-
fied along each filament, while filament crossings and con-
tamination need to be avoided. In addition, filamentous
projections share a similar overall geometry which increases the
correlation between any two particles and interferes with align-
ment attempts during 2D classification. While there are several
programs available that implement manual filament
processing!®30-33 until now there has not yet been any cryo-EM
software package that offers the automated processing of fila-
mentous data sets.

With TranSPHIRE we introduce a comprehensive software
package for cryo-EM that includes the ability to automatically
process filamentous proteins utilizing methods of the SPHIRE
packagel®, While the actual processing is fully-automated, some
preparation is still needed when using the TranSPHIRE pipeline
to process filaments. Specifically, crYOLO needs to be trained to
pick filaments34, as these look fundamentally different from the
single particle complexes known to its default general model.
Additionally, Cinderella?> also needs to be trained with 2D class
averages of the filament in question. If such class averages are not
available initially, the feedback loop can be halted for re-training
Cinderella as soon as TranSPHIRE has produced them. Once the
models for the deep learning decision makers of the pipeline are
trained on the specific filamentous data, TranSPHIRE and its
integrated feedback loop are ready to automatically process the
respective filamentous data sets.

As an example of processing initially unknown filamentous
data, we chose an actomyosin complex. To further demonstrate
the ability of the feedback loop to adjust the picking to a specific
filamentous protein complex, we trained crYOLO with multiple
data sets of F-actin, which looks substantially different than the
actomyosin complex (Fig. 5a). Thereby, crYOLO learns to trace
filaments, but does not readily recognize actomyosin filaments
resulting in a weak initial picking performance (Fig. 5b, c).

As soon as the first 2D class averages became available, the
feedback loop was halted and a new Cinderella model was trained
manually. Afterward the feedback loop continued through its
default five iterations, automatically teaching crYOLO to identify
projections of the actomyosin complex. To evaluate the
performance of the feedback loop we separately processed a
fixed set of 100 micrographs using the intermediate picking
models produced during the individual feedback iterations (Fig. 5
and Table 5, see “Methods” for details).

Initially, a low confidence threshold of 0.1 (default) was used
for picking in order to gather enough training data (Fig. 5¢, d).
However, the amount of picked particles and the confidence in
the picks increased throughout the feedback loop (Fig. 5b, c).
Thus, the picking threshold was adjusted to the default value of
0.3 after the feedback in order to exclude low confidence picks of
contamination and filament crossings (Fig. 5b, d, e). Thereby, the
number of relative good particles could be increased from 50% to
76% (Table 5) resulting in few classes labeled “bad” (Fig. 5f). The
improvement is also visible when comparing the initial and final
3D reconstruction computed from the same set of 100
micrographs (Fig. 5g, h). Particularly, the final reconstruction of
44 A (FSC=0.143) is sufficient to identify a small molecule
bound to the filament, highlighting how TranSPHIRE can
simplify ligand screenings.

Using the feedback loop, TranSPHIRE offers the first cryo-EM
software package that is able to automatically process filamentous
data, even if the precise shape of a specific filament is initially
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Fig. 5 Ligand identification within an actomyosin complex. a Representative micrograph of the F-actin data used to train crYOLO. b Progression of the
number of “good"” particles per micrograph (blue) and in total (gray) when applying the intermediate picking models of the feedback loop to a fixed subset
of 100 micrographs. The dipping curve at the end indicates the desired loss of low-quality picks that are excluded when a higher picking threshold (0.3) is
used. ¢ Representative micrograph of the actomyosin complex highlighting the weak initial picking results when using the crYOLO model trained on F-actin
data (see a). d Particle picking performance on the same micrograph using the final picking model. While filaments are now traced much more effectively,
the model also picks unwanted filament crossings and contamination. e Increasing the picking threshold from 0.1 to the default value of 0.3 minimizes the
amount of false positive picks, while maintaining the desired filament traces. f Representative 2D class averages labeled “good” (top) and “bad” (bottom)
by Cinderella based on 100 micrographs and using the final model for picking. g 3D reconstruction of the actomyosin complex computed from 100
micrographs using the initial picking model. h 3D reconstruction computed from the same 100 micrographs using the final optimized picking model. The
resolution is sufficient to verify the binding of a ligand (circled).
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Table 5 Summary of the feedback loop statistics for the actomyosin complex.

Feedback round Good classes Good particles Picks/Mic Good picks/Mic Resolution Relative good picks
1 2N 9629 143 96 7.63 0.67
2 659 29,559 358 296 4.48 0.83
3 936 42,779 552 428 4.37 0.77
4 1016 45,849 639 458 4.54 0.72
5 1203 54,134 1098 541 4.32 0.49
6 n74 53,221 1073 532 472 0.50
6+T03 869 38,946 515 389 4.54 0.76

for 100 micrographs.

For every feedback round as well as the final run after optimization of the picking threshold (6 + T x.xx) the number of classes labeled “good” by Cinderella; the number of particles included in these
classes; the total number and the number of good particles picked per micrograph; the final resolution of the 3D reconstruction; and the relative amount of good particles (highlighted in bold) are listed

unknown to the pipeline. Moreover, TranSPHIRE now enables
experimentalists to produce an early 3D reconstruction with a
resolution sufficient to identify bound ligands and determine
whether or not their data is likely to yield a high-resolution
reconstruction—all within the time frame of hours and while
their data is still being collected at the microscope (Fig. 2 and
Supplementary Fig. 3). The automated processing greatly
simplifies the processing of filamentous samples in general and,
most importantly, facilitates the fast determination of multiple
structures of one filament decorated with different accessory
proteins or bound to ligands.

Discussion

In this paper, we present the streamlined TranSPHIRE pipeline
for automated, feedback-driven processing of cryo-EM data. It
fully-automates data transfer, pre-processing, and the creation of
a series of early reconstructions based on the most recently
processed data (Fig. 1a). At the same time, TranSPHIRE promi-
nently displays all relevant data evaluation metrics, updated in
real time (Supplementary Fig. 1), and offers the option to send
email notifications when issues are encountered or important
milestones—such as the first 2D class averages, or an initial 3D
reconstruction—have been reached.

We also introduce the TranSPHIRE feedback loop (Fig. 1b), a
machine learning-based method to optimize the internally used
particle picking model and adapt our native crYOLO picker to
any data set, even while it is still being collected at the micro-
scope. This allows TranSPHIRE to adjust to never before seen
data, as well as to avoid any issues that a cryo-EM sample might
include, such as unwanted proteins, low contrast, and/or different
kinds of contamination. The optimization of the picking model
performed by the feedback loop can further be guided by the
experimentalist in order to specifically select a subpopulation
within the data, such as a distinct conformational or
oligomeric state.

We demonstrate these capabilities of TranSPHIRE and its new
feedback loop by performing three distinct experiments, each
addressing a common issue in cryo-EM: First, we processed the
membrane protein TRPC4, after purposefully sabotaging our
particle picking to simulate processing a data set that is not only
unknown, but initially only barely provides enough useful picks
for training. Nevertheless, the TranSPHIRE feedback loop suc-
cessfully taught crYOLO to identify and pick the sought-after
particles without any need for user intervention or expert
knowledge input. When the final picking model was then used to
automatically compute a full reconstruction, we reached a reso-
lution of 3.6 A (FSC = 0.143), based on the data extracted from
no more than 500 micrographs (Fig. 3).

Second, we processed a sample containing the Tc holotoxin in
two different conformational states: The common pre-pore state,

and the significantly rarer pore state that only accounts for about
one-fifth of the available particles. In this experiment we injected
prior knowledge about the pore state into the pipeline by training
Cinderella - our deep learning tool to reject unusable 2D class
averages—to only accept class averages of this state. This directed
the re-training during the feedback loop and taught crYOLO to
focus on the rare pore state particles. As a result, we obtained a
picking model that was highly selective for only one conforma-
tional state while rejecting not only low-quality 2D class averages,
but also high-quality 2D class averages if they displayed the Tc
holotoxin in the conformational state that we were not interested
in (Fig. 4). This produced a particle stack that was not only
populated with an increased number of “good” particles, but also
contained less particles overall, as unwanted particles were
already rejected during particle picking. The final reconstruction
obtained a resolution of 4.2 A (FSC = 0.143). Such an optimized
stack means that any follow-up computations only have to deal
with relevant data, allowing for more efficient use of the available
computational resources.

Third, we processed a data set of an actomyosin complex to
demonstrate how the ability of TranSPHIRE to automatically
process cryo-EM data also extends to filamentous proteins. To
adjust the pipeline to the processing of filaments, we re-trained
both crYOLO and Cinderella in order to teach them about the
distinct visual properties of filamentous particles and how to
avoid any filament-exclusive pitfalls, such as filament crossings.
To specifically showcase the ability of the feedback loop to deal
with an initially unknown filament structure, we only taught
crYOLO about F-actin, which features a fundamentally different
appearance than the actomyosin complex. Cinderella was then
only trained with the initial 2D class averages that TranSPHIRE
produced during the first iteration of the feedback loop. Despite
the initial picking model only knowing about F-actin, Cinderella
was able to teach crYOLO about the actomyosin complex and the
final reconstruction reached a resolution of 4.4 A (FSC = 0.143),
using the data extracted from merely 100 micrographs (Fig. 5).

In summary, TranSPHIRE offers a fully-automated pipeline
that produces highly optimized particle stacks that allow for more
effective processing and more efficient use of any available
resources, both computational and human. Combined, these
features allow experimentalists to make the most of their limited
time at the microscope and to identify and address any issues as
soon as they surface.

Furthermore, TranSPHIRE produces early reconstructions of
proteins, even if initially unknown, thereby enabling experi-
mentalists to assess their data and identify the conformational
state of their protein or validate the binding of a ligand, if a
ligand-free, high-resolution reference structure is available, while
their data is still being collected. Hence, TranSPHIRE allows users
to perform automated high-throughput on-the-fly screenings for
different buffer conditions or ligands of interest.
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Methods

Hardware used to run TranSPHIRE. By default, TranSPHIRE runs on a single
machine, which can be combined with a separate workstation or computer cluster
to outsource computational power. For the majority of the results presented in this
manuscript, a single machine equipped with two Intel(R) Xeon(R) Gold 6128
CPUs (3.40 GHz), featuring 12 CPU cores each (hyperthreading 24); 192 GB of
RAM; and three GeForce RTX 1080 Ti GPUs was used. Only computationally
more expensive 3D reconstructions, both the initial ab initio reconstruction and the
3D refinements (for details see below), were outsourced to our local computer
cluster. There, calculations were performed on two nodes; each equipped with two
Intel(R) Xeon(R) Gold 6134 CPUs (3.20 GHz), featuring 32 CPU cores in total and
384 GB of RAM.

Software integrated into the TranSPHIRE pipeline. TranSPHIRE is a free of
charge, open-source software written in Python 3, which is available online
(https://github.com/MPI-Dortmund/transphire). The package can be easily
installed via the package manager of python PIP and detailed instructions are
available from the TranSPHIRE wiki (https://transphire.readthedocs.io).

Its fully-automated processing pipeline integrates several software packages and
is thereby highly flexible and adaptable. An initial integrity check and the
consecutive compression of every input stack to a LZW compressed tiff file is
performed using IMOD v4.9.83. Currently, TranSPHIRE supports several options
for motion correction (Unblur?? and MotionCor2!%) and CTF estimation
(CTFFIND?!, CTER??, and GCTF?3). For all consecutive 2D and 3D processing
steps, TranSPHIRE utilizes functions of the SPHIRE!® package including the deep
learning particle picker crYOLO'7, the 2D class selection tool Cinderella?> and a
new GPU accelerated version of the reliable 2D classifier ISAC2%4,

Results presented in this manuscript were generated with TranSPHIRE v1.4.50
and SPHIRE v1.4. Specifically, the pipeline consisted of the following modules: the
CUDA 10.2.86 version of MotionCor2 v1.3.01%; CTFFIND v4.1.13 for CTF
estimation?!; crYOLO v1.6 for particle picking!’; SPHIRE sp_window.py for
particle extraction!8; a GPU accelerated version (v1.0) of SPHIRE ISAC224 for on-
the-fly 2D classification (will be published elsewhere); SPHIRE Cinderella v0.52
for 2D class selection; SPHIRE sp_rviper.py!®2° for ab initio reconstructions and
finally SPHIRE sp_meridien.py'® or sp_meridien_alpha.py for the 3D refinement
of single particles or filaments, respectively.

The automated processing pipeline within TranSPHIRE. After pre-processing
the data i.e. data transfer and compression, motion correction and CTF estimation
(also see Supplementary Fig. 2) particles are automatically picked using the deep
learning, GPU-accelerated particle picker crYOLO!7. By using the general model,
which was trained on 63 cryo-EM data sets, crYOLO is able to pick previously
unseen particles. However, for filamentous data an initial picking model needs to
be provided by the user as the general single particle model does not know about
filaments. During the feedback rounds a picking threshold of 0.1 is used to facilitate
the picking of distinct proteins and features. At the end of each feedback iteration
crYOLO is retrained on particles that contributed to classes labeled “good” by
Cinderella (see below and Fig. 1b). When crYOLO is trained on a single data set, it
quickly reaches a good picking quality even when the training data only contains
few micrographs. Hence, increasing the size of the training data, enhances the
training time without benefitting the training. Therefore, only particles from 50
randomly selected micrographs and no more than 20,000 particles in total are used
for the training. Once the feedback loop is finalized, the picking performance is
further optimized by adjusting the picking threshold to an optimal one, as deter-
mined by a parameter grid search using crYOLO’s internal evaluation procedure.
The particle threshold value defines a confidence threshold that each pick made by
crYOLO must either meet or exceed in order to be accepted. If this threshold is set
to a low value, particles with a low confidence are also accepted. In order to find the
optimal threshold, a fixed subset of data is repeatedly picked while varying the
threshold from 0.0 to 1.0, using a step size of 0.01. Afterward, the optimal threshold
is defined by the highest F2 score3® of all resulting picks. Processing results gen-
erated with the optimized threshold are labeled with iteration “6 + T x.xxx”, where
six represents the sixth and thus final model used in the feedback loop, and the
value x.xxx denotes the optimized picking threshold.

Picked particles are automatically extracted and classified in 2D, resulting in
class averages containing 60 to 100 particles per class (standard settings).
Classifications are performed by a new GPU-accelerated and updated version of
ISAC2, which is based on the original ISAC (Iterative Stable Alignment and
Clustering) algorithm?%. Just like the CPU-bound ISAC2 it delivers high-quality 2D
class averages as well as an initial clean-up of the data set, but does not come with
the same high computational cost. Hence, GPU ISAC provides the same
functionality on a single workstation without the need to outsource 2D
classification to a cluster. The GPU ISAC code repository is part of the SPHIRE
repository listed above.

As the generation of high-resolution 2D class averages requires a sufficient
number of particles covering a range of views, 2D classification is only started once
a certain number of particles is accumulated. While this number can be adjusted in
the TranSPHIRE GUI, a default value of 20,000 particles per batch has proven to be
good (see also Supplementary Fig. 4).

2D class averages are routinely used to assess the overall quality of the data and
to select only those particles for 3D refinement that contribute to high-quality 2D
class averages. Previously, this selection was done manually, breaking any
automated processing pipeline. In order to provide a fully-automated pipeline,
TranSPHIRE uses Cinderella”, a deep learning binary classifier based on a
convolutional neural network. When provided with a set of 2D class averages,
Cinderella labels each of them as either “good” or “bad.” By default, this decision is
based on a model that was trained on a large set of class averages from a multitude
of different cryo-EM projects. Alternatively, Cinderella can be trained on specific
data to select classes according to the needs of the current project. By default,
TranSPHIRE runs Cinderella using its general model, based on 3,559 “good” and
2,433 “bad” classes taken from 20 different data sets from both the EMPIAR®’ data
base and our in-house efforts. The Cinderella git repository can be found online
(https://github.com/MPI-Dortmund/sphire_classes_autoselect).

Once the feedback loop has finished and a set of at least 200 “good” class
averages is available (number can be adjusted if desired), a reproducible, ab initio
3D reconstruction is computed from 2D class averages using the SPHIRE method
RVIPER!® (Reproducible Validation of Individual Parameter Reproducibility). The
VIPER algorithm combines a genetic algorithm?3 with stochastic hill climbing® to
produce multiple 3D ab initio structures. These reconstructions are then compared
and the most reproducible model is used to seed the consecutive 3D refinement.
(See online documentation for RVIPER and VIPER at http://sphire.mpg.de/wiki/
doku.php?id=pipeline:viper:sxrviper).

To generate a high-resolution 3D reconstruction a stack of all particles assigned to
classes that were labeled “good” by Cinderella is created. The consecutive refinement is
performed by the SPHIRE method MERIDIEN!® providing the initial reconstruction
computed in the previous step as reference. The refinement within MERIDIEN
proceeds in two phases. The first phase, “EXHAUSTIVE”, searches the whole 3D
parameter space—three Euler angles for rotation and two dimensions for translation—
on a discrete grid. The second phase, “RESTRICTED?”, searches the parameter space on
a discrete grid within the local area closest to the best matching set of parameters found
in the previous iteration. To avoid over-fitting, the image dimensions and the grid
spacing is adjusted after every iteration, based on the achieved resolution according to
the gold standard FSC and stability of the parameters. In order to compensate for the
discreteness of the grid and the uncertainty in parameter assignment, particles are
weighted by the probability of the parameter set for the backprojection into the 3D
reconstruction. (See online documentation of MERIDIEN at http://sphire.mpg.de/wiki/
doku.php?id=pipeline:meridien:sxmeridien).

Similar to the prerequisites for 2D classification, a certain number of particles
representing different views is required to successfully compute a 3D
reconstruction. Thus, TranSPHIRE will not start the 3D refinement before a
defined number of particles is accumulated. In our hands, a total of 40,000 particles
(default value, can be adjusted) is sufficient to calculate a medium to high-
resolution 3D reconstruction in a short time frame. While this reconstruction will
likely not reach the highest resolution possible, it still enables a first analysis i.e.
identification of a conformational state or the verification if a ligand is bound or
not in case a ligand-free high-resolution reference structure is available.
Furthermore, it provides quality control throughout the data acquisition, as a new
3D reconstruction is computed for every batch of 40,000 particles. As all 3D
refinements start from the same initial reference, refinement projections
parameters can additionally be used to directly start with a local refinement of the
complete data set, thereby significantly reducing the required running time.

Evaluation of the feedback performance. As TranSPHIRE runs in parallel to the
data acquisition and data are processed as they come in, the number of movies is
increasing during the runtime and results from one feedback iteration to the next
are not directly comparable. Thus, the feedback performance was evaluated sepa-
rately for every data set on a fixed subset of 500 (TRPC4 and Tc holotoxin, Figs. 3
and 4) and 100 (Actomyosin, Fig. 5) micrographs.

For each case, the fixed subset was processed using the intermediate picking
models produced during the individual feedback iterations. Specifically, every
subset was once picked with the starting model (general model, labeled round 1)
and with every picking model generated throughout the five iterations of the
feedback loop (rounds 2-6) using a particle threshold of 0.1. In addition, another
run was performed with the final picking model using the optimized particle
threshold (6 + T X.XX). The consecutive processing in 2D and 3D was performed
with AutoSPHIRE sp_auto.py, which is the automatic, batch processing tool within
SPHIRE!® on our local CPU cluster. The processing pipeline and settings used
resemble the ones described above, except that CPU ISAC was used instead of the
new GPU-accelerated version.

Automatic processing of the TRPC4 data. The performance of TranSPHIRE was
tested on a subset of 500 micrographs of a high-resolution data set of the transient
receptor channel 4 (TRPC4) from zebra fish in LMNG detergent (prepared in analogy
to ref. 41). The data set was automatically collected at a Cs-corrected Titan Krios (FEI
Thermo Fisher) microscope equipped with an X-FEG and operated at 300 kV using
EPU (FEI Thermo Fisher). Equally dosed frames with a pixel size of 0.85 A/pixel were
collected with a K2 Summit (counting mode, Gatan) direct electron detector in
combination with a GIF quantum-energy filter set to a filter width of 20 eV. Each
movie contains 50 frames and a total electron dose of 88.5 e/AZ

12 | (2020)11:5716 | https://doi.org/10.1038/541467-020-19513-2 | www.nature.com/naturecommunications


https://github.com/MPI-Dortmund/transphire
https://transphire.readthedocs.io
https://github.com/MPI-Dortmund/sphire_classes_autoselect
http://sphire.mpg.de/wiki/doku.php?id=pipeline:viper:sxrviper
http://sphire.mpg.de/wiki/doku.php?id=pipeline:viper:sxrviper
http://sphire.mpg.de/wiki/doku.php?id=pipeline:meridien:sxmeridien
http://sphire.mpg.de/wiki/doku.php?id=pipeline:meridien:sxmeridien
www.nature.com/naturecommunications

ARTICLE

Processing in TranSPHIRE was performed as described above with five internal
feedback rounds to optimize the crYOLO picking model. Within the pipeline,
movies were drift corrected and dose weighted by MotionCor2!? using five patches
with an overlap of 20% and CTFFIND42! fitted the CTF between 4 A and 30 A
with an Cs value of 0.001. The training data for the general model of crYOLO
usually contain four data sets of TRP channels. To avoid any favorable picking bias
and handle the TRPC4 data as previously unseen, the general model was retrained
after removing all TRP channels from the training data. Even then, crYOLO was
able to identify most TRPC4 particles through the successful generalization. To
simulate a worst-case scenario of a deficient initial picking performance, 90% of the
particle picks in the initial feedback round were replaced by random coordinates.

During the feedback rounds the crYOLO picking threshold was set to 0.1 and
the anchor size to the estimated particle diameter of 240 pixels. After the final
feedback round, the picking threshold value was adjusted to 0.257 based on the
crYOLO confidence threshold optimizing procedure described above. After each
particle picking step, particles were automatically extracted using SPHIRE
sp_window.py with a box size of 288 pixels. The subsequent 2D classification was
performed using a GPU accelerated version of the SPHIRE ISAC2 algorithm using
standard settings. The feedback loop was run with the default particle batch size of
20,000 (for details see above and Supplementary Fig. 3).

The produced 2D class averages were subjected to an automatic 2D class
selection using our deep learning tool Cinderella and a confidence threshold of 0.1.
To simulate the processing of a previously unseen protein, Cinderella was trained
with its general model training data excluding all channel proteins, thereby
ensuring an unbiased selection process. During the feedback rounds crYOLO was
trained on the default value of 50 random micrographs that contained particles
contributing to classes labeled “good” by Cinderella. 3D reconstructions were
computed as described above using no mask and imposing c4 symmetry. Note that
albeit our program provides the possibility to compute a 3D mask from the initial
model automatically and apply it during the refinement, this option is deactivated
by default. Automated masking procedures might eliminate valid regions of the
structure that are not well resolved in the initial reconstruction, especially in cases
with strong flexibility in the complex. In case a 3D mask is not provided, we
strongly recommend to use a mask created from the results of TranSPHIRE for all
follow-up experiments, in order to exploit the full potential of 3D refinement.
Whereas the workflow can be easily extended, the pipeline for each batch stops by
default after the first high-resolution 3D refinement, in order to allow on-the-fly
evaluation by the user. The results can be easily converted to RELION!® after any
milestone and vice versa. Correction of higher-order aberrations for example in
RELION might further improve the resolution of the final result, when these
optical effects are present?2.

The progression of the picking performance throughout the feedback rounds was
evaluated on a fixed subset of 500 micrographs as described above (Fig. 3). Note that
the picking model of the first iteration is not included in this evaluation, as its
performance was initially corrupted by randomizing 90% of the picked particles.

Automatic processing of the Tc holotoxin data. To test the capability of
TranSPHIRE to target a specific conformation, a subset of 500 micrographs of the
ABC holotoxin from Photorhabdus Luminescens reconstituted in a lipid nanodisc
(EMD-10313)%3 was processed. This data set contains a mixture of conformations,
namely the pre-pore and pore state of the holotoxin. The data set was collected at a
Cs-corrected Titan Krios (FEI Thermo Fisher) microscope equipped with an X-
FEG and operated at 300 kV using EPU (FEI Thermo Fisher). Equally dosed frames
with a pixel size of 0.525 A/pixel were collected with a K2 Summit (super resolution
mode, Gatan) direct electron detector in combination with a GIF quantum-energy
filter set to a filter width of 20 eV. Each movie contains 40 frames and a total
electron dose of 60.8 e/A2.

Processing in TranSPHIRE was performed as described above with five internal
feedback rounds to optimize the crYOLO picking model. Within the pipeline,
movies were drift corrected, dose weighted and binned to a pixel size of 1.05 A/
pixel by MotionCor2!? using three patches without overlap and CTFFIND4?! fitted
the CTF between 4 A and 30 A with an Cs value of 0.001. Subsequently, particles
were picked using the general model of crYOLO.

During the feedback rounds the crYOLO picking threshold was set to 0.1 and
the anchor size to the estimated particle diameter of 205 pixels. After the final
feedback round, the picking threshold value was adjusted to 0.194 based on the
crYOLO confidence threshold optimizing procedure described above. After each
particle picking step, particles were automatically extracted using SPHIRE
sp_window.py with a box size of 420 pixels. The subsequent 2D classification was
performed using a GPU accelerated version of the SPHIRE ISAC2 algorithm using
standard settings. The feedback loop was run with the default particle batch size of
20,000 (for details see above and Supplementary Fig. 3).

The produced 2D class averages were subjected to an automatic 2D class
selection using our deep learning tool Cinderella and a confidence threshold of 0.1.
To demonstrate the ability of the TranSPHIRE feedback loop to selectively pick
particles of one conformational state, Cinderella was trained on pre-existing 2D
class averages of the pore state as instances of “good” classes (318) and 2D class
averages of the pre-pore state and contamination as instances of “bad” classes
(664). During the feedback rounds crYOLO was trained on the default value of 50
random micrographs that contained particles contributing to classes labeled “good”

by Cinderella. 3D reconstructions were computed as described above without
applying a mask or symmetry.

The progression of the picking performance throughout the feedback rounds
was evaluated on a fixed subset of 500 micrographs as described above (Fig. 4).

Automatic processing of an actomyosin complex data set. A subset of 100
micrographs of an actomyosin complex with a bound small molecule ligand was
chosen to demonstrate the processing of filamentous samples within TranSPHIRE and
its suitability for high-throughput ligand screenings. The data set was collected at a Cs-
corrected Titan Krios (FEI Thermo Fisher) microscope equipped with an X-FEG and
operated at 300 kV using EPU (FEI Thermo Fisher). Equally dosed frames with a pixel
size of 0.55 A/pixel were collected with a K2 Summit (super resolution mode, Gatan)
direct electron detector in combination with a GIF quantum-energy filter set to a filter
width of 20 eV. Each movie contains 40 frames and a total electron dose of 81.2 e/A2.

Processing in TranSPHIRE was performed as described above with five internal
feedback rounds to optimize the crYOLO picking model. Within the pipeline,
movies were drift corrected, dose weighted and binned to a pixel size of 1.10 A/
pixel by MotionCor2!? deactivating patch alignment and CTFFIND4?! fitted the
CTF between 5 A and 30 A with an Cs value of 0.001.

As the crYOLO general model does not include filamentous data it cannot be
readily applied to this data set. Instead a new crYOLO general model specific for
actin filaments was trained. The training data consisted of multiple actin data sets
collected within our group, but did not include any data of an actomyosin complex
or other actin complexes. Considering the significant optical difference of actin and
actomyosin filaments (also see Fig. 5), picking with the general actin crYOLO
model mimics the processing of a previously unseen filamentous protein.

During the feedback rounds the crYOLO picking threshold was set to 0.1 and
the anchor size to the estimated box size of 320 pixels. Furthermore, the filament
width was set to 100 pixels and the box distance to 25 pixels (equivalent to one
helical rise of 27.5 A). Only filaments consisting of at least six segments were
considered. After the final feedback round, the picking threshold value was
adjusted to the crYOLO default value of 0.3, as the threshold optimization
procedure of crYOLO does not support filaments. After each particle picking step,
particles were automatically extracted using SPHIRE sp_window.py with a box size
of 320 pixels and a filament width of 100 pixels. The subsequent 2D classification
was performed using a GPU accelerated version of the SPHIRE ISAC2 algorithm
asking for 30-50 particles per class. The feedback loop was run with the default
particle batch size of 20,000 (for details see above and Supplementary Fig. 3).

The produced 2D class averages were subjected to an automatic 2D class
selection using our deep learning tool Cinderella and a confidence threshold of 0.1.
As filamentous data differ strongly from the data used to train the general model of
Cinderella, a new model was trained based on the 2D class averages produced in
the initial feedback round combined with previously selected class averages of actin
only data sets. During the feedback rounds crYOLO was trained on the default
value of 50 random micrographs that contained particles contributing to classes
labeled “good” by Cinderella.

An initial 3D reference was created from a deposited actomyosin atomic model
(PDB:5JLH)#. The 3D refinement was performed using SPHIRE sp_meridien_alpha.
Py, an open alpha version of helical processing in SPHIRE, with a particle radius of 144
pixels (~45% of the box size), a filament width of 100 pixels and a helical rise of 27.5 A.
While projection parameters are restrained according to the helical parameters e.g. the
shift along the filament axis is restricted to half of the rise no helical symmetry is
applied and therefore does not need to be determined beforehand. To avoid artifacts
due to the contact of the filament to the edges of the box, a soft 3D mask covering 85%
of the filament was applied during the refinement.

The progression of the picking performance throughout the feedback rounds
was evaluated on a fixed subset of 100 micrographs as described above (Fig. 5).

Data availability
The movies processed in this paper are available from the corresponding author upon
reasonable request.

Code availability

TranSPHIRE is open-source and can be downloaded free of charge (https://github.com/
MPI-Dortmund/transphire). The TranSPHIRE documentation is available on
readthedocs (https:/transphire.readthedocs.io).
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