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Abstract

Background

Bloodstream infection (BSI) is a common and potentially life-threatening complication in
patients with hematological malignancies and therapy-induced neutropenia. Administration
of broad spectrum antibiotics has substantially decreased the mortality rate in febrile neutro-
penia, but bacterial infection is documented in only one-third or fewer of the cases. BSl is
typically diagnosed by blood culture; however, this method can detect only culturable
pathogens.

Methods

In the present study, a total of 130 blood samples from hematological patients receiving
dose-intensive antitumoural treatment were subjected to 16S rRNA PCR and 62 of them
were cultured. PCR positive samples were processed to high throughput sequencing by
amplifying the V1-V3 regions of the 16S rRNA gene to obtain a full spectrum of bacteria
presentin BSI.

Results

Five phyla and 30 genera were identified with sequencing compared to 2 phyla and 4 gen-
era with culture. The largest proportion of bacteria detected by sequencing belonged to Pro-
teobacteria (55.2%), Firmicutes (33.4%) and Actinobacteria (8.6%), while Fusobacteria
(0.4%) and Bacteroidetes (0.1%) were also detected. Ninety-eight percent of the bacteria
identified by sequencing were opportunistic human pathogens and 65% belonged to the
normal human microbiota.
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Conclusions

The present study indicates that BSIs in neutropenic hosts contain a much broader diversity
of bacteria, likely with host origin, than previously realized. The elevated ratio of Proteobac-
teria in BSI corroborates the results found in other systemic inflammatory diseases, such as
inflammatory bowel disease or mucosal infections. This knowledge may become of value
for tailoring antimicrobial drug administration.

Introduction

Infection during neutropenia is one of the most common causes of mortality in patients receiv-
ing chemotherapy. Mortality rates vary between 5-11% depending on the co-existing condi-
tions and can rise even higher if bacteremia is present [1]. The standard microbiological
diagnostic method in febrile episodes in neutropenic patients is blood culture. Its positivity rate
is dependent on whether the patient has received antibiotic prophylaxis or not, but typically
bacteremia may be identified in around 7-17% of the patients on antibiotics and in 14-31% of
those who are not on antibiotic treatment. Around 50-70% of the identified bacteria are
Gram-positive organisms [1-3], the high number is probably at least partly related to the use
of prophylactic antibiotics in many clinical settings. Febrile neutropenia is treated with empiri-
cally chosen broad-spectrum antibiotics and a more comprehensive identification of the
incriminated microorganisms would have the potential to reduce antibiotic overuse by target-
ing only specific bacteria, a strategy which could reduce the generation of resistant strains.

A substantial proportion of bacteria cannot be cultivated [4-7]. Diagnostic methods used to
diagnose bloodstream infections (BSI) are mostly limited to blood culture, which can detect
only culturable pathogens, or to real-time PCR, which detects microorganisms pre-defined by
primers [8]. By blood culture only a restricted range of pathogens may be identified, it might
take several days before a positive result is indicated and large volumes of blood are needed to
obtain optimal sensitivity, typically 20-40 ml/fever episode. Molecular methods, using 16S
rRNA amplicon sequencing, have the potential to reveal pathogens present in BSIs, which may
be undetected by culture-dependent methods. It requires < 1 ml of blood and because it uses
the variable regions of the 16S rRNA gene, identification of bacteria to genus or species level is
possible [4, 6, 9].

High-throughput sequencing is a quickly growing field, and has helped to characterize
microorganisms in several different habitats. Its expansion is powered by the development of
high throughput sequencing techniques, allowing sequencing billions of reads in a few days’
time. Sequencing of the 16S rRNA gene is commonly used for culture-independent analysis, as
this gene is universally present in bacteria, it is amplifiable by targeting conserved regions but
also allows characterization of microbes through its variable regions. Although massively paral-
lel sequencing makes species identification and estimating species abundance possible by its
high coverage, targeting multiple regions of the 16S rRNA gene allows a more accurate identifi-
cation of microorganisms [9]. In the present study, the variable V1-V3 regions were sequenced
in blood samples from neutropenic patients with fever and suspected BSI.

This study aimed to characterize the bacterial content in blood samples of immunocompro-
mised hematological patients in BSIs using high-throughput sequencing. Sequencing data were
then compared with results from blood culture, the current gold standard for the diagnosis of
BSIs.
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Materials and Methods
Study population and sampling

Patients with hematological malignancies fit for dose intensive antitumoural treatment at the
Hematology Center, Karolinska University Hospital in Stockholm, Sweden, were eligible for
enrollment. Patients with acute myeloblastic leukaemia (AML) were included upon diagnosis
whereas patients with other diagnoses could be asked to participate at any time points of the
antitumoural treatment. Included patients were then sampled with two 4.5 mL EDTA tubes at
different time point; 1) at diagnosis (only patients with AML), 2) at fever onset during neutro-
penia before intravenous broad spectrum antibiotic treatment was initiated, 3) follow-up sam-
ples to the fever-onset sample (only patients with AML), and 4) persisting fever during
intravenous broad spectrum antibiotic treatment.

Samples were taken over a 1-year period (2013 March-2014 March). Data on white blood
cell count (WBC), absolute neutrophil count (ANC), C-reactive protein (CRP) levels as well as
age, gender and hematological diagnosis were extracted retrospectively from the patients' med-
ical records. Samples were handled anonymously.

Ethics statement

Written consents were obtained from all patients. All adult subjects provided written, informed
consent, and a parent or guardian of any child participant provided written, informed consent
on their behalf. The study (recordal 2012/1929-31/1) was approved by The Regional Ethical
Review Board in Stockholm.

Definitions

Fever was defined as a single oral temperature of >38.5°C or a temperature of >38.0°C persist-
ing for >1 hour. Neutropenia was defined as a neutrophil count of <0.5 x10° cells/L, or a
higher count with a predicted decrease to <0.5 x10° cells/L within 24 hours.

Culture

Commercial BacT-Alert 3D system with 2-2 aerobic and anaerobic bottles was used (bioMér-
ieux, Marcy 1'Etoile, France). BSI was defined as an infection manifested by the presence of
bacteria in at least one culture bottle, or at least two blood culture bottles with the same micro-
organism growing in the case of common skin contaminants.

Sample preparation and sequencing

Blood samples for sequencing were drawn into sterile 4.5 ml Vacutainer (Becton Dickinson,
Franklin Lakes, NJ USA) tubes, were kept at 4°C and processed to DNA extraction within 1-24
hrs. MolYsis Complete5 kit (Molzym Life Science, Bremen, Germany) was used to extract
bacterial DNA following the manufacturer’s instructions with the following exceptions: 5 min-
utes were used for the final elution instead of 1, and samples were dissolved in 50 ul water
instead of 100 ul. Positivity for the 16S rRNA gene was controlled by the 520F (AYTGGGYD
TAAAGNG)-802R (TACNVGGGTATCTAATCC) primer pair [10] with 1x Phusion High
Fidelity master mix (New England Biolabs, Ipswich, MA, USA) and 200 nM primer concentra-
tion. Reactions were incubated at 98C for 2 min, then 98C for 30 sec, 40C for 30 sec, 72 for
Imin 30sec, cycled 35 times and incubated at 72C for 5 min. Amplicon sizes were controlled
on a 2% agarose gel. No template controls (NTCs) were run with each set of samples and all
DNA extraction reagents were tested for 16S rRNA PCR as well in order to investigate the pos-
sible contamination from the reagents used [11], but no detectable amplification was noted.
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Since longer 16S rRNA fragments result in more accurate identification [12], PCR positive
samples were subjected to library preparation with the 27F (AGAGTTTGATCCTGGCTCA
G)- 534R (ATTACCGCGGCTGCTGG) primer pair covering the V1-V3 regions of the 16S
rRNA [10], and were processed to 2x300 bp paired end (PE) sequencing on an Illumina MiSeq
instrument at GATC Biotech (Konstanz, Germany) as recommended by the manufacturer. In
order to examine possible contamination originated from the human blood and/or the envi-
ronment, a blood sample from a healthy donor and NTC samples were overamplified with 45
PCR cycles and were processed to Sanger sequencing. The resulting reads did not show signifi-
cant (>95%) similarity to any known bacteria when compared to the NCBI nr/nt database.
Sequencing reads generated in this study were deposited to Sequencing Read Archives under
experiment SRA:SRX668701, while background controls were deposited to NCBI GenBank
under accession number KR152337-KR152338.

Data analysis

Reads below Q20 and 246 bp, and PE reads that could not be merged (FLASH, [13]) were
removed. Cd-hit [14] was used for clustering with 99% similarity. Chimeras were removed
using UCHIME [15]. BLASTn was used for similarity search [16] with e < 107° and minimum
similarity set to 97%, with references from the Ribosomal Database project (RDP 11, [17]).
Taxonomic classification was based on NCBI Taxonomy [18]. Numbers of reads within each
cluster were used to calculate relative abundances. Identified genera and species were included
in the study if they contained at least 0.5% of the total number of operational taxonomic unit
(OTU)-assigned reads in each sample. The Qiime package [19-22] was used for phylogenetic
analysis with FastTree 2.1.3 [23] using the Silva_111 reference database [24] and was visualized
with FigTree v1.4.2. The exclude_seqs_by_blast.py was used to check human DNA contamina-
tion as part of the Qiime package.

Results

Clinical characteristics

A total of 33 patients were included in the study; 19 with AML and 14 with other highly malig-
nant hematological diagnoses. In total 130 blood samples were collected; 27 from AML patients
at diagnosis, 38 at fever onset, and 41 follow-up samples. A total of 24 samples were collected
from patients with persisting fever during broad spectrum antibiotic treatment (S1 Table).

Ninety-two samples were from patients with AML as the underlying diagnosis (70.8%),
acute lymphoblastic leukaemia for 21 samples (16.2%), acute promyelocytic leukaemia for 8
samples (6.2%), mantle cell lymphoma for 4 samples (3.1%), Burkitt lymphoma for 3 samples
(2.3%), and diffuse large B-cell lymphoma for 2 samples (1.5%).

The average age of the total study population was 52.2 years + 16.3 (mean + SD, n = 130)
with 40% females, WBC = 0.8 + 2.1 (n = 87), ANC =0.3 +0.9 (n =59), CRP level = 75 + 53
(n=78).

In fever onset samples, the age of patients was 51 + 17.9 (n = 38), 39.5% females,
WBC=12+3.1(n=33),ANC=04+12(n=29),CRP =516 +37.5 (n=30).

In persisting fever samples, the age was 53.1 £ 15.5 (n = 24), 33.3% females,

WBC = 0.3 4 0.7 (n = 20), ANC = 0.1 + 0.4 (n = 10), CRP = 117.8 + 49.5 (n = 16).

In follow up samples, the average age was 50.3 + 15.8 years (n = 41), 41.5% females,

WBC=0.8+1.1(n=34), ANC=0.2+0.4 (n=20), CRP =75.6 £ 54.6 (n = 32).
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Positivity rates

A total of 130 blood samples were investigated with 16S rRNA PCR in this study and 65 of
them with blood culture. Nineteen samples were positive by PCR out of 130 (14.6%) and 10 by
blood culture out of 65 (15.4%), with 6 samples positive by both methods (SI and S2 Tables).
Positivity rate in fever onset samples (n = 38) was 23.7% (9/38) with PCR and 21.1% (8/38)
with culture; in persisting fever samples (n = 24) the corresponding rates were 29.2% (7/24)
and 8.3% (2/24); in follow up samples (n = 41) 7.3% (3/41) were positive with PCR and none
with culture. In the 27 inclusion none was found to be positive with PCR. Accordingly, a total
of 19 samples were positive by PCR and thereby processed to sequencing.

Sequencing

PCR positive samples were processed to sequencing. A total of 2,764,592 reads were assigned to
bacterial OTUs (S3 Table, average per sample: 145,504). In the entire dataset, sequencing
detected members of five bacterial phyla; most reads were assigned to Proteobacteria (55.2%) and
Firmicutes (33.4%). Apart from these, Actinobacteria (8.6%), Fusobacteria (0.4%) and Bacteroi-
detes (0.1%) were also detected (Fig 1). All samples except ID_48 contained bacteria from more
than one phylum. Of the total number of reads, 55.7% belonged to Gram-negative bacteria.

Within the 5 phyla, 30 genera were identified, where Strepfococcus (detected in 18 cases out
of 19), Pseudomonas (17/19), Shewanella and Staphylococcus (16/19), Pelomonas and Propioni-
bacterium (14/19) were the most prevalent. Sixteen genera occurred in only 1 case (Fig 2A) and
20 genera had <1% of all assigned reads (Fig 2B). Although Streptococcus, Propionibacterium
and Pelomonas were amongst the most commonly occurring genera (detected in 18/14/14
cases, respectively; Fig 2A), the total read percentages show that they contain a relatively small
proportion of all assigned reads (Streptococcus: 8.8%, Propionibacterium: 5.3%, Pelomonas:
1.2%; Fig 2B). On the other hand, Delftia and Halomonas genera occurred only in 3 and 2
cases, respectively, but contained 2.7% and 3% of all assigned reads.

Over 98% of the identified reads belonged to reported human pathogens, and 65% of them
belonged to the normal human microbiota (Fig 2C). Most of the identified genera (80.5% of the
total reads) belonged to anaerobic or facultative anaerobic bacteria. Altogether 58 species were iden-
tified; 16 genera contained multiple species, typically with one dominant (Fig 3). Even though spe-
cies were identified with >97% similarity, the 16S rRNA gene can have <1% diversity in between
some species [9]. Eight genera could not be classified to the species level due to the high inter-spe-
cies similarity. Sequencing of the V1-V3 regions also enabled phylogenetic analysis (S1 Fig).

The diversity of the samples illustrated with rarefaction curves (S2 Fig) indicate that in
some cases >10,000x coverage might be necessary to identify all pathogens present with high-
throughput sequencing.

Culture

Viridans group streptococci (7), coagulase-negative staphylococci (CoNS, 2), E. coli (1) and
Enterococcus faecalis (1) were identified in blood cultures, with one polymicrobial infection
(CoNS + E. faecalis, in sample ID_86). All of the bacteria detected by both culture and sequenc-
ing belonged to the Firmicutes phylum (Fig 1C, S2 Table).

Effect of antibiotic treatment on bacterial composition

In three pairs of samples (before-after antibiotic treatment: samples 48-49, 54-55, 120-129) we
found PCR positive samples despite of antibiotic treatment. In two cases (48-49 and 120-129)
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Fig 1. Representation of the distribution of phyla with sequencing in all samples (a) and in individual
samples (b). Detected phyla per sample with blood culture (c).

doi:10.1371/journal.pone.0135756.g001

the bacterial composition underwent a major change after the antibiotic treatment, but in one
case (54-55) the bacterial composition remained identical (Fig 4).

Discussion

Febrile neutropenia is a severe medical condition in immunocompromised patients and in
those undergoing chemotherapy; and is a common cause of death when coupled with bacter-
emia [25].

Routine diagnosis of BSIs is based on the identification of pathogens by use of blood culture
bottles. However, blood cultures have several limitations: the growth in the bottle can be slow,
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doi:10.1371/journal.pone.0135756.9002

and several days may be required before growth can be noted; a large volume of blood is
required to optimize sensitivity and only culturable pathogens can be detected. In one study,
high-throughput sequencing was proven to detect more bacterial pathogens and was shown to
be more sensitive than culture or Sanger sequencing in CSF samples [26]. In the presented
work, blood culture was shown to detect fewer microorganisms in fewer cases compared to
high-throughput sequencing. Thus, results obtained with blood culture may not reveal optimal
data for management and might lead to inadequate treatment. The Firmicutes phylum were
dominant with blood culture (Fig 1C), indicating a narrow range of detectable pathogens, pos-
sibly due to a competition in the growth of culturable pathogens in blood cultures. Blood cul-
ture typically detects only one pathogen per sample, while the bacterial composition of BSIs in
neutropenic febrile hosts seems to be much wider according to the results from high-through-
put sequencing (Figs 1-3). It has to be noted that the efficacy of both classical and molecular
diagnostics methods depends on several factors regarding the detection of pathogens in blood,
including sampling, bacterial load, bacterial interference, etc.

Despite its numerous advantages, high-throughput sequencing raises considerable chal-
lenges as well: although sequencing costs continue to decrease, the cost of an instrument and
the reagent costs remain high. Sequencing runs can take a few days to complete and the large
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amount of data generated from a sequencing run requires bioinformatics solutions. Due to
sequence similarities of the 16S rRNA genes between microorganisms, identification of lower
taxonomic categories (eg., species level) can be less certain [27] and antibiotic resistance pat-
terns cannot be identified with this method. Also, while blood culture detects only viable
microorganisms, pathogens identified by 16S rRNA sequencing might not necessarily be func-
tional as shown in this study: positivity rate was the highest in fever onset samples both with
PCR and culture (26% and 21%, respectively), indicating the presence of a high load of viable
bacteria. However, in persisting fever samples, as the antibiotic treatment started, positivity
rate of culture decreased to 4% while PCR maintained 24%, implying the presence of non-via-
ble bacteria. PCR therefore offers an extended time for detecting BSIs during and after antibi-
otic treatment (S1 Table).

High-throughput sequencing

Five phyla and thirty genera were identified with this method. All genera found in these sam-
ples have been previously reported in bacteremia except the Pelomonas genus, which, however,
has been isolated from haemodialysis water [28]. The majority of sequencing reads belonged to
bacteria which form the normal human microbiota (Fig 2C), supporting the notion that trans-
location of the human microbiota plays a decisive role in bacteremia [29]. In addition, mostly
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anaerobic bacteria were detected in the presented samples and similarly, the human microbiota
largely consists of anaerobic bacteria [7].

The Shewanella genus (formerly classified as Pseudomonas) was detected in over 80% of the
samples (Fig 3). Although Shewanella bacteremia is a well-reported phenomenon [30-33], our
results suggest that its relevance may be underestimated as it is not routinely diagnosed. Studies
suggest that especially immunocompromised patients might be commonly infected with this
pathogen, although its clinical significance is not fully known [33]. Additionally, because of
their different clinical characteristics and susceptibilities to antimicrobial agents, it is important
to differentiate S. algae from S. putrefaciens and as shown, sequencing of the 16S rRNA gene
can identify Shewanella on the species level.

Similarly to another report [34], Staphylococcus and Pseudomonas were amongst the most
commonly identified pathogens in patients with neutropenia, although Escherichia was identi-
fied in only one case in the present report in contrast to the findings reported by Ortega et al.
[34]. Pseudomonas commonly occurs in hospital-acquired infections in immunocompromised
patients [35]; it is one of the most genetically divergent genera and it was one of the most prev-
alent genera in the examined samples. However, the similarity of the 16S rRNA gene between
Pseudomonas strains can be >99% [36]; therefore sequencing of the 16S rRNA gene does not
discriminate appropriately between species for the Pseudomonas genus [37, 38].

The microbiota composition of BSI shows highest similarity to that of
inflammatory bowel disease

The composition of microbiota can change in pathophysiological conditions associated with
systemic inflammation, such as allergy or autoimmune diseases, due to the microbiota’s ability
to participate in the regulation of the host’s immune system [39-43]. In order to investigate
bacterial composition in BSIs, we compared the distribution of the four major phyla found in
the reported samples with other studies characterizing the microbiota in different parts of the
body (Fig 5).

In comparison to the microbiota in BSIs, Firmicutes and Bacteroidetes are the main phyla
in the gut, while Proteobacteria can be found in very low percentages ([44, 45], Fig 5).
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Fig 5. Composition of microbiota from different parts of the body classified by four major bacterial phyla. The graph was reconstructed based on the
data from [44, 45, 51, 53, 55]. Axes show percentages.

doi:10.1371/journal.pone.0135756.g005

However, gut microbiota from inflammatory bowel disease [44] showed the largest overlap
with our samples from all compared microbiota, indicating that the formation and composi-
tion of microbes play an important role in systemic inflammation [39], represented by an
increased proportion of Proteobacteria as demonstrated in the present study and in other cases
[46-49].

On the skin, Firmicutes, Proteobacteria and Actinobacteria are also commonly found [50],
although that depends on various factors, such as dryness of the skin and sampling sites [51].
Typically, the skin is dominated by Actinobacteria [52], and the moist skin sites had the largest
overlap with our samples amongst different skin microbiota, possibly due to sampling or trans-
location [40]. Grice et al. reported a larger proportion of Proteobacteria when the skin was
sampled from the inner elbow [52].

Lemon and colleagues reported [53] an inverse correlation between Actinobacteria and Fir-
micutes in the microbiota of the nostril. This effect has been detected in the presented samples
as well, e.g., in samples ID_129 (with Propionibacterium detected) and 120 (with Streptococcus
detected), where sample 120 represent the situation before antibiotic treatment.

Our results show partial similarity with the lung microbiota [40, 54], where, based on multi-
ple studies, Proteobacteria and Firmicutes are consistently the most commonly identified phyla
and Pseudomonas, Streptococcus and Prevotella are the most common genera. It has to be
noted however, that methodologies for characterizing microbiota vary widely which might
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influence any comparison. Apart from the methodological aspects, microbiota carry-over
might also be considered in clinical samples [40].

Bacteria identified in BSIs are dominated by Proteobacteria (Figs 1 and 5)-a phylum, which
has been identified in local inflammations and has been recently associated with systemic
inflammation [46-49]. The elevated ratio of Proteobacteria might be caused by the special
metabolism of this phylum to utilize nitric metabolites abundant on inflammatory sites [39]. A
large proportion of the identified bacteria belonged to the normal human microbiota (Figs 2
and 3), implying its role in the formation of systemic inflammatory response.

High-throughput sequencing as a potential tool to assess the efficacy of
antibiotic treatments

Characterization of the microbiota in BSIs would not only help in choosing antibiotic treat-
ment options, but it would also enable to estimate the efficacy of antimicrobial treatment
(Fig 4, S3 Fig). Interestingly, we could detect different effects of the antibiotic treatments in dif-
ferent samples of the same patient. In one case the content of bacteria did not change while in
another case drastic changes could be observed. The former indicates that treatment did not
eliminate the invading microorganisms, while in the latter case, elimination of the bacteria led
to re-population or co-infection by different strains. One patient had Pseudomonas and Serra-
tia detected before sampling (Fig 4, sample 48), and after piperacillin-tazobactam treatment,
the proportion of these genera decreased, indicating the effect of antibiotic treatment consistent
with these genera often being susceptible to this compound in our clinical setting. However
instead Propionibacterium and Staphylococcus were present in the follow-up sample (sample
49), which could also be related to contamination from the skin microbiota. In samples 54 and
55, Staphylococcus, Shewanella and Corynebacterium were detected both before and after piper-
acillin-tazobactam treatment, possibly due to resistance to this drug. In samples 120 and 129,
Shewanella prevailed, while Staphylococcus and Streptococcus disappeared after drug adminis-
tration, which could be consistent with the administered combination treatment of piperacil-
lin-tazobactam and clindamycin treatment.

Although these preliminary findings are based on a very limited number of samples, the
data indicate that high-throughput sequencing may have the potential to become a promising
tool in evaluating the efficacy of antibiotic therapy.

Conclusion

Promoting rational antimicrobial use is essential to restrict the development of antibiotic resis-
tance. As shown, high-throughput sequencing is able to identify a wide range of pathogens
undetected by classical methods. By knowing the relative abundance of pathogens, a more cus-
tomized treatment could be administered. Additionally, revealing the composition of micro-
biota in BSIs might help to understand its role in the pathomechanisms behind sepsis and
provide information on the factors relevant in systemic inflammatory responses.

Supporting Information

S1 Fig. Phylogenetic representation of sample ID_149 showing distribution of the identi-
fied genera and phyla based on the assigned OTUs.
(TIF)

S2 Fig. Rarefaction curves show species count in relation to number of reads in OTU-
assigned unique clusters.
(TIF)
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S3 Fig. Heat map with a correlation scale shows the distribution of genera per sample. Blue
ellipses indicate culture results.
(TIF)

S1 Table. Representation of samples used in this study, cells indicating PCR / culture
results, respectively. Brown = PCR positive, yellow = culture positive, green = positive with
both methods, na = no culture taken, NA = no sample taken, sum = sum of positive samples.
Empty cells = no sample available.

(DOCX)

$2 Table. Comparison of bateria detected by sequencing and blood culture. ' In patients 9
and 25, sequencing identified S. mitis, S. pneumoniae and S. pseudopneumoniae, while, apart
from these three species, in patient 27 S. infantis, S. oralis and S. australis were also detected,
confirming the presence of viridans streptococci. *In patient 10, S. dysgalactiae (B-hemolytic
streptococci) was detected by sequencing. *In patient 17, in agreement with the culture result,
sequencing detected a coagulase-negative Staphylococcus (S. Saphrophyticus). CoNS: Coagu-
lase-negative staphylococci.

(DOCX)

S3 Table. Sequencing statistics of assigned reads per sample.
(DOCX)
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