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Background: Direct-acting antivirals (DAAs) against hepatitis C virus (HCV) are potent and 

highly efficacious. However, resistance-associated substitutions (RASs) relevant to DAAs can 

impair treatment effectiveness even at baseline. Moreover, the prevalence of baseline RASs in 

HCV genotype 1b-infected patients in western China is still unclear.

Materials and methods: Direct sequencing of the HCV NS3, NS5A, and NS5B regions was 

performed in baseline serum samples of 70 DAAs treatment-naïve HCV 1b-infected patients in 

western China. The sequences were analyzed with MEGA version 5.05 software. Evolutionary 

patterns of RASs and amino-acid covariance patterns in the NS3, NS5A, and NS5B genes were 

analyzed by MEGA and Cytoscape (version 3.2.1), respectively.

Results: The presence of at least one RAS in the NS3 region (C16S, T54S, Q80R/L, A87T, 

R117H, S122G, V132I, V170I) was observed in 85.48% (53 of 62) of patients, RASs in the 

NS5A region (L28M, R30Q, Q54H, P58S/T, Q62H/R, Y93H) were observed in 42.42% (28 

of 66) of patients, and RASs in the NS5B region (N142S, A300T, C316N, A338V, S365A, 

L392I, M414L, I424V, A442T, V499A, S556G) were observed in 100% (44 of 44) of patients. 

Evolutionary patterns of RASs and amino-acid covariance patterns for the NS3, NS5A, and 

NS5B genes are reported.

Conclusion: The prevalence of RASs relevant to DAAs detected in the NS3, NS5A, and NS5B 

regions of HCV 1b from DAA treatment-naïve patients is high. Therefore, more attention should 

be paid to RASs associated with DAAs in the upcoming DAA-treatment era in China.

Keywords: hepatitis C virus, unstructured proteins, resistance-associated substitutions, direct-

acting antiviral agents.

Introduction
Hepatitis C virus (HCV) infection has greatly increased the burden of global disease.1 

The recent estimates of global disease burden show that the seroprevalence of HCV 

is 2.5%, equating to >177.5 million infections.2 HCV is associated with liver cirrho-

sis, hepatocellular cancer, and liver failure, which has become an important cause of 

HCV-related deaths, resulting in 350,000 cases of patient death per year worldwide.3,4 

As HCV is a RNA virus, its genome is highly variable, and the sequences are classi-

fied into seven recognized genotypes (GTs) and a large number of subtypes.5 HCV 

sequences belonging to different GTs show a 30%–35% difference at the nucleotide 

level.5 GT1 is estimated to account for more HCV cases than any other GTs, at 83.4 

million cases (46.2%), and more than a third of GT1 infections occur in East Asia.6 

Additionally, 56.8% of HCV infections in China are of subtype 1b.7
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Pegylated-interferon and ribavirin have been the standard 

of care for HCV-infected patients. However, severe side effects 

of this treatment lead to about 50% of patients being unable 

to tolerate therapy, and the sustained virological response rate 

after this treatment is only approximately 50% for HCV GT1 

infections.8 Remarkably, direct-acting antivirals (DAAs) with 

the ability directly to inhibit the HCV unstructured proteins 

NS3/4A protease, NS5A protein, and NS5B polymerase, which 

are important for HCV replication in hepatocytes, have resulted 

in very high sustained virological response rates of more than 

90% in Phase II and Phase III studies after short-term treat-

ment.9 However, due to the low fidelity of HCV polymerase, 

high HCV-replication rate, and strong selective pressures on 

the virus, multiple variants differing by up to a few percent 

exist even within individual isolates, ie, HCV replicates as a 

quasispecies.10,11 Some quasispecies may carry the baseline 

resistance-associated substitutions (RASs), which convey 

varying degrees of resistance to DAAs. Indeed, RASs have 

been observed in both in vitro and clinical trials.12 In particular, 

the clinically relevant baseline RASs that reduce susceptibility 

to DAAs and play a role in treatment failure in postmarket-

ing studies or clinical practice play a potent role in treatment 

failure.13,14 DAAs have not been approved in China; however, 

this approval is imminent. Therefore, it is necessary to have an 

understanding of the prevalence of RASs in treatment-naïve 

HCV GT 1b-infected patients in western China.

Materials and methods
Patients
Serum samples were obtained from 70 patients who had been 

chronically infected with HCV 1b and never been treated for 

HCV with any DAAs. Patients were recruited between 2015 

and 2016 from the Second Affiliated Hospital of Chongqing 

Medical University and were diagnosed according to the 2016 

European Association for the Study of the Liver recommen-

dations on treatment of HCV.15 HCV GT and subtype were 

determined by reverse-transcription polymerase chain reac-

tion (PCR) and sequencing of the HCV core region. Patients 

enrolled in the study were not coinfected with HBV or HIV, 

and all were from the Chinese Han population. The study 

was approved by the ethics committee of the Second Affili-

ated Hospital of Chongqing Medical University, and written 

informed consent was obtained from each study participant.

Amplification and sequencing of HCV 
NS3, NS5A, and NS5B genes
Viral RNA was extracted from 140 μL serum samples using 

the MiniBest viral RNA extraction kit (Takara, Kusatsu, 

Japan). cDNA was synthesized from HCV RNA using 

a PrimeScript RT reagent kit with genomic DNA eraser 

(Takara) following the manufacturer’s instructions. Cycling 

conditions were incubation at 42°C for 2 minutes to remove 

genomic DNA, followed by 37°C for 15 minutes to synthesize 

cDNA. Full-length HCV NS3, NS5A, and NS5B genes were 

amplified using PrimeStar HS (Takara) in a nested PCR. 

Primers are shown in Table S1. PCR products in the first PCR 

round were obtained using a predenaturation step at 95°C for 

5 minutes, followed by 35 cycles of denaturation at 98°C for 

10 seconds, annealing at 62°C for 20 seconds, and extension 

at 72°C for 1 minutes and 20 seconds for the NS3 and NS5A 

genes and 35 cycles of denaturation at 98°C for 10 seconds, 

annealing at 56°C for 20 seconds, and extension at 72°C for 

2 minutes for the NS5B gene. For all genes, these steps were 

followed by a final 10-minute extension step at 72°C. PCR 

volume contained 25 μL of 2× reaction premix, 1 μL each 

primer, 5 μL cDNA template, and nuclease-free H
2
O for a 

final volume of 50 μL. Three microliters from the first round 

PCR product was used as a template in the second round of 

PCR, which was done with a similar reaction volume and con-

ditions as the first round, but with an annealing-temperature 

increase to 64°C for the NS3 and NS5A genes and to 60°C 

for the NS5B gene.

Direct sequencing of nested PCR products was performed 

using an automatic sequencer (ABI Prism 3100; Thermo 

Fisher Scientific, Waltham, MA, USA). Sequencing primers 

were the second-round PCR primers for each gene. Correc-

tion of the base sequences was performed with reference to 

direct-sequencing chromatograms. Representative chromato-

grams from the direct sequencing are shown in Figure S1.

Sequence analysis and phylogeny
Clinically relevant RASs to DAAs were summarized from 

the literature and are presented in Table S2. The NS3, NS5A, 

and NS5B nucleotide sequences were aligned with the HCV 

1b reference sequence (GenBank accession AJ238799) and 

analyzed using BioEdit 7.0.9 software. A variant type was 

indicated by replacement of the consensus amino acid with 

a novel one, eg, Y93H and Y93N in the NS5A region were 

described as two variant types.

A phylogenetic tree of each gene was created using the 

maximum-likelihood statistical method with the Jones–

Taylor–Thornton two-parameter model in MEGA version 

5.05.16 A γ-parameter of 0.5 was used to model differences 

in substitution rates among base sites. The reliability of the 

cluster descending from that node was assessed by a bootstrap 

analysis with 1,000 replicates.
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Structural bioinformatic modeling and 
amino-acid covariance analysis
Protein-homology modeling was performed with Swiss-

Model (https://swissmodel.expasy.org), with an identity of 

more than 90% used to model the X-ray crystal structures of 

HCV NS3 protease, NS5A, protein and NS5B polymerase for 

GT 1b. Structural editing and analysis were done using PyMol 

(Schrödinger, New York, NY, USA). The three structures 

were loaded into PyMol to analyze the cartoon structures, 

the stick structures of RASs, and the drug-binding pocket.

Sequences consisting of the NS3, NS5A, and NS5B genes 

were aligned and translated into amino acid sequences 

using BioEdit 7.09. Then, all possible amino-acid covariant 

pairs were determined by employing the observed-minus-

expected-squared (OMES) algorithm, which can exclude 

invariant positions and spurious correlations generated by 

random differences, as described in other work.17 To iden-

tify the covarying pairs, we calculated an OMES score for 

every possible pair. An OMES score of 0.5 was used as the 

cutoff for selecting covariant amino-acid pairs for analyses.18 

Finally, amino-acid covariant networks were visualized by 

Cytoscape (version 3.2.1).19

Statistical analysis
Concentration trends of data were expressed as medians 

( minimum–maximum). Categorical variables were sum-

marized as numbers. Categorical variables were compared 

between groups using the c2 test. Continuous data were 

compared between groups using Student’s t-test. P<0.05 was 

considered statistically significant. Statistical analyses were 

performed using SPSS 17 software (SPSS, Chicago, IL, USA).

Results
Characteristics of patients
For all 70 patients, the NS3, NS5A, and NS5B genes were 

successfully amplified and sequenced in 62, 66, and 44 

patients, respectively. In total, 66 patients were included for 

further analysis in this study. The clinical and virological 

characteristics of these patients are shown in Table 1.

Prevalence of RASs relevant to NS3 
protease inhibitors
In total, RASs conferring resistance to NS3 protease inhibi-

tors (PIs) were detected in 53 of 62 (85.48%) sequences, 

as shown in Figure 1A. Among these, S122G (resistance to 

simeprevir/asunaprevir) was the most common, observed 

in 85.48% of sequences, followed by V170I-associated 

resistance to  telaprevir (25.81%) and T54S-associated 

resistance to telaprevir and boceprevir (14.52%). The other 

RASs were observed at frequencies lower than 10%, such 

as Q80R/L (resistance to simeprevir, faldaprevir, and asuna-

previr), V132I and R117H (resistance to boceprevir), C16S 

(resistance to telaprevir), and A87T (resistance to telaprevir/

boceprevir). No RASs showing high-level resistance to 

DAAs were detected. It is noteworthy that R155, V156, and 

D168, which are important variants resistant to PIs, were not 

detected in this study. In addition, some substitutions like 

Y56F, R123K, and S174A were also detected in this study.

Moreover, among the 62 patients, 25 (40.32%) had a 

mixture of variants that contained multiple NS3-resistance 

variants. In detail, 18 (29.03%) patients carried two RAS 

mixtures, such as V170I + S122G or T54S + S122G, and 

five (8.06%) patients carried three RAS mixtures, such as 

Q80R + T54S + S122G or Q80R + S122G + V170I. Impor-

tantly, two mixtures of four RASs (Q80R + T54S + V170I 

+ S122G and C16S + R117H + V170I + S122G) were also 

each detected in one patient.

Prevalence of RASs relevant to NS5A 
inhibitors
In total, these RASs were detected in 36 of 66 (54.55%) 

sequences, as shown in Figure 1B. In detail, the most com-

monly observed RAS was Q54H (resistance to daclatasvir, 

42.42%). The next-most common RASs, P58S/T (resistance 

to daclatasvir) and Q62H/R (resistance to daclatasvir), were 

detected in 6.06% and 9.09% of sequences, respectively. 

Lastly, L28M (resistance to daclatasvir/ombitasvir) and 

R30Q (resistance to daclatasvir) were identified in only one 

patient each. Notably, the key RAS Y93H/N, which is asso-

ciated with resistance to daclatasvir/ledipasvir/ombitasvir, 

Table 1 Baseline characteristics of patients with HCV 1b 
infection in western China

Characteristics Values

Age (years), median (range) 47 (18–78)

Male (female) 36 (30)
Alb (g/L), median (range) 44.4 (16.8–54.9)
ALT (IU/L), median (range) 62 (5–230)
AST (IU/L), median (range) 49.5 (14–586)
γ-GGT (IU/L), median (range) 53 (9–1,955)
Total bilirubin (mg/dL), median (range) 0.72 (0.37–3.52)
Direct bilirubin (mg/dL), median (range) 0.34 (0.16–2.68)
Plt count (¥109/L), median (range) 174 (56–315)
AST/Plt, median (range) 0.31 (0.07–7.23)
Hemoglobin (g/dL), median (range) 149 (77–178)
HCV RNA (log10 IU/mL), median (range) 6.39 (3.00–7.73)

Abbreviations: HCV, hepatitis C virus; Alb, albumin; Plt, platelet.
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was detected in 7.58% of sequences and associated with 

a high level of resistance. But another key RAS, L31V/M, 

associated with resistance to daclatasvir/ledipasvir, was not 

observed in this study. In addition, five different mixtures 

of RASs were observed (Q54H + P58S, Q54H + Q62H, 

Q62H + Y93H, Q54H + Y93H, and R30Q + Q54H + P58S 

+ Q62R) in six patients.

Prevalence of RASs relevant to NS5B 
polymerase inhibitors
The prevalence of RASs associated with resistance to NS5B 

nucleotide analogue inhibitors (NIs) and non-NIs (NNIs) 

was also differentially distributed, as shown in Figure 1C. 

Among RASs relevant to NIs, key RASs for sofosbuvir 

and mericitabine correlate with variants at positions S282 

and L159. In this study, no sequence containing L159F and 

S282T/R was found. However, the prevalence values of 

N142S (resistance to sofosbuvir) and A300T (resistance to 

R7128) were 4.55% and 6.82%, respectively. Compared to 

RASs relevant to NIs, RASs associated with resistance to 

NNIs were more commonly observed. Remarkably, C316N 

(resistance to dasabuvir) was found in all sequences in this 

study. In addition, A338V (resistance to beclabuvir) and 

I424V (resistance to beclabuvir) occurred in 47.73% and 

22.73% of sequences, respectively. S365A (resistance to nes-

buvir), L392I (resistance to beclabuvir), and A442T (resis-

tance to beclabuvir) represented a minority of sequences, 

with frequencies of 2.27%, 6.82%, and 2.27%, respectively. 

Notably, the key RASs M414L (resistance to dasabuvir) and 

S556G (resistance to dasabuvir) were present in 4.55% and 

2.27% of sequences, respectively. The RAS V499A (resis-

tance to beclabuvir) was presented in 6.82% of sequences. 

There were also some substitutions detected, such as S368F, 

A421E, and C451Y. In addition, 37 of 44 (84.09%) sequences 

Figure 1 Prevalence of clinically relevant RASs in various regions against different DAA classes.
Notes: Frequency of clinically relevant RASs in the NS3 region (A), NS5A region (B), and NS5B region (C). Total frequency of clinically relevant RASs against different 
DAA classes (D).
Abbreviations: RASs, resistance-associated substitutions; DAA, direct-acting antivirals.
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contained more than one RAS: 26 (59.09%) patients had two 

RAS mixtures, such as C316N + A338V, C316N + I424V, 

and C316N + A300T. Eleven (25%) patients had mixtures 

of three or more RASs, such as C316N + S556G + A338V 

and C316N + S556N + V499A.

Prevalence of multiple RASs relevant to 
different DAA classes
Overall, the frequency of multiple RASs associated with 

resistance to different DAA classes was high, and varied for 

different RAS combinations (52.46%–97.62%, Figure 1D). 

The highest prevalence of multiple RASs was in the NS3 + 

NS5B regions, followed by the NS5A + NS5B, NS3 + NS5B, 

and NS3 + NS5A + NS5B regions. C316N was observed 

in all NS5B sequences, which may contribute to its high 

prevalence. We analyzed the results again after excluding 

C316N. Similar results at a lower frequency were observed, 

as presented in Figure S2.

Evolutionary patterns of RASs in NS3, 
NS5A, and NS5B genes
To study whether RASs occurring at baseline were correlated 

with ongoing random variation and/or some specific evolu-

tionary patterns in transmission clusters, phylogenetic trees 

of the NS3, NS5A, and NS5B genes were created, as described 

in the Materials and methods section. The results showed that 

most baseline RASs in the NS3 and NS5B genes seemed to 

occur randomly, with no special evolutionary pattern occur-

ring, as observed in Figure S3. However, a clade without 

RASs in the NS5A gene showed a prominent concentration 

trend, as shown in Figure 2. Therefore, clinical characteristic 

analyses were performed in patients with and without RASs 

in the NS5A gene to investigate the possible reason for this 

phenomenon. However, there were no significant differences 

between the two groups, as shown in Table S3.

Structural bioinformatic modeling and 
amino-acid covariance patterns of NS3, 
NS5A, and NS5B genes
In order to investigate the structures of the different viral 

unstructured proteins and reveal the mutations and drug-

binding pockets, protein-structure bioinformatic modeling 

was performed on the HCV NS3, NS5A, and NS5B proteins. 

The HCV NS3 protease crystal structure and the stick struc-

tures of such RASs as R117I, Q80R, and S122G are shown 

in Figure 3A. The NS5A protein-crystal structure and the 

stick structures of RASs Q54H, Q62H, Y93H, and P58S 

are presented in Figure 3B. The NS5B polymerase-crystal 

structure and stick structures of RASs A338V, A300T, N142S, 

C316N, and M414L are shown in Figure 3C. Drug-binding 

pockets in different viral proteins are also shown in Figure 3.

Next, to understand the covariance relationship among 

the different regions, a covariance-network analysis was 

undertaken. As shown in Figure 4A, there were a considerable 

number of amino-acid covariance positions (nodes) and inter-

acting lines (edges), constituting a huge covariance network. 

These nodes included both RASs and non-RASs. Most of 

them were found in the NS5B region, such as R120, M414, 

and V322. Further analysis focused on the RAS-covariance 

relationships only, and a similar but smaller network was 

observed, as shown in Figure 4B. RASs at positions R117 in 

the NS3 region, R30 in the NS5A region, and N142, L392, 

M414, I424, and V499 in the NS5B region interacted with 

one another.

Discussion
In this study, clinically relevant RASs associated with resis-

tance to DAAs were frequently observed in treatment-naïve 

HCV 1b-infected patients in western China. RASs in the 

NS5B region were the most frequently observed (the C316N 

variant was detected in 100% of sequences), followed by 

those in the NS3 region and NS5A region (85.48% and 

42.42%, respectively).

In the NS3 region, S122G, which has been confirmed to 

provide a low level of resistance, was the most commonly 

Figure 2 Phylogenetic tree for the hepatitis C 1b NS5A gene.
Notes: Black lines represent unresistant lineages; blue lines represent lineages 
carrying the resistance mutation; red dots represent the emergence of 
concentration-trend clades of unresistant isolates.
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Figure 3 Structures and drug-binding pockets in different HCV unstructured proteins.
Notes: Crystal structures and stick views of RASs in the drug-binding pockets of the HCV NS3 protease (A), NS5A protein (B), and NS5B polymerase (C). Color of crystal 
structures determined by secondary structure of proteins, with α-helices colored red, β-sheets colored yellow, random coils and other structures colored green for NS3 
and NS5B, α-helices colored yellow, and β-sheets colored red in NS5A. The stick structures of RASs are identified by color and amino acid sites.
Abbreviations: HCV, hepatitis C virus; RASs, resistance-associated substitutions.
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observed RAS. S122G is a major RAS relevant to simeprevir 

and asunaprevir. The occurrence of this RAS in this study 

was much higher than that observed in an open-label trial in 

Japan (85.48% vs 36.7%).20 The higher number of patients 

included in their study may be a reason for this discrepancy. 

Another key RAS, Q80K, was observed in none of the 62 

HCV 1b sequences, while 6.45% of sequences were detected 

to contain Q80R/L, which is commonly observed in GT 

1b-infected patients in whom treatment has failed.21 In addi-

tion, the low genetic barrier to resistance and considerable 

cross-resistance have been implicated as being involved in 

RASs at positions V36, T54, R155, and A156.12 The first-

generation PIs boceprevir and telaprevir are not recommend 

for HCV treatment,15 but in our study only the T54S variant 

was found, in 14.52% of sequences. Substitutions at positions 

R155 and D168, which have been confirmed to reduce the 

activity of simeprevir, asunaprevir, paritaprevir, and vanipre-

vir, were not found in this study either.12,22

Current NS5A inhibitors are characterized by broad 

genotypic coverage; however, low barriers to resistance 

make RASs against NS5A inhibitors of wide concern.23 The 

prevalence of RASs relevant to NS5A inhibitors in this study 

was higher than that reported by a previous study (42.42% vs 

29.6%).24 This discrepancy might be because more clinically 

relevant RASs were identified in this study than in prior work. 

RASs at positions 28, 30, 31, and 93 have been frequently 

observed in both laboratory and clinical trials,25 but in this 

study the most commonly occurring variant was Q54H, which 

confers low-level resistance to daclatasvir.26 Furthermore, 

L31M and Y93H are regarded as key resistance variants, 

and the simultaneous presence of these two substitutions at 

baseline will significantly affect the outcome of NS5A-based 

antiviral therapy.27 The prevalence of Y93H, which confers 

high-level resistance to DAAs, in this study was 7.58%, which 

is similar to findings from other reports (3.8%–14.1%).27,28 

Nevertheless, none of the sequences contained L31M, which 

confers a low–medium level of resistance to daclatasvir 

and ledipasvir, and this finding is different from previously 

reported frequencies (2.1%–6.3%).28 This discrepancy may 

be a result of differences in sensitivity between population 

sequencing and ultradeep sequencing for detection of viral 

populations. Although no Y93H + L31M variants were found 

in this study, other concomitant variants, such as R30Q and 

P58S, should be given more attention. These two variants are 

regarded as secondary-resistance variants, and their presence 

will enhance the resistance conferred by primary variants.29 

In addition, the variant combination of L28M and L31F has 

been shown to have a higher level of resistance to ombitasvir 

than either of the variants separately did.30 In this study, L28M 

was detected without the presence of L31F.

NS5B polymerase inhibitors, including the NNI dasabuvir 

and the NI sofosbuvir, are potent agents with a high resistance 

Figure 4 Amino-acid covariance networks for NS3, NS5A, and NS5B sequences in HCV 1b.
Notes: Amino-acid covariance networks for all variant positions (A) and clinically relevant resistance-associated substitutions (RASs) (B). The size of the nodes is determined 
by the number of edges that they contact. Red nodes are within the NS3 region, green nodes in the NS5A region, and blue nodes in the NS5B region. White font indicates 
non-RASs, and black font indicates RASs. Numbered amino acid residue position is provided relative to the first amino acid of the NS3, NS5A, or NS5B region.
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barrier.31 Additionally, no cross-resistance has been observed 

with currently approved NS5B inhibitors, with one excep-

tion, C316N, which is associated with low-level resistance 

to dasabuvir and sofosbuvir.32,33 Baseline polymorphisms at 

position 316 vary by geographical location and subtype. C316 

is highly conserved in GT 1a (99.89%), but polymorphic in 

GT 1b (81.83%), based on frequencies.32 In addition, HCV 

1b isolates harboring C316N at baseline are more frequently 

observed in Asia compared to Europe and the US (91.6% vs 

32% vs 5%, respectively).34 Remarkably, the polymorphic 

C316N was detected in 100% of the 44 sequences in this 

study, in agreement with the results of another study in 

China.35 This indicated that C316N might confer enhanced 

fitness for chronic HCV 1b patients in China and that more 

attention should be paid to this substitution in Chinese HCV 

1b patients. The other key RASs that may lead to failure of 

sofosbuvir treatment are L159F, S282T, L320F, V321A, 

and L159F + V321A, which are observed in 2.2%–4.4% of 

subjects.32 However, none of these RASs was detected in this 

study, and it may be that mutations in these positions will 

greatly influence viral fitness. Moreover, M414L and S556G, 

which can lead to the treatment failure of dasabuvir, were 

commonly observed in this study, similarly to the results of 

previous studies.12

In this study, we found that a clade without RASs in the 

NS5A gene showed a more prominent concentration trend 

than others. However, we did not find any factors that were 

responsible for this observation. A larger-population study 

may be needed to clarify this phenomenon. In addition, the 

covariance relationships between RAS and non-RAS nodes 

or between RASs indicated a complex interacting relation-

ship in the HCV genome at baseline. The RASs in the NS3 

region, the NA5A region, and the NS5B region affected 

one another, which may indicate that an RAS found in one 

of the three regions affects RASs in the other two regions. 

Therefore, this finding indicates that more attention should 

be paid to multisegment combined drug resistance when 

using DAAs in future.

To our knowledge, this study is the first to report the 

prevalence of RASs in western Chinese chronic HCV 1b 

patients. Moreover, the latest and most comprehensive 

panel of clinically relevant RASs was included to analyze 

all DAA-resistance regions (the NS3, NS5A, and NS5B 

regions). However, there are several limitations to this study. 

First, the number of patients was limited, which may have 

led to relatively high prevalence. Second, some NS5B genes 

were unsuccessfully amplified, which reduced the sample 

size of this study. Third, direct sequencing, not ultradeep 

pyrosequencing, was used in this study, which hindered our 

ability to investigate the prevalence of minority variants 

(<20%), though RASs detected in this study represent the 

main variants.

In conclusion, the prevalence of RASs clinically relevant 

to DAAs was high in treatment-naïve HCV 1b-infected 

patients in western China, especially for variants S122G, 

Q54H, and C316N. Further studies are needed to clarify the 

role of these RASs so that we can improve our strategy for 

managing and using DAAs in China in future.
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Supplementary material

Table S1 Amplification and sequencing primers for HCV NS3,1 NS5A,2 and NS5B3 genes in genotype 1b patients

Target gene Primers 5′–3′ sequences

NS3 NS3F out CGAGACCTTGCGGTGGCAG
NS3R out CAGCCGTYTCCGCTTGGTCC
NS3F in CATCACCTGGGGGGCAGACACC
NS3F in GTCAGTTGAGTGGCACTCATCAC

NS5A NS5AF out GTTTGGGACTGGATATGC
NS5AR out CGTCACGTAGTGGAAATC
NS5AF in ACCTGGCTCCAGTCCAAG
NS5AF in CCTCCACRTACTCCTCAG

NS5B NS5BF out CGYTGAGTCRTAYTCCTCCATGC
NS5BR out GGGCRCGAGACASGCTGTGATA
NS5BF in CTCAGYGACGGGTCYTGGTC
NS5BR in GCTGTGATATATGTCTCCCC

Abbreviation: HCV, hepatitis C virus.

Table S2 Summary of HCV RASs to DAAs

Region Residue RAS(s) DAA(s) Reference(s)

NS3 C16 S Tvr 4
V36 A/M/L/G/I/C Tvr, Boc, Asv, Ptv, Fdv 5–9
Q41 R Smv 10, 11
F43 S/V/I/L Boc, Tvr, Ptv, Smv 6, 10, 12
T54 A, S, C, G, V Tvr, Boc, Fdv, Asv 5, 9, 10, 12
V55 A Boc, Tvr 6, 9

F, I, K, T Boc, Asv 1, 13
Y56 H Ptv, Asv 5

L Asv 5, 10
Q80 K, R, H, N, G, L Smv, Asv/Ptv 1, 5, 6, 10
A87 T Tvr, Boc 14
V107 I Boc 5
R109 K Smv, Boc 15
R117 H Boc 14
S122 A, I, R, T, G, N Smv, Asv 5, 9, 16
R123 T Tvr, Boc 17
V132I I Tvr 18
R155 K/G/T/M/I/L/S/Q/P/N/W Tvr, Boc, Smv, Vnv, Fdv, Asv, Ptv 5, 6, 9, 10, 19, 20
A156 S/T/F/N/V/I/G/D Tvr, Boc, Smv, Vnv, Fdv, Asv, Gzv 5, 6, 10, 19, 20
V158 I, M Boc, Tvr 5, 6
D168 Q/A/Y/V/E/T/N/P/I/H/G/F/S/K Smv, Vnv, Asv, Fdv, Ptv, Gzv 5, 6, 9, 10, 13, 21, 22
V170 A Boc, Tvr 6

T Boc, Smv 5
I Tvr 18

S174 F/P Tvr 14
M175 L Boc 5

NS5A L28 F, M, T Dcv, Omv 5, 6, 18, 23, 24
P29 S, X Dcv 5
R30 G, H, P, Q Dcv 5, 10
L31 V/M/F/I Dcv, Omv, Ldv 5, 6, 9
P32 L, S, X Dcv, Ldv 5, 6, 10
Q54 H/N/L/Y Dcv, Omv 18, 23, 24
P58 S/A/H/T Dcv 5, 24

D Ldv 6
Q/E62 D/H Dcv 5, 18

R/A/P/S Dcv 24, 25
A92 K/T Dcv 5, 6, 24
Y93 H/N/C Dcv, Ldv, Omv 5, 6, 23, 24, 26

(Continued)
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Region Residue RAS(s) DAA(s) Reference(s)

NS5B H95 Q/R Dsv 18, 27
L159 F Sof, Mcb 5, 28, 29
N142 T/S R1479, Sof 27, 30
S282 T/R Sof, Mcb 5, 6, 30
M289 I/L/V Sof 3, 6
A300 T R7128 31
V321 A Sof 5
C316 H, N, Y, S Dsv, Nbv, Sof 5, 6, 9
L320 F, I, S Sof, Mcb, PSI938 6, 28–30
V321 A Sof 5
A338 V Bcv 18, 32
S365 A, L, T Nbv 18, 32, 33
S368 T Dsv 6
L392 I GS9669 18
N411 S Dsv 6
M414 L/T/I/V/Q Dsv, A782759, Nbv 5, 6, 13
A421 V BMS791325 5, 13
M423 I, T Nbv 13, 34
I424 V Bcv 35
M426 T/V/I A782759, Nbv 3, 34
A442 T Bcv 5, 18, 19
C445 F, GS9190 15, 36
E446 K, Q Dsv 6, 9
Y448 C, H Dsv, GS9190 6, 37, 38
V494 A, T, L, I Nbv 13, 15
P495 A, L, S Bcv, BI207127 5, 27, 36, 39
V499 A Bcv 18, 40
A553 I, T, V Dsv 6, 10
G554 S, D Dsv 6, 10
S556 G, N, R, C Dsv 5, 6, 13, 41
G558 R Dsv 6
D559 G, S, N Dsv 6, 9
Y561 H Dsv 6

Abbreviations: HCV, hepatitis C virus; RASs, resistance-associated substitutions; Asv, asunaprevir; Boc, boceprevir; Ptv, paritaprevir; Smv, simeprevir; Tvr, telaprevir; Fdv, 
faldaprevir; Vnv, vaniprevir; Gzv, grazoprevir; Dcv, daclatasvir; Ldv, ledipasvir; Omv, ombitasvir; Sof, sofosbuvir; Dsv, dasabuvir; Bcv, beclabuvir; Mcb, mericitabine; Nbv, 
nesbuvir.

Table S3 Baseline characteristics of patients with and without NS5A RASs

Characteristics Wild type (n=36) Mutation type (n=16) P

Age (years), median (range) 50 (18–70) 42 (35–58) 0.192
Male (female) 21 (15) 7 (9) >0.05
Alb (g/L), median (range) 44.35 (36.4–54.9) 45.25 (24.6–48) 0.513
ALT (U/L), median (range) 61 (10–189) 66 (20–230) 0.505
AST (U/L), median (range) 54 (14–163) 47 (21–199) 0.657
γ-GGT (IU/L), median (range) 57 (15–207) 33 (9–97) 0.054
Total bilirubin (mg/dL), median (range) 0.85 (0.44–1.91) 0.63 (0.37–1.25) 0.597
Direct bilirubin (mg/dL), median (range) 0.34 (0.22–0.79) 0.33 (0.16–0.90) 0.746
Plt count (×109/L), median (range) 153 (57–240) 184 (56–315) 0.323
AST/Plt, median (range) 0.43 (0.12–1.63) 0.26 (0.1–1.80) 0.867
Hemoglobin (g/dL), median (range) 153 (85–171) 142.5 (77.4–178) 0.907
HCV RNA (log10 IU/mL), median (range) 6.35 (3.00–7.5) 6.57 (4.37–7.23) 0.444

Abbreviations: HCV, hepatitis C virus; RASs, resistance-associated substitutions; Alb, albumin; Plt, platelet.

Table S2 (Continued)
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Figure S2 The prevalence of clinically relevant resistance associated substitutions (without C316N) in various DAA classes.
Abbreviation: RASs, resistance-associated substitutions.
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Figure S3 Phylogenetic trees for HCVGT1b NS3 and NS5B genes. 
Notes: (A) Phylogenetic tree for HCV GT1b NS3 gene; (B) phylogenetic tree for HCV GT1b NS5B gene. Blue lines represent nonresistant lineages; black lines represent 
lineages carrying the resistance associated substitutions.
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