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Abstract
Purpose: This retrospective work aims to evaluate the possible impact on intra-
and inter-observer variability,contouring time,and contour accuracy of introduc-
ing a pelvis computed tomography (CT) auto-segmentation tool in radiotherapy
planning workflow.
Methods: Tests were carried out on five structures (bladder, rectum, pelvic
lymph-nodes, and femoral heads) of six previously treated subjects, enrolling
five radiation oncologists (ROs) to manually re-contour and edit auto-contours
generated with a male pelvis CT atlas created with the commercial software MIM
MAESTRO. The ROs first delineated manual contours (M). Then they modified
the auto-contours,producing automatic-modified (AM) contours.The procedure
was repeated to evaluate intra-observer variability, producing M1, M2, AM1, and
AM2 contour sets (each comprising 5 structures × 6 test patients × 5 ROs= 150
contours), for a total of 600 contours. Potential time savings was evaluated by
comparing contouring and editing times. Structure contours were compared to
a reference standard by means of Dice similarity coefficient (DSC) and mean
distance to agreement (MDA), to assess intra- and inter-observer variability. To
exclude any automation bias, ROs evaluated both M and AM sets as “clinically
acceptable” or “to be corrected” in a blind test.
Results: Comparing AM to M sets,a significant reduction of both inter-observer
variability (p < 0.001) and contouring time (-45% whole pelvis, p < 0.001) was
obtained. Intra-observer variability reduction was significant only for bladder and
femoral heads (p < 0.001). The statistical test showed no significant bias.
Conclusion: Our atlas-based workflow proved to be effective for clinical prac-
tice as it can improve contour reproducibility and generate time savings.
Based on these findings, institutions are encouraged to implement their auto-
segmentation method.
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1 INTRODUCTION

In radiotherapy treatment planning, image segmen-
tation is a time-consuming task that exhibits great
variability among radiation oncologists (ROs). Auto-
matic approaches reduce the contouring workload,
but the main challenges in computed tomography
(CT) images segmentation are represented by the
scarce contrast between soft tissue structures and the
huge anatomical variability between patients. In the
last few years, several semi-automated or automated
segmentation approaches have been proposed to
support ROs in reducing contouring time.1–5 Among
automated segmentation approaches, only those based
on atlases6–10 or on artificial intelligence (AI)6,11–15

can aim to fully automate contouring processes. Atlas-
based methods are implemented by several vendors
as treatment planning system options or stand-alone
software modules. Users can take advantage of atlases
provided with the software module or can create their
own, based on their patients’ images and local con-
touring guidelines. However, all automatic contours
need a careful review and a variable degree of edit-
ing by ROs, depending on the automatic contouring
method used. In this regard, AI methods are promising
although they need to be instructed. Recently, comput-
ing power availability has promoted the development of
AI automatic segmentation methods16,17 and there are
several commercially available AI segmentation mod-
ules: https://mirada-medical.com/product/dlcexpert/,
https://www.therapanacea.eu/our-products#, https:
//www.mvision.ai/product/, https://www.mimsoftware.
com/radiationoncology/contour_protege_ai.

In a previous work,18 we reported a pelvis CT
atlas generation and optimization using a multi-atlas
approach implemented in MIM MAESTRO commer-
cial software (MIM Software, Cleveland, OH, USA). We
decided to create our atlas by optimizing both the choice
of representative subject and sample size, as well as
the registration and finalization algorithm,demonstrating
that time and effort invested in atlas and workflow cre-
ation and optimization provides more reliable results.18

In the present retrospective study, we tested the
potential benefits of introducing our optimized CT
pelvis atlas in clinical practice. For this purpose, we
involved five ROs and six previously treated test
subjects, evaluating differences in contouring time
and intra- and inter-observer variability between man-
ual (M) and automated segmentation approaches
(AM).

To our knowledge this is the first study where the
use of an optimized CT pelvis atlas has been eval-
uated in terms of contouring time, contouring accu-
racy and intra- and inter-observer variability. Moreover,
we believe that our clinical validation method could
be useful in validating any kind of auto-contouring
system.

2 MATERIALS AND METHODS

A Brilliance Big Bore CT scanner (Philips Medical Sys-
tems, Cleveland, OH, USA) was used to acquire 120 kV
CTs with 3 mm slice thickness,600 mm field of view and
512 × 512 matrix. To automatically generate contours,
we used the pelvis CT atlas previously created and
optimized using the MIM MAESTRO (v.6.8.2) commer-
cial framework.18 The software adopts a multi-subject,
atlas-based segmentation method that enables users to
select both N atlas subjects and one atlas representa-
tive subject, to create the atlas. For auto-contouring, k
(<N) best matching subjects are chosen automatically,
based on image similarity criterion,and registered to the
new subject to obtain k contours sets, then used for label
fusion. The atlas is invoked by an automatic, customiz-
able workflow. Our atlas was composed of 55 pelvis
CT studies (manually segmented for radiotherapy plan-
ning), whose contours were thoroughly reviewed by a
senior RO. In addition to the pelvis CT, bladder, rectum,
femoral heads, and pelvic lymph-nodes (PLN) contours
were included in the atlas.

In this retrospective study, the potential impact of
introducing auto-contouring into the clinical workflow to
reduce intra- and inter-observer variability and contour-
ing time was investigated. Tests were based on 3 mm
slice thickness CT studies of six previously treated test
subjects, enrolling five senior (5–15 years experienced)
ROs for re-contouring and auto-contour editing.For each
test subject, bladder, rectum, PLN, and femoral heads
were manually contoured by each RO, producing the
manual 1 (M1) contour sets. The number of slices for
each contour varied from 18 to 34, 35 to 43, 28 to 51,
and 32 to 39 for bladder, rectum,PLNs,and each femoral
head, respectively, depending on the test subject and
RO. To evaluate intra-observer variability, the same pro-
cedure was repeated to produce the manual 2 (M2)
contour set, after a minimum of 3 weeks to minimize
memory recall bias. In both cases, each RO recorded
the contouring time for each test subject and structure
(Figure 1a). Our CT pelvis atlas was then used to auto-
matically generate contours of the same test subjects.
Each RO reviewed and, if required, modified the auto-
contours noting the editing time for each structure and
test subject. These automatically generated and, then,
manually modified contours are called the automatic-
modified 1 (AM1) contour set.18 Again, after a minimum
period of 3 weeks (actually several months), the same
procedure was repeated to produce the automatic-
modified 2 (AM2) contour set (Figure 1b). Each contour
set (M1, M2, AM1, AM2) comprises 150 structure con-
tours (6 test patients × 5 ROs × 5 structures), thus a
total of 600 contours were collected.

In Figure 2, single RO contours are shown on the CT
images of a test patient: Figure 2a shows M1 (blue)
and M2 (magenta) contours,while Figure 2b shows AM1
(green) and AM2 (yellow) contours. Manual contouring

https://mirada-medical.com/product/dlcexpert/
https://www.therapanacea.eu/our-products%23
https://www.mvision.ai/product/
https://www.mvision.ai/product/
https://www.mimsoftware.com/radiationoncology/contour_protege_ai
https://www.mimsoftware.com/radiationoncology/contour_protege_ai
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F IGURE 1 For each of the six test subjects, each region of
interest (ROI) was manually contoured by each of the five radiation
oncologists (ROs) two times, M1 and M2, with M2 at least 3 weeks
after M1 (a). The same approach was used for AM1 and AM2
automatic contour editing (b). AM2 contours were actually produced
several months after the other three groups of contours. For each
contouring (M1, M2) or editing (AM1, AM2) contouring time was
registered

and editing were performed with the Philips Pinnacle3

treatment planning system 2D painting tool.
Intra- and inter-observer variability and time sav-

ings were evaluated as described in Sections 2.1–
2.3. Finally, a statistical test, based on six test
subjects and enrolling four ROs, was conducted to
exclude any potential bias introduced by the automatic
contours (Section 2.4).

2.1 Intra-observer variability

To assess whether the atlas-based contouring approach
can help in reducing intra-observer variability, we eval-
uated Dice similarity coefficient (DSC) and mean dis-
tance to agreement (MDA) scores between M1 and M2
contours and we compared these results with those
obtained between AM1 and AM2.

Figure 3 illustrates how the comparison between M1
and M2 delineated by the same RO for each test sub-
ject generated 30 DSC and 30 MDA indices (5 ROs ×

6 test subjects) for each structure. Similarly, a compari-
son of AM1 and AM2 contour sets generated 30 + 30
(DSC + MDA) couples of similarity indices. We decided
to conduct our comparison using both DSC and MDA
because, while DSC use is widely documented in the
literature, it has the limitation of being dependent upon
contour volume. Conversely, while MDA is not frequently
reported, it does not present this limitation.

For each structure, we evaluated the statistical sig-
nificance of differences between groups of indices
obtained for M and AM contours with Wilcoxon signed-
rank test for paired data (30 + 30).

2.2 Inter-observer variability

Assessing inter-observer variability is always challeng-
ing, because of the difficulties in defining references.
This problem can be addressed in different ways, for
example,by performing two-by-two comparisons20–22 or
by designating one set of contours as the reference.19,23

In this study, we applied the STAPLE finalization
algorithm24 to the contours outlined by all ROs, to define
a reference set (Ref) used as the shared gold stan-
dard.This procedure was used on M1 and AM1 contours
obtaining RefM1 (Figure 4a) and RefAM1 (Figure 4b),

F IGURE 2 Single radiation oncologist
(RO) contours are shown on the computed
tomography (CT) images of a test patient: (a)
M1 (blue) and M2 (magenta) contours; (b)
AM1 (green) and AM2 (yellow) contours
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F IGURE 3 Intra-observer variability. For each region of interest
(ROI), contours delineated by each radiation oncologist (RO) at
different times (M1 and M2, AM1 and AM2) were compared in terms
of Dice similarity coefficient (DSC) and mean distance to agreement
(MDA) indices for each of the six test subjects, thus obtaining two (M
and AM) 30 dimensional (5 ROIs × 6 test patients) vectors, both for
DSC and MDA. Wilcoxon signed-rank statistical test was applied to
compare intra-observer variability of M and AM contours, both for
DSC and MDA

respectively. RefM2 and RefAM2 were obtained in the
same manner.

The differences between each M1 and RefM1 and
each AM1 and RefAM1 were evaluated using DSC and
MDA.

For each structure, the comparison between M1 and
RefM1 for all ROs (five) and test subjects (six) gen-
erated 30 + 30 (DSC + MDA) similarity scores. The
comparison between AM1 and RefAM1 produced other
two 30-dimensional similarity score vectors. M2 and
AM2 datasets were elaborated analogously. Compari-
son between (DSC + MDA) groups of scores for M
and AM contour sets enabled the evaluation of intra-
observer variability for both methods (Figure 5).

2.3 Time savings

Subsequently, for each RO,we evaluated and compared
average manual contouring and editing time for the
whole pelvis. Data were averaged over six test subjects;
M1 and M2 data were averaged to obtain an average
manual contouring time (TM) for each RO. Similarly, the
average time for editing automated contours TAM, was
calculated by averaging AM1 and AM2 editing times.
Time savings, defined as |TM - TAM|/TM, was evaluated
for each operator.

The analysis was also performed for each structure,
averaging over the five ROs and six test subjects. Then,
the overall time savings, as an average across five ROs
and six test subjects, was also calculated for the whole
pelvis.

A more detailed analysis was done by creating box-
plots of contouring and editing time: for each structure,
four boxplots were created, containing M1, M2, AM1,
and AM2 data. Each boxplot represents 30 time data
(5 ROs × 6 test patients). Paired data (for the same
test subject and RO) were compared using statistical
tests.

2.4 Bias

Finally, to point out any possible bias introduced by
automation, a blind test was performed by ROs. The
test aimed to compare M and AM contours delin-
eated by the same RO. To assure judgment impartial-
ity, each RO was asked to examine a series of six
contour sets containing both his/her own contours (M
and AM) and four additional “mixed” sets (two M and
two AM, randomly extracted from M1, M2, AM1, and
AM2, thus including contours by other ROs). The pur-
pose of adding “mixed” contours was to avoid judg-
ment bias: the presence of other RO contours better-
ensured judgment objectivity. The test was blind since
each RO did not know the operator who delineated
the contours nor the contouring method. Since one RO
was not available, we restricted the blind test to four
operators.

For bladder, rectum, PLN, and femoral heads (con-
sidered together), each RO judged the acceptance
(decision YES) or the opportunity/necessity to correct
(decision NO) of every examined contour. The decision
of confusing contours was not included in the statistical
analysis. Acceptance rates of paired M and AM con-
tours by the same RO were compared by means of a
McNemar’s statistical test25 (also known as paired or
matched chi-square) with 96 elements (4 regions of
interest (ROIs) × 6 test subjects × 4 bias test ROs).
The H0 hypothesis is that ROs are not influenced by
the automatic contour generated by MIM software, so
contour accuracy is not affected by any bias introduced
in the preliminary automated contouring phase.
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F IGURE 4 For each region of interest
(ROI) of each test subject, M1 contours by the
five radiation oncologists (ROs) were
combined with STAPLE28 finalization
algorithm to obtain a common reference
RefM1 (a). Similarly, AM1 contours (automatic
contours, manually corrected by ROs) were
combined to obtain RefAM1 (b)

2.5 Statistical tests

Statistical tests for paired data were applied to com-
pare M1 to M2, AM1 to AM2, or M to AM data, for the
same RO and test subject. t-Test or Wilcoxon signed-
rank test were used to statistically compare the loca-
tion of DSC and MDA distributions (the former for
normally distributed data and the latter for data not-
normally distributed).To guide the choice between para-
metric and non-parametric statistical tests, a normality
test of Shapiro–Wilk was conducted.

To our knowledge, there is no appropriate statistical
test to compare dispersion of not-normally distributed
data, so we used the interquartile range (IQR) and we
evaluated the IQR ratio between the two distributions.

Two-tailed analyses were performed and a signifi-
cance level of 0.05 was adopted. Online calculators
were used to perform Shapiro–Wilk test (http://www.
statskingdom.com/ and https://www.gigacalculator.com/
calculators/normality-test-calculator.php) and Wilcoxon
signed-rank test (https://www.socscistatistics.com/).

3 RESULTS

3.1 Intra-observer variability

For each structure, the DSC and MDA calculated for
each test patient and each RO, between M1–M2 and
AM1–AM2, were used to generate boxplots, shown in
Figure 6a (DSC) and Figure 6b (MDA). Each boxplot
represents 30 data points (6 test subjects × 5 ROs). In
all the box-whisker plots throughout this study, whiskers
correspond to 5th and 95th percentile and odd data are
plotted singularly. For both femurs, we found an impor-
tant reduction of intra-observer variability, supported
by the significant Wilcoxon signed-rank test result with
p < 0.001 both in terms of DSC and MDA. Even for the
bladder,we obtained p < 0.001 both for DSC (t-test) and
MDA (Wilcoxon signed-rank test). On the contrary, for

both rectum and PNL,we did not find any statistically sig-
nificant difference neither in terms of DSC nor in terms
of MDA.

To quantify the change in intra-observer variability, we
report the variation in terms of MDA 95th percentile for
each structure from M to AM contours: 1.0 to 0.7 mm,
1.1 mm unaltered, 3.2 to 1.5 mm, 1.1 to 0.4 mm, and 1.0
to 0.6 mm for bladder, rectum, PLN, femoral head left,
and femoral head right, respectively.

3.2 Inter-observer variability

The comparison between inter-observer variability of
manual procedure (M1 vs. RefM1) and automated pro-
cedure (AM1 vs. RefAM1) is shown in Figure 7, both in
terms of DSC (Figure 7a) and MDA (Figure 7b). Each
boxplot (one structure) is based on 30 points (5 ROs
× 6 test subjects). For statistical analysis, M and AM
indices are paired for the same RO and test subject.
The improvement in accuracy (DSC increase and MDA
decrease for AM1 with respect to M1) is statistically sig-
nificant: p < 0.001 for all ROIs, both for DSC and MDA.
The IQR ratio between AM and M contours is always
≤1, both for DSC and MDA (≤0.3 for femoral heads,
DSC).Unfortunately,we did not find any statistical test to
compare the dispersion of not-normally distributed data,
so we were not able to establish if the IQR decrease
(AM vs. M) might be considered statistically significant.
The analysis was repeated for M2 and AM2 contours,
confirming the statistically significant reduction of inter-
observer variability (p < 0.001 for all ROIs, both for DSC
and MDA).

In Figure 8, M1 (Figure 8a) and AM1 contours
(Figure 8b) of one representative test subject are pre-
sented. Each contour color corresponds to one of the
five ROs. The reduction of inter-observer variability in
AM1 set can clearly be noted, for example, in the inferior
limit of the rectum (indicated with the arrow). A critical
review of delineated volumes revealed that the rectum

http://www.statskingdom.com/
http://www.statskingdom.com/
https://www.gigacalculator.com/calculators/normality-test-calculator.php
https://www.gigacalculator.com/calculators/normality-test-calculator.php
https://www.socscistatistics.com/
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F IGURE 5 Inter-observer variability. For each region of interest
(ROI) of each test subject, contours M1 and AM1 by each radiation
oncologist (RO) were compared to RefM1 and RefAM1, respectively,
for both Dice similarity coefficient (DSC) and mean distance to
agreement (MDA) indices. Thus, for each index (DCS, MDA), two (M1
and AM1) 30 dimensional (5 ROIs × 6 test patients) vectors of
indices were obtained and compared with Wilcoxon signed-rank test
for paired data to evidence any possible effect on inter-observer
variability due to the introduction of automatism

inferior limit is the most critical issue influencing residual
inter-observer variability in AM contours.

3.3 Contouring time

TM and TAM for the whole pelvis, averaged over all test
subjects for each RO, are reported in Figure 9. The per-
centage of time savings between TM and TAM for each
RO is indicated.

Table 1 shows the averaged TM and TAM over all ROs
and test subjects with both absolute (TM and TAM) and
percentage of time savings for each structure and for

the whole pelvis. Femoral heads have been treated as
one single ROI for time analysis.

Time savings percentage varies by ROs (from 34%
to 55% and 12 to 23 min whole pelvis, respectively)
and ROIs (from 1.3 min and 32% for rectum to 6.4 min
and 74% for femoral heads). Average time savings
(over all ROs and test subjects) for the whole pelvis
was 45%.

Figure 10 shows the boxplots of contouring (M1 and
M2) and editing (AM1 and AM2) times for bladder
(Figure 10a), rectum (Figure 10b),PLN (Figure 10c),and
femoral heads (Figure 10d). Each boxplot series con-
tains 30 data points (5 ROs × 6 test patients). After
establishing the consistency between M1 and M2 con-
tours and between AM1 and AM2 contours, M contour-
ing times and AM editing times were compared for each
ROI by t-test analysis.

For each of the four ROIs, M1 was compared to M2
with a t-test: the null hypothesis is that M1 and M2 are
two samples extracted from the same data distribution.
A second t-test was conducted in the same manner
to compare AM1 with AM2, for a total of eight tests
(M1 vs. M2 and AM1 vs. AM2, for each of the four
ROIs). Only the comparison between AM1 and AM2 for
femoral heads presented statistically significant results
(p < 0.05), favoring AM2.The other seven tests were not
statistically significant.

All t-tests for the comparison of M to AM paired data
(M1–AM1 and M2–AM2 for each structure, for a total of
eight tests) presented statistically significant results with
p < 0.001.

3.4 Bias

Bias test results are reported in Table 2, where NO and
YES decisions indicate that contours needed correction
or were accepted, respectively.

Table 2 shows that in eight (out of 96) cases, M was
rejected, and AM accepted, while only in four (out of
96) cases the judgment was in favor of M, thus favoring
AM contours sets. However, McNemar’s test resulted in
p = 0.39, indicating that differences between AM and M
contours in terms of clinical accuracy were not statisti-
cally significant. This suggests that even if bias due to
the editing of pre-generated contours (AM) as opposed
to manually contouring (M) from scratch was present,
its effects were not detectable with this sample size
(Nc = 96).

4 DISCUSSION

In radiotherapy planning clinical practice, the greater dif-
ficulty in the delineation of certain structures, such as
PLN and rectum, translates into a greater intra-observer
variability, which could explain lower DSC and higher
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F IGURE 6 Intra-observer variability. Boxplots for each structure of 30 Dice similarity coefficient (DSC) (a) and 30 mean distance to
agreement (MDA) (b) similarity indexes between contours at two time points (1 and 2), calculated for the five radiation oncologists (ROs) and
the six test subjects (5 ROs × 6 test subjects = 30 indices for each boxplot). On the x-axis, manual and automatic procedures are indicated with
the terms M1–M2 and AM1–AM2, respectively

F IGURE 7 Inter-observer variability. Boxplots of 30 Dice similarity coefficient (DSC) (a) and 30 mean distance to agreement (MDA) (b)
similarity indexes for the five radiation oncologists (ROs) and the six test subjects were evaluated and placed side-by-side for manual
(M1–RefM1) and automated (AM1–RefAM1) procedures and for each structure

MDA values compared to the bladder and femoral heads
(Figure 6).

With regard to data dispersion (range and IQR in
the intra-observer variability boxplots), we believe this
could be related to inter-observer variability (each box-
plot contains data from all five ROs). This could explain
the observed range and IQR decrease due to auto-
contouring for all ROIs (both DSC and MDA).

From a geometrical and statistical point of view, the
AM contours showed a significant reduction in intra-

observer variability only for bladder and femoral heads.
For rectum and PLN, the statistic test did not evi-
dence a significant difference in intra-observer variabil-
ity. Nonetheless, the boxplots visually suggest a trend
in favor of AM contours, which could perhaps lead to a
significant result if a larger statistical sample was avail-
able; indeed, the indices distribution is more widespread
for rectum and PLN than for bladder and femoral heads.
This could be explained by noting that variability of delin-
eation of some organs at risk (e.g., rectum) may be
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F IGURE 8 Manual M1 contours (a) and AM contours (b) are compared for one of the six test subjects

F IGURE 9 TM and TAM pelvis contouring time and percentage
time savings, depending on radiation oncologist (RO). Values are
averaged over six test subjects. TM: average time for manual
contours, TAM: average time for editing automated contours

related to difficulties in detecting anatomical structures
and determining their limits. For example, the lower limit
of the rectum is usually determined by the cranial limit of
the elevator ani muscle,which can be critical to define in
planning CT (Figure 8), and the boundary between rec-
tum and prostate could be difficult to identify because of
poor contrast between the two structures. Intra-observer
variability of PNL volumes may be caused by uncer-
tainty in pelvic nodal clinical target volume definition.
Indeed, these structures are only partially defined by
real anatomical boundaries such as muscles or bones,
and the rest of the delineation relies on an arbitrary
7-mm surrogate margin around blood vessels. Further-
more, vessels are more difficult to identify by use of CT
images without contrast. Lack of intra-observer reduc-
tion for structures such as rectum and PLN may thus be
related to intrinsic delineation uncertainty (which affects
both auto-contours and manual contours), and conse-
quently increased need for editing automatic contours.

From a clinical point of view, however, the reduction
of the 95th percentile of MDA values was not relevant
for any of the considered structures (from M to AM con-

TABLE 1 TM, TAM, and percentage of time saving, for each
structure and for the whole pelvis

TM
(min)

TAM
(min)

|TM − TAM|
(min)

|TM − TAM|/
TM

Rectum 4.0 2.7 1.3 32%

Bladder 4.2 2.6 1.6 39%

PLN 18.7 12 6.7 36%

Femoral heads 8.7 2.2 6.4 74%

Pelvis 35.5 19.5 16 45%

Note: Values are averaged over five radiation oncologists (ROs) and six test
subjects. TM: average time for manual contours, TAM: average time for editing
automated contours.
Abbreviation: PLN, pelvic lymph-node.

tours:1.0 to 0.7 mm,1.1 mm unaltered,3.2 to 1.5 mm,1.1
to 0.4 mm, and 1.0 to 0.6 mm for bladder, rectum, PLN,
femoral head left, and femoral head right, respectively),
even considering the slice thickness of 3 mm of our CT
studies. Hence, from this study we can conclude that
intra-observer variability did not benefit significantly from
introducing automatic contouring in the clinical workflow.
A possible explanation is that the participating ROs were
senior,experienced ROs. It could be interesting to repeat
the study involving less experienced physicians.Further-
more, the differences in intra-observer variability may be
object of a further study investigating dose distribution
and dose volume histogram.

Concerning the interpretation of inter-observer vari-
ability,both data dispersion and position need to be con-
sidered. A reduction in inter-observer variability results
in a reduction of similarity indices dispersion and also
affects data position. Indeed, since similarity indices are
calculated for each single RO’s contour as compared to
the reference contour (obtained by combining the con-
tours of all enrolled ROs), the higher similarity among
each RO’s contour, the more similar they will be to the
common reference,and this will result in higher DSC val-
ues and lower MDA values.
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(a) (b)

(c) (d)

F IGURE 10 Contouring (M1 and M2) and editing (AM1 and AM2) times. For each structure, four boxplots were generated, for M1, M2, AM1,
and AM2, respectively, each representing 30 data points (5 ROs × 6 test patients)

TABLE 2 Contingency table for McNemar’s test applied to
radiation oncologist (RO) bias test to evidence any possible bias
introduced by automatic contouring

AM M
NO YES

NO 3 4

YES 8 81

Note: Acceptance (score YES) or refusal (score NO) was expressed altogether
over 96 structures, considering four radiation oncologists (ROs), four regions of
interest (ROIs) (bladder, rectum, pelvic lymph-node (PLN), and femoral heads),
and six test subjects.
Abbreviations: M, manual contour; AM, automatic-modified contour.

It is worthwhile to discuss the number of ROs enrolled
and the method used to define inter-observer variability
reference.Contours by n different operators can be com-
pared pairwise22–24 (the comparisons number being
determined by the pair combinations between operators,
i.e. n!∕(2 ⋅ (n − 2)!)). To reduce the computational effort
when dealing with more than three observers, defining
a common reference contour to which each observer’s
contour can be compared might be useful.19,23 Joskow-

icz et al.,26 in their study about inter-observer variability,
concluded that “The variability in manual delineations
for different structures and observers is large and
spans a wide range across a variety of structures and
pathologies. Two and even three observers may not be
sufficient to establish the full range of inter-observer
variability”. Based on this conclusion, we decided to
enroll five ROs. Since in this case the number of pair-
wise combinations would be 10 (which would lead to an
important computational/elaboration effort), we decided
to define a common reference by means of STAPLE
finalization algorithm.19 It is important to point out that,
due to this approach, inter-observer variability is not
expected to be on the same scale of intra-observer
variability. Indeed, based on our definition of intra- and
inter-observer variability, the former is like the devia-
tion between two measured values, while the latter is
more similar to the deviation of each measured value
compared to the mean of the values obtained from
repeated measurements of the same variable. In theory,
we could expect a higher inter-observer variability than
intra-observer variability,although this direct comparison
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can be done only with a pairwise, inter-observer compar-
ison and is not applicable to our study. However, based
on our inter-observer variability definition, DSC maxi-
mum values for inter-observer variability could be higher
than those of intra-observer variability, even though the
latter were evaluated on repeated contours of the same
operator. For this reason, statistics of inter- and intra-
observer variability are not directly comparable, and we
never reported them on the same plot. The definition of
inter-observer variability with respect to a common refer-
ence contour implies that DSC and MDA values have no
absolute meaning.The only meaningful information is to
test the statistical significance of the difference between
M and AM data.

In our retrospective study, DSC and MDA distribu-
tions for manual and automated contouring approaches
demonstrated that the introduction of automated con-
touring into the clinical workflow could reduce inter-
observer variability. Five ROs and six previously treated
subjects were involved in this study and for all evaluated
structures (bladder, rectum, PLN, and femoral heads)
a statistically significant (p < 0.001) difference in the
contours’ variability between manual and automated
approaches was observed.

This aspect has been investigated in other
studies5,19,22,23 but only two of these5,22 report about
auto-contouring of pelvis region. Langmack et al.5

enrolled one dosimetrist who was asked to contour the
pelvis CT studies of eight test subjects from scratch and
edit automatic contours of the same test subjects. Both
contours were compared with manually depicted con-
tours by one RO (acting as gold standard) to quantify
possible improvement through the introduction of auto-
mated contouring.A statistically significant improvement
was assessed only for prostate contour.

Young et al.22 enrolled three ROs for manual contour-
ing and automated contours editing of endometrial can-
cer nodal volumes of 10 test subjects. Inter-observer
variability was evaluated by comparing contours of two
ROs at a time. Only in one case out of three possi-
ble couples was inter-observer variability significantly
reduced statistically (p = 0.02), thanks to automation
introduction in contouring.

To our knowledge, this is the first study where the use
of an optimized CT pelvis atlas has been evaluated in
terms of contouring time,contouring accuracy,and intra-
and inter-observer variability.

An average contouring-time savings of 45% (36 min
vs. 19 min) for the five structures considered (averaged
over six test subjects, five test ROs) is the most appeal-
ing result of our study, with a statistically significant
(p < 0.001) time saving for all structures. The degree
of time saving is heavily dependent on the operator’s
clinical experience and familiarity with the atlas-based
segmentation tool and varies between 34% and 55%
(Figure 9). This finding is compatible with results
reported in previous studies.1–5 In general, contouring

and editing time may be inherently biased because each
physician saw the same patient CT four times and could
have become familiar with each case. Nonetheless, the
statistical analysis of time data for each ROI, shows
a strong consistency between M1 and M2, as well as
between AM1 and AM2. The only statistically signifi-
cant result was found in the case of femoral heads,
between AM1 and AM2 editing times (on average 1.84
and 2.61 min, respectively). Despite statistical signifi-
cance,this difference cannot be considered clinically rel-
evant,being a difference of only 46 s.On the other hand,
the comparison between AM and M was statistically sig-
nificant (p < 0.001) in favor of AM contours, in all cases
(M1–AM1, M2–AM2, for all structures).

From a clinical point of view, saving time is advan-
tageous only if the contouring remains robust and
reliable, otherwise it is not easily applicable. In our study,
the blind test to investigate the possible bias introduced
by automated contouring, did not evidence any statisti-
cally significant difference between AM and M contours.
The test was based on a statistical sample of 96 con-
tours, obtained by enrolling four experienced ROs and
considering six test subjects and four structures (blad-
der, rectum, femoral heads together, and PLN). As far as
we know, this kind of systematic evaluation has never
been reported before, although several studies have
mentioned clinical validation of an automatic contouring
method for pelvis CT.1–5,7,14

Based on these encouraging results in terms of time
savings and increased reproducibility of our work, fur-
ther investigation of these aspects by increasing the
number of test ROs and test subjects might be desir-
able, to increase the statistical analysis power.

Of note, DSC of the automatic contours generated by
our atlas and used for editing in this study is quite high
compared to the results reported in the literature. In our
previous work,18 we compared our results (mean DSC)
for bladder and rectum with DSC values obtained from
19 other studies (DSC min,DSC max):0.89 compared to
(0.59, 0.95) and 0.83 compared to (0.47, 0.92) for blad-
der and rectum, respectively. As for femoral heads, we
obtained a mean DSC of 0.96,compared to (0.69,0.98),
from 11 other studies.The share of studies that reported
lower DSC values compared to ours was 13/19 (blad-
der), 15/19 (rectum), 9/11 (femurs). For pelvic nodes, we
found only other two studies which reported mean DSC
0.7427 and 0.71,28 while we obtained a mean DSC of
0.85. Obviously, DSC values depend on the reference
and cannot be considered an absolute measure of
contour accuracy. However, this comparison reinforces
our hypothesis that each clinic institution could benefit
from a thorough optimization and even more customiza-
tion of their own auto-contouring atlas. Indeed, the aim
of atlas customization is precisely to obtain contours
as similar as possible to the manual reference con-
tours, following the same contouring criteria which have
been adopted in the considered institution. To obtain
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maximum benefit from auto-contouring, the manual
contouring accuracy of atlas subjects is a crucial ele-
ment. As in clinical practice, adherence to guidelines
for contouring is highly recommended. In this regard, a
preliminary audit performed by the five ROs was able to
evidence some minor differences in the contouring
criteria and was, in the end, useful in reaching a higher
degree of consensus among the ROs of our institu-
tion, before reviewing the atlas subjects’ contours and
initiating the clinical validation reported in this work.

5 CONCLUSION

In this study involving five experienced ROs and six test
subjects, a CT pelvis atlas and relative auto-contouring
workflow previously developed and optimized22 were
retrospectively validated from a clinical perspective.
Intra- and inter-observer variability evaluated on AM
contours were compared to those evaluated on M con-
tours. Intra-observer variability was significantly reduced
for bladder and femoral heads, while no impact on rec-
tum and PNL was obtained. Inter-observer variability
was reduced as well. The statistical analysis conducted
on DSC and MDA data, referred to a common ref-
erence contour, demonstrated a statistically significant
reduction of variability.The time savings achievable with
auto-contouring are operator-dependent but an average
reduction of pelvis contouring time of 45% is a promis-
ing result. Finally, we did not detect any bias introduced
by automation.

The creation and customization of an atlas-based
workflow is a time-consuming task that requires a care-
ful selection of atlas subjects, a strict standardization
of contouring criteria and a thorough tuning of atlas
and workflow parameters, but our result could encour-
age institutions to implement their own local atlas-based
workflows.
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