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Brain-machine interface-controlled (BMI) neurofeedback training aims to modulate

cortical physiology and is applied during neurorehabilitation to increase the

responsiveness of the brain to subsequent physiotherapy. In a parallel line of research,

robotic exoskeletons are used in goal-oriented rehabilitation exercises for patients

with severe motor impairment to extend their range of motion (ROM) and the intensity

of training. Furthermore, neuromuscular electrical stimulation (NMES) is applied in

neurologically impaired patients to restore muscle strength by closing the sensorimotor

loop. In this proof-of-principle study, we explored an integrated approach for providing

assistance as needed to amplify the task-related ROM and the movement-related

brain modulation during rehabilitation exercises of severely impaired patients. For

this purpose, we combined these three approaches (BMI, NMES, and exoskeleton)

in an integrated neuroprosthesis and studied the feasibility of this device in seven

severely affected chronic stroke patients who performed wrist flexion and extension

exercises while receiving feedback via a virtual environment. They were assisted by a

gravity-compensating, seven degree-of-freedom exoskeleton which was attached to

the paretic arm. NMES was applied to the wrist extensor and flexor muscles during

the exercises and was controlled by a hybrid BMI based on both sensorimotor cortical

desynchronization (ERD) and electromyography (EMG) activity. The stimulation intensity

was individualized for each targeted muscle and remained subthreshold, i.e., induced

no overt support. The hybrid BMI controlled the stimulation significantly better than the

offline analyzed ERD (p = 0.028) or EMG (p = 0.021) modality alone. Neuromuscular

stimulation could be well integrated into the exoskeleton-based training and amplified

both the task-related ROM (p = 0.009) and the movement-related brain modulation

(p = 0.019). Combining a hybrid BMI with neuromuscular stimulation and antigravity

assistance augments upper limb function and brain activity during rehabilitation exercises

and may thus provide a novel restorative framework for severely affected stroke patients.

Keywords: functional electrical stimulation, robot-assisted rehabilitation, brain-robot interface, brain-machine

interface, brain-computer interface, functional restoration, motor recovery, upper-limb assistance
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INTRODUCTION

Standard of care leaves the majority of stroke survivors with
a dysfunctional upper extremity and, consequently, with a
long-term dependency on others for activities of daily living
(Jørgensen et al., 1999; Dobkin, 2005; Feigin et al., 2008).
Attempts to improve recovery in this patient group are numerous
and embrace advanced rehabilitation technology for motor re-
learning such as brain-interface based neurofeedback training
(Ang et al., 2015; Morone et al., 2015; Pichiorri et al., 2015),
robot-assisted rehabilitation devices (Lo et al., 2010; Klamroth-
Marganska et al., 2014) and activity-dependent neuromuscular
stimulation techniques (Thrasher et al., 2008; Oujamaa et al.,
2009; Mann et al., 2011). Recent approaches combine these
different methods in a bid to maximize the overall benefits
(Meadmore et al., 2014; Brauchle et al., 2015; Hortal et al.,
2015; Grimm and Gharabaghi, 2016). However, there is still a
critical need in the rehabilitation community to provide options
for stroke patients with chronic impairments. In this context,
movement-related desynchronization (ERD) in the contralateral
sensorimotor cortex has been shown to be compromised in stroke
patients compared to healthy controls; notably, the more severe
the patient’s motor impairment, the less beta-band ERD (Rossiter
et al., 2014). Accordingly, increasing this oscillatory modulation
range again would provide a therapeutic target for a restorative
training approach.

In the present proof-of-principle study, we explored an
integrated approach for providing assistance as needed to
amplify the task-related range of motion (ROM) and the
movement-related brain modulation during rehabilitation
exercises of severely impaired patients; we have, therefore,
combined different rehabilitation tools: brain-controlled
neurofeedback training, an upper limb multi-joint exoskeleton,
and activity-dependent neuromuscular electrical stimulation
(NMES). These different components served the following
goals: The brain-controlled neurofeedback training based on
motor imagery has recently been shown to increase task-related
oscillatory modulation, specifically in the beta-frequency band,
in correlation with corticospinal excitability (Kraus et al., 2016a)
and motor learning (Naros et al., 2016a). Moreover, previous
findings indicated that NMES amplifies both cortical ERD
(Müller et al., 2003) and excitability when combined with motor
imagery (Reynolds et al., 2015) or volitional effort (Stein et al.,
2013). More specifically, during NMES movement a prominent
ERD was found similar to that observed after active or passive
movements suggesting that the sensorimotor processing during
NMES involves some of the processes which are also involved
in voluntary hand movements (Müller et al., 2003). Finally,
multi-joint gravity compensation of the upper extremity has
recently been shown to increase the movement range of severely
affected stroke patients (Grimm et al., 2016), particularly when
combined with NMES (Grimm and Gharabaghi, 2016).

However, the presented multifaceted device differs from
previous approaches in several ways: the brain-controlled
neurofeedback was not provided by an active robotic exoskeleton
(Brauchle et al., 2015) but by NMES combined with a passive
un-weighting exoskeleton (Meadmore et al., 2012; Hortal

et al., 2015); in addition, NMES was not applied to proximal
(Meadmore et al., 2012; Hortal et al., 2015) but to distal
muscles (Meadmore et al., 2014), and was not controlled by
kinematic information (Meadmore et al., 2012, 2014), but by
physiological signals (Brauchle et al., 2015; Hortal et al., 2015)
while applying a hybrid brain-machine interface (BMI) based
on both sensorimotor cortical desynchronization (ERD) and
electromyography (EMG) activity. Moreover, NMES induced no
overt support (Meadmore et al., 2014; Hortal et al., 2015) but
remained subthreshold (Grimm and Gharabaghi, 2016).

These modifications aimed to address limitations of current
rehabilitation technologies, which usually take an all-or-nothing
approach, e.g., by providing active robotic guidance to complete
a movement as soon as the patient fails to reach the defined
goal (Klamroth-Marganska et al., 2014); or by triggering NMES
for overt muscle contraction, also referred to as functional
electrical stimulation (FES), as soon as a predefined physiological
state (recorded with either EMG or EEG) is achieved (Howlett
et al., 2015). This all-or-nothing approach offers an important
experience for patients who have not been able to move their
hand or arm for years. From a motor learning perspective,
however, it might be more successful to provide such rewarding
feedback, e.g., robot-assisted movement of the paretic hand, only
when a certain level of effort is made by the participant and
gradually increased in the course of the training (Naros and
Gharabaghi, 2015; Naros et al., 2016a). More targeted assistance
might, therefore, be necessary during the rehabilitation exercises
to maintain engagement without compromising the patients’
motivation; i.e., by providing support—as little as possible and
as much as necessary.

We, therefore, hypothesized that the adjustments
implemented in our integrated approach provide assistance
as needed to amplify the task-related ROM and the movement-
related brain modulation during rehabilitation exercises of
severely affected stroke patients without compromising their
engagement.

METHODS

Patients were selected for this study when they were in the
chronic phase after stroke (>6 months) presenting with a
severe and persistent hemiparesis [modified upper extremity
Fugl-Meyer-Assessment score (mUE-FMA) < 25]. Seven stroke
patients (mean age: 59 ± 9.3 [41 89] years; 66.43 ± 16.6
[34 80] months post stroke; 14.3 ± 4.7 [9 23] mUE-FMA;
male: female, 6:1; ischemic (middle cerebral artery): hemorrhagic
stroke, 3:4; right: left hemisphere, 6:1). The mUE-FMA (without
coordination, speed, and reflexes) was used to ensure that our
results were comparable to earlier studies (Brauchle et al., 2015;
Naros and Gharabaghi, 2015). This study, which was approved
in accordance with the guidelines of the ethics committee of
the local medical faculty, involved two sessions of wrist training
with a multi-joint exoskeleton attached to the paretic arm.
Each session consisted of approximately 30–40 movement trials
with alternating wrist extension and flexion. Each movement
period (extension or flexion) lasted for 5 s and was preceded
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by a 5 s rest period. This study is part of a larger research
program on assisted reach-to-grasp movements in severely
affected stroke patients. Within this framework, recent studies
have revealed the importance of anti-gravity support with a
multi-joint exoskeleton. We therefore applied this exoskeleton-
based setup in this study as well to facilitate the transfer of
the present findings into the overall research program. The
exoskeleton and virtual reality have been described in detail
elsewhere (Grimm and Gharabaghi, 2016; Grimm et al., 2016)
and are cited here where applicable.

Exoskeleton and Virtual Reality
We used a commercially available (Armeo Spring, Hocoma,
Volketswil, Switzerland) rehabilitation exoskeleton for shoulder,
elbow and wrist joints with seven axes (i.e., degrees of freedom)
to provide antigravity support for the paretic arm and to
register movement kinematics and grip force. Unweighing was
realized via two springs that were incorporated into the device.
This device could be used to make individual adjustments
of, for example, the gravity compensation, thereby supporting
patients with severe impairment in performing task-oriented
practice within a motivating virtual environment. We extended
these features in-house by using the real-time sensor data
of the exoskeleton to display a three-dimensional multi-joint
visualization of the user’s arm in virtual reality. This entailed the
use of a file mapping communication protocol to capture the
angles of all arm joints and the grip force from a shared memory
block. The virtual arm engine was programmed in a Microsoft
XNATM framework. The arm model utilized by the engine was
constructed as a meshed bone-skin combination with 54 bones
(3Ds Max 2010TM, Autodesk). Using the measured joint angles
and grip forces of the device, the bone-vectors of the meshed
model were modified according to the movements of the user
to provide online closed-loop feedback. The joint angles of the
exoskeleton were directly represented in virtual reality, whereas
the grip forces were augmented (i.e., amplified in virtual reality

on the screen) to feedback natural hand function. This allowed
visualizing finger movements on the screen, even though this
information was not used for the study. However, the three-
dimensional visualization of the fingers and wrist was applied
during each task as an implicit online feedback of the movement.
Prior to each session, participants were instructed to perform a
natural wrist movement during the tasks aiming at maximum
extension and flexion, respectively. The ROM of wrist movement
was calculated as the sum of maximum extension and flexion and
computed as the mean of each session.

Neuromuscular Electrical Stimulation
We integrated a NMES (De Marchis et al., 2016) device
(Rehastim, 8- channel stimulator, Hasomed GmbH, Magdeburg,
Germany) into the exoskeleton-based training environment with
two bipolar, self-adhesive electrodes (diameter: 40 mm), and
applied biphasic square impulses (frequency: 30Hz, pulse width:
500µs). The stimulation of this integrated neuroprosthesis
(Figure 1) was updated in a closed-loop, real-time iteration
at 60Hz via a Controller Area Network/Universal Serial Bus
(CAN/USB) port using a custom-made algorithm. Whenever the
BMI classifier output was positive (see below), NMES was applied
for 3 s to the M. extensor carpi ulnaris during wrist extension or
to the M. flexor carpi radialis during flexion movement.

Each patient performed two exoskeleton-supported training
sessions—one with and one without BMI-controlled NMES.
Both the exoskeleton and the maximum stimulation intensity
(Stimmax) were individually calibrated. The exoskeleton was
adjusted to provide optimized gravity compensation for every
joint and to allow for unrestricted wrist movements in three-
dimensional space. The Stimmax for each muscle group was
empirically determined as the output current approaching the
motor threshold but that was still perceived as comfortable. Since
all participants suffered from severe upper limb impairment,
prolonged supra-motor threshold stimulation was perceived as
painful and was therefore not applied. The stimulation intensity

FIGURE 1 | Integrated neuroprosthesis with feedback via a virtual environment. Assistance is provided by a gravity-compensating, seven degree-of-freedom

exoskeleton attached to the paretic arm. Neuromuscular electrical stimulation is applied to the wrist extensor and flexor muscles during the exercises and is controlled

by a hybrid brain-machine interface based on both sensorimotor cortical desynchronization and electromyography activity.
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was thus set in accordance with each patient’s comfort level and
just below motor-threshold, i.e., no visible joint movement, and
resulted in a mean of 10.5 mA (±4.4 mA) and 9.5 mA (±4.4 mA)
for the wrist flexor and extensor, respectively.

Data Acquisition
Electroencephalographic (EEG) signals were recorded
with BrainAmp DC amplifiers and an antialiasing filter
(BrainProducts, Munich, Germany) from 32 Ag/AgCl scalp
electrodes (sampling rate: 1000Hz) in accordance with the
international 10–20 system (FP1, FP2, F3, Fz, F4, FC5, FC3, FC1,
FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3,
CP1, CPz, CP2, CP4, CP6, P3, POz, P4, POz, O1, O2; reference:
FCz, ground: AFz). Electrode impedances were maintained
below 10 k�. Since it often exceeds the frequency range of
the physiological signals, ambient noise may compromise the
recordings. To avoid an aliasing error due to undersampling of
this noise, we, therefore, made every effort to remove all potential
sources of electrical noise from the experimental environment,
i.e., the high-frequency noise was deliberately avoided during
the experiment and verified offline. Thanks to this approach, we
observed no high-frequency noise in our recordings (Gharabaghi
et al., 2014a; Vukelić et al., 2014; Bauer et al., 2015; Naros and
Gharabaghi, 2015; Vukelić and Gharabaghi, 2015a,b).

Since EMG contaminations via compensatory movements are
known to compromise EEG-based BMI training (Gharabaghi
et al., 2014b), experienced examiners, who were trained to
recognize these artifacts, instructed the patient to minimize
them. As in previous studies with healthy subjects (Vukelić
et al., 2014) and severely affected stroke patients (Naros and
Gharabaghi, 2015), the patient was also instructed to avoid
blinking, chewing, and any head and body movements other
than the wrist movements. Together with visual inspection and
feedback by the examiner, this approach proved to be a feasible
method of preventing alternative BMI control. In addition, the
EEG data was reanalyzed offline by visual inspection to remove
all artifacted trials due to movement artifacts or current drifting;
this resulted in a mean of 4.5± 3.8 excluded trials.

Data Analysis
Band pass (2–150Hz) and notch filtering (50Hz) were applied
to the EEG raw signal. After epoching the filtered data into
trials, visual artifact rejection was performed. This yielded an
average of 26 ± 4 and 31 ± 3 (mean ± SD) trials in the non-
NMES and NMES sessions, respectively. The power spectrum
was normalized to the mean spectral distribution of the 5 s pre-
movement rest period of the session. Mean movement-related
spectral perturbation (ERSP) of the feedback electrodes were
calculated for each session using the EEGLAB-Toolbox (Delorme
and Makeig, 2004).

Surface electromyography (EMG) of the M. extensor carpi
ulnaris and M. flexor carpi radialis were recorded with a band-
pass filter of 0.1–1000Hz and a sampling rate of 1000Hz. The first
task was used to set an individual EMG-threshold (area under
the curve, AUC), to calibrate the EMG-classifier. Discrimination
between movement and rest was performed by analyzing the
activity of the measured EMG-channels. To this end, the EMG

data of these channels was bipolarized and a Butterworth high-
pass filter with an order of n= 2 and a cutoff at 1Hz was applied.
The waveform length WL (ti) =

∑ti
t=ti−w+1 |x (t + 1) − x (t)|

was calculated for each bipolarized EMG channel within a sliding
window of w = 200 ms length. The sliding window was moved
over the data in steps of 40 ms and corresponded to the waveform
length of both channels. The waveform length feature of EMG
has already been used to successfully decode differentmovements
from EMG activity (Tenore et al., 2009). To correct for a delayed
response of the subject to the cues, we calculated the cross-
correlation of a vector W = WL(t_i) containing the waveform
length feature with a vector P = P(t_i) which encodes the trial
phase, where P(t_i) = 1 if t_i is part of the movement phase
(otherwise 0). We used the latency of the maximum of the cross-
correlation sequence as an offset to improve the assignment
of the waveform length to the movement or rest class (MWL

or RWL, respectively). We identified the threshold T for the
discrimination between the two distributions MWL and RWL

with a Receiver Operating Characteristic (ROC) analysis. The
criterion for threshold selection was set such that the false-
positive rate was lower than 5% to ensure high specificity (≥0.95)
of the classifier.

Brain-Machine Interface (BMI)
The BMI environment was designed to stimulate the patient’s
wrist during the movement (recorded by EMG) as soon as
movement-related event-related desynchronization (ERD) in the
β-band was detected in the ipsilesional hemisphere (Walter et al.,
2012; Gharabaghi et al., 2014a). NMES stimulation was not
triggered unless both the EMG and EEG classifier gave a positive
output (Figure 2). We hypothesized that this hybrid approach
improves the stability of classification (Leeb et al., 2011) and
expected that the effects on ROM and ERD are bigger when using
BMI+NMES than the exoskeleton alone.

During the NMES session, the same EMG filtering and
feature extraction strategy as described above was employed.
After bipolarization and filtering, the samples of each data packet

FIGURE 2 | Flow chart of the closed-loop hybrid brain-machine

interface environment. Neuromuscular electrical stimulation is applied only

when both the EEG- and the EMG-classifier provide a positive output, i.e.,

when the task-specific effort of the participant is detected.
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from these channels were joined together to form a 200 ms-
long queue. The waveform length was computed, summed up for
both channels and compared to the threshold T for movement
detection. If it exceeded T, the EMG classifier gave a positive
output.

The EEG algorithm was based on the spectral power values
between 16 and 22Hz for three selected channels (FC4, C4, and
CP4). We applied the same frequency-range and setup as in our
previous BMI studies (Gharabaghi et al., 2014a; Vukelić et al.,
2014; Bauer et al., 2015; Naros andGharabaghi, 2015; Vukelić and
Gharabaghi, 2015a,b). The spectral power was calculated using
an autoregressive model order of 16 (McFarland and Wolpaw,
2008). This was fitted to the last 500 ms of the signal and updated
every 40 ms. Classifier output was positive when 5 consecutive
40 ms epochs (i.e., 200 ms) were classified as ERD-positive. An
epoch was not regarded as ERD-positive until the output of the
classifier exceeded a threshold θ (Walter et al., 2012; Gharabaghi
et al., 2014a; Naros and Gharabaghi, 2015; Naros et al., 2016a).
The online signal processing was performed with the standard
algorithm of the BCI2000 software (Mellinger et al., 2007). With
a bin width of 2Hz and targeted bin centers of 17, 19, and 21Hz,
the resulting frequency band was 16–22Hz and corresponded to
a wave length of between 45 and 62 ms. Choosing a data window
of 500ms enabled us to capture several cycles of these frequencies
for reliable power analysis. This approach has already proved to
be reliable in studies with the very same BMI setup (Walter et al.,
2012; Gharabaghi et al., 2014a; Vukelić et al., 2014; Bauer et al.,
2015; Naros and Gharabaghi, 2015; Vukelić and Gharabaghi,
2015a,b).

The sensitivity and specificity of the classifier of a linear
discriminant analysis were indicated by the true-positive rate
(TPR) and the true-negative rate (TNR), respectively; the
false-positive rate (FPR) equaled 1-TNR. TPR and TNR were
calculated by

TPR =
pNmove

Nmove
(1)

TNR =
nNrest

Nrest
(2)

with N as the total number of sample blocks in either the rest
or move period, and pN and nN as the positively and negatively
classified sample blocks, respectively.

The classification accuracy (CA) of a BMI system was defined
by

CA =
TPR+ TNR

2
(3)

and estimated for the different classifier modalities, i.e., EEG,
EMG, and hybrid EEG/EMG. In addition, the correct response
rate (CRR) was calculated as the ratio between the number of
actions (i.e., BMI controlled NMES assistance) and the number
of trials.

Statistics
Statistical analysis was performed on a Matlab 2010b Engine.
Data was tested for normal distribution using the Lilliefors-test

(2-sided goodness-of-fit test). For normally distributed data, a
dependent t-test for paired samples was performed; otherwise a
Wilcoxon’s signed ranks test was used. The significance level was
set at p= 0.05 for all tests.

RESULTS

Subthreshold NMES could be well integrated into the
exoskeleton-based training; the effects on ROM and ERD
were bigger when using BMI+NMES than the exoskeleton
alone. More specifically, this combined approach increased
the task-related ROM of the wrist from 18 ± 6◦ to 26 ± 8◦

(p= 0.009, Figure 3).
The patients showed ERD both in the non-supported and

the NMES-supported tasks. The ERD maximum for the decoded
channels and frequencies was −2.47 and −2.83 dB in the
non-supported and NMES-supported tasks, respectively. The
intervention modulated the movement-related brain activity by
amplifying the desynchronization (Figure 4) in the feedback
frequency band (16–22Hz) as well as by inducing significant (p
= 0.019) additional broadband ERD throughout the task period
in the low beta (14–16Hz), delta (2–5Hz), and gamma band
(45–47Hz) (Figure 5).

The hybrid BMI, i.e., combining the classification output of
the EEG and the EMG classifier, was used during the task for
online control. By achieving a mean classification accuracy of
66 ± 9.6% compared to 55 ± 6.4% (offline analysis with the
EEG-classifier only) and 55 ± 4.6% (offline analysis with the
EMG-classifier only, Figure 6), the hybrid BMI controlled the
stimulation significantly better than either the EEG (p = 0.028)
or the EMG (p = 0.021) modality. This gain was achieved by
increasing the specificity of the classification, i.e., by significantly

FIGURE 3 | Change of the task-related range of motion of the wrist.

Subthreshold neuromuscular electrical stimulation increases the range of

motion on the group level.
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FIGURE 4 | Event-related desynchronization in dB. Cortical activity and

standard deviation in the feedback frequency band (16–22Hz) as the average

at CF4, C4 CP4 for the different conditions on the group level.

reducing the false positive rates to 22 ± 7.1% with the hybrid
approach as compared to 37 ± 6.3% with the EMG (p = 0.037)
and 53 ± 5.1% with the EEG modality (p = 0.007). On average,
the device was triggered in 24 out of 31 trials, i.e., achieving a CRR
of 77%.

This improved accuracy with the hybrid approach was also
reached for the offline analysis of the non-NMES sessions (when
no BMI or classification took place) by achieving 63 ± 6.9%
compared to 56 ± 5.9% (EEG-classifier) and 55 ± 4.6% (EMG-
classifier, Figure 6); the hybrid BMI classified significantly better
than either the EEG (p= 0.031) or the EMG (p= 0.038)modality,
notably, without a potential bias by the actual application of this
classifier and the BMI-NMES during the task.

DISCUSSION

This proof-of-principle study has demonstrated the feasibility of
an integrated neuroprosthesis combining a hybrid BMI—based
on both cortical and muscle activity—with an exoskeleton and
NMES for neurofeedback training via a virtual environment;
this neuroprosthesis increased the ROM of wrist movement in
chronic stroke patients with a severe impairment of the upper-
extremity. Unlike other studies with similarly affected stroke
patients, in which robots completed a movement initiated by
the patients (Klamroth-Marganska et al., 2014; Brauchle et al.,
2015), the technology applied here provided antigravity-support
only (Housman et al., 2009), i.e., rendered no active assistance,
thereby exploiting patient engagement and avoiding under-
challenge during neurorehabilitation. However, future studies
need to disentangle the contributions and mechanisms of BMI,
NMES, and exoskeleton practice separately. Moreover, future
intervention studies need to apply multiple sessions to explore
whether cumulative increases of ROM and ERD can be achieved
with this approach.

In this context, brain-controlled neurofeedback training aims
to modulate cortical physiology and is applied to increase
the responsiveness of the brain to subsequent physiotherapy
(Pichiorri et al., 2015). When used in conjunction with
commercially available robotic rehabilitation technology, these
devices are also referred to as brain-robot interfaces (BRI; Bauer
et al., 2015; Fels et al., 2015; Kraus et al., 2016a; Naros et al.,
2016a). Such brain-robot interfaces can be applied for both
restorative and assistive purposes. Even though both methods
employ similar technology, restorative interfaces differ in concept
substantially from brain-controlled assistive devices, which aim
to compensate for lost function (Hochberg et al., 2012; Collinger
et al., 2013). While the latter approach intends to maximize
speed and classification accuracy for high-dimensional control
(Spüler et al., 2014, 2016), the former aims to facilitate self-
regulation of brain activity, which is considered beneficial for
recovery and might ultimately lead to persistent functional
gains (Naros and Gharabaghi, 2015). Such a restorative goal
necessitates methodological specifications, e.g., in the areas of
constrained feature space, regularized feature weights, cognitive
load, feedback modality, and threshold adaptation to facilitate
reinforcement learning of brain self-regulation and corticospinal
connectivity (Bauer et al., 2016a,b; Bauer and Gharabaghi, under
review). Proprioceptive feedback, for example, has been shown
to enhance brain self-regulation of beta-band oscillations in
comparison to visual feedback only (Vukelić and Gharabaghi,
2015a); these self-regulated beta-oscillations, in turn, correlated
with the increase in corticospinal excitability following BRI
training (Kraus et al., 2016a).

These specifications are, however, often not taken
into consideration when brain signals are applied during
rehabilitation practice, e.g., to control robotic devices or NMES.
Instead, classification algorithms are applied to maximize
accuracy in an unconstrained feature space, e.g., with support
vector machines computing optimal features of an extended
oscillatory frequency band, thereby resembling the approach
usually chosen for assistive brain-interfaces (Hortal et al.,
2015). Following the requirements of restorative neurofeedback
training, e.g., providing feedback to beta-band ERD may,
however, result in relatively low classification accuracy—as also
observed in the present study—and frustrate the participants
(Bauer and Gharabaghi, 2015a; Fels et al., 2015). This is
particularly true of the severely affected patient group since
movement-related beta-ERD in the ipsilesional primary cortex
is compromised in stroke patients in comparison to healthy
controls, i.e., the more severe the patient’s motor impairment,
the less beta-ERD (Rossiter et al., 2014).

In this context, we recently argued (Naros and Gharabaghi,
2015) that the fact that beta oscillations are less optimal for
classification purposes—e.g., for differentiating movement-
related brain states in many stroke patients—does not
compromise but rather qualifies this physiological marker
as a therapeutic target. We referred to an analogy to the concept
of constraint-induced movement therapy in stroke patients,
where the affected rather than the healthy body side is trained to
facilitate restoration instead of compensation of motor function
(Naros and Gharabaghi, 2015); and proposed that restorative
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FIGURE 5 | Event-related spectral perturbation in dB. Time-frequency plot of cortical activity as the average at CF4, C4 CP4 for the different conditions on the

group level. The intervention modulated the movement-related brain activity by prolonged desynchronization in the feedback frequency band (16–22Hz) indicated with

dotted lines as well as by inducing additional broadband ERD throughout the task period in the low beta, delta, and gamma band.

neurofeedback training should follow the therapeutic goal
of restoring the sensorimotor loop via improved beta-band
modulation rather than aiming to train the brain state that
enables the patient to control the exercising device best. The
latter is a strategy that is implicitly followed when selecting
individual frequency bands with best classification properties,
i.e., that best separate the rest and the task condition (Hortal
et al., 2015; Pichiorri et al., 2015).

Under these circumstances, complementary strategies such as
continuous threshold adaptation (Bauer and Gharabaghi, 2015a;
Naros and Gharabaghi, 2015; Bauer et al., 2016a) or hybrid

classifiers that consider both brain signals and electromyography
(EMG) activity (Leeb et al., 2011) are necessary to improve
patient control over the training devices. The latter approach
proved to be effective in the present feasibility study by increasing
the classification accuracy from 55 to 66% with the hybrid BMI,
compared to the EEG- or EMG-classifier, and resulting in 77%
task-related neuroprosthetic support. Notably, this improvement
was achieved by increasing the specificity of the feedback, i.e., by
decreasing the false positive rate, which is particularly relevant for
reinforcement learning with brain-interface based neurofeedback
(Bauer and Gharabaghi, 2015a), since the considerable challenge
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FIGURE 6 | Performance of the hybrid classifier. Classification accuracy

based on EEG, EMG, and EEG/EMG on the group level. The red cross

indicates an outlier.

of these exercises (Bauer and Gharabaghi, 2015b; Fels et al.,
2015) might condition the patients to explore alternative, i.e.,
therapeutically undesirable, strategies (Gharabaghi et al., 2014b).
Moreover, this hybrid approach enabled patients to achieve
BMI controlled NMES assistance in more than 70% of the
tasks, a level which is regarded as necessary for achieving
a sense of self-efficacy during motor learning with assistive
technology (Metzger et al., 2014). Notably, EMG signals alone
were insufficient for classification in this study and might in
general be inadequate as a control signal in the targeted patient
group due to paralysis and/or abnormally co-activated muscles
(Wright et al., 2014), a condition especially relevant in the
severely impaired stroke patients who might benefit most from
assistive rehabilitation technology.

Furthermore, the presented closed-loop framework facilitated
the beta-band ERD, thereby adhering to the operant conditioning
rationale, i.e., reinforcing the targeted activity considered to
be beneficial for recovery and which might ultimately lead
to functional gain (Bauer and Gharabaghi, 2015b; Naros and
Gharabaghi, 2015; Naros et al., 2016b). However, whether
this effect was achieved directly via the subthreshold NMES
or mediated by the increased ROM in the NMES condition
remains to be clarified. The spectral changes beyond the feedback
frequency band suggest the former since the stronger wrist
movement in the neuroprosthetic condition as compared to the
orthotic condition is unlikely to result in broadband modulation
of cortical activity in itself. Future studies, however, need to
test this hypothesis by comparing different movement extensions
with the same intervention, i.e., either neuroprosthetic or
orthotic support. Importantly, recent findings indicated that
NMES amplifies both ERD and cortical excitability when
combined with motor imagery (Reynolds et al., 2015) or
volitional effort (Stein et al., 2013). The facilitated ERD

might, therefore, provide the substrate for future gains
following repetitive application since the task-related ERD
during brain-robot training have been shown to correlate with
the cortico-spinal excitability after the intervention (Kraus et al.,
2016a).

In recent approaches for stroke rehabilitation, patients
controlled the rehabilitation robots with their brain signals,
i.e., via motor imagery-related oscillations of the ipsilesional
cortex, thereby successfully linking three-dimensional robotic
training for reach-to-grasp movements to the participant’s
effort (Brauchle et al., 2015). The findings suggest, however,
that sustained brain self-regulation for brain-controlled robotic
training might be challenging (Brauchle et al., 2015) and may
even be characterized by a significant association with the
experience of frustration for the participants (Fels et al., 2015).
To avoid this over-challenge, the brain-control assistance should
probably be applied with more precision. In the same vein,
complementary approaches applied NMES concurrently with
antigravity support with a multi-joint exoskeleton (Meadmore
et al., 2012; Hortal et al., 2015), thereby directly addressing the
strength of specific muscle groups. However, these approaches
stimulated proximal muscles of the upper limb, while the
activation of wrist and hand muscle might be particularly
important for functionally relevant improvements (Meadmore
et al., 2014). The brain-controlled NMES in the present study
has therefore been focused on wrist movement while continuous
antigravity support via a passive multi-joint exoskeleton was
provided to the rest of the upper limb.

In the context of neurorehabilitation, NMES is usually applied
at supra-motor threshold intensity (referred to as FES) to train
either arm or leg function; advanced approaches applied this
stimulation to the upper extremity in conjunction with brain-
interface technology for spinal cord injury patients (Pfurtscheller
et al., 2003; Kreilinger et al., 2013; Rohm et al., 2013; Vučković
et al., 2015) and stroke survivors (Ethier et al., 2015; Hortal et al.,
2015).

In this context, the present study was the first to apply BMI-
controlled subthreshold NMES to support the wrist exercises
by extending the ROM in accordance with the actual ability of
each patient. Importantly, to avoid under-challenge, stimulation
was applied adjunct to voluntary contraction and not as an
alternative. An additive stimulation approach such as this was
shown to be effective for repetitive task practice of upper limb
exercises in severely impaired, chronic stroke patients (Thrasher
et al., 2008; Oujamaa et al., 2009; Mann et al., 2011). However,
our neuromodulation paradigm remained subthreshold during
the task, whereas the aforementioned NMES studies of the
upper limb, even if physiologically triggered, followed an all-
or-nothing concept with supra-threshold stimulation. Our state-
dependent stimulation, which was controlled by the hybrid BMI,
was, therefore, more subtle than in these earlier approaches.
Due to the fact that functional muscle contraction was not
realized by the stimulation itself, the increased performance
was attained by modulations of self-initiated, orthosis-assisted
movements. This outcome indicates an overall facilitation of
sensorimotor networks by the subthreshold NMES and could
constitute a novel restorative strategy in chronic stroke patients
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suffering from severe impairment of the upper extremity.
Further research should investigate whether greater kinematic
gains can be attained with other stimulation paradigms, such
as the application of increased neuromuscular stimulation
or concurrent transcranial current stimulation to facilitate
exoskeleton-based motor leaning (Naros et al., 2016b). Our
approach, however, led to kinematic gains while still encouraging
our patients to participate. Progression of training is required
to provide a further challenge for motor learning (Guadagnoli
and Lee, 2004). This could be achieved either by means of a
decrease in the NMES support level (Meadmore et al., 2014)
or by automatic adaption of the level of training during robot-
assisted stroke rehabilitation (Metzger et al., 2014). Bothmethods
could in future be integrated into this neuroprosthetic set-up
without difficulty and, by performing repetitive sessions within
intervention studies, their respective clinical relevance in the
targeted patient population should be examined more closely.

The neuroprosthesis introduced here holds the promise
of bringing even more gains, e.g., via the simultaneous
application of further interventions such as brain state-
dependent cortical stimulation (Kraus et al., 2016b; Royter
and Gharabaghi, 2016) to make full use of the salvaged
restorative potential. Particularly, during exercises with severely
impaired stroke patients, the task-related and muscle-specific
facilitation that this device generates could provide the
framework for concurrent cortical stimulation. For example,
activity-dependent transcranial magnetic stimulation during
robot-assisted training could provide such an additional input
(Gharabaghi, 2015; Massie et al., 2015) Post-stroke latent
corticospinal connectivity may be unmasked during brain-
robot interface exercises by associative brain state-dependent
stimulation (Gharabaghi et al., 2014a). As per Hebbian-like
plasticity rules, such state-dependent stimulation synchronized
to maximum gains of assisted ROM could consolidate the
corticospinal circuits involved. More specifically, brain-robot
feedback-based neuroprosthetic exercises may cause connectivity
changes in cortico-cortical motor networks (Vukelić et al., 2014;
Vukelić and Gharabaghi, 2015a) and result in a redistribution
of cortico-spinal connections (Kraus et al., 2016a). Therefore,
advanced assistive rehabilitation technology such as the one
presented here could offer a backdoor to the motor system and

provide better prospects of recovery (Bauer et al., 2015). When

patients do not gain volitional control of this technology with
beta-modulation via a standard EEG-based approach despite the
strategies mentioned above (Naros and Gharabaghi, 2015)—e.g.,
due to an extended cortical lesion and distorted physiology—
epidural recordings of field potentials may nonetheless facilitate
the detection and neurofeedback training of this physiological
target (Gharabaghi et al., 2014b). Such an approach closer to
the neural signal source may also induce clinical gains after a
shorter therapy time than is usually applied with the standard
EEG technique (Gharabaghi et al., 2014c) and may even serve
as a bi-directional interface for concurrent brain stimulation
(Gharabaghi et al., 2014d).

In conclusion, during rehabilitation exercises, the
combination of a BMI with neuromuscular stimulation and
antigravity assistance has cumulative effects on both ROM
and cortical modulation and, as such, may constitute a novel
restorative framework for severely affected stroke patients while
retaining their voluntary effort. Whether, such technological
refinements also result in relevant functional gains will need to
be investigated by comparing them in controlled intervention
studies with dose-matched, conventional physiotherapy.

AUTHOR CONTRIBUTIONS

FG participated in the study design and software development,
supervised the measurement sessions and carried the data
analysis. AW, MS, and WR participated in the software
development. GN supervised the measurement sessions. AG
participated in the study design and data analysis, and wrote
the manuscript. Authors jointly drafted and approved the final
manuscript.

ACKNOWLEDGMENTS

AG was supported by grants from the German Research Council
[DFG EC 307], and from the Federal Ministry of Education
and Research [BFNT 01GQ0761, BMBF 16SV3783, BMBF
0316064B, BMBF16SV5824]. WR was supported by the Baden-
Württemberg Stiftung (GRUENS) and the German Research
Council (SP 1533/2-1).

REFERENCES

Ang, K. K., Chua, K. S., Phua, K. S.,Wang, C., Chin, Z. Y., Kuah, C.W., et al. (2015).

A randomized controlled trial of EEG-based motor imagery brain-computer

interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46, 310–320. doi:

10.1177/1550059414522229

Bauer, R., Fels, M., Royter, V., Raco, V., and Gharabaghi, A. (2016a). Closed-loop

adaptation of neurofeedback based on mental effort facilitates reinforcement

learning of brain self-regulation. Clin. Neurophysiol. 127, 3156–3164. doi:

10.1016/j.clinph.2016.06.020
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