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A B S T R A C T   

Efficiently utilizing the energy resources in the agriculture sector to produce more agricultural 
output with minimum environmental degradation is a shared global challenge. The Chinese 
government has introduced various policies aimed at enhancing energy efficiency (EE) and total 
factor energy productivity (TFEP) while addressing regional technological disparities in the 
agricultural sector. This study utilized DEA Super-SBM, Meta frontier Analysis, and the Malm-
quist–Luenberger index to assess energy efficiency, changes in total factor energy productivity, 
and the regional technology gap ratio (TGR) across 30 provinces in mainland China and three 
distinct regions during the period from 2000 to 2020. The findings reveal that the average EE in 
China’s agricultural sector is 0.8492, indicating that, on average, there is a 15.08 % potential for 
improvement in EE growth within the sector. Qinghai (1.5828), Shanghai (1.3716), and Hainan 
(1.3582) are found to be the top 3 performers with the highest EE levels. The Eastern region 
demonstrates high excellence in EE, with a value of 1.0532. The TGR value of Zhejiang indicates 
the superior production technology utilized in the agriculture sector to utilize energy resources 
efficiently. Except for Zhejiang, the TGR of Liaoning, Jiangsu, Shanghai, Guangdong, Ningxia, 
and Hainan is above 0.96 and near 1, indicating superior production technology in the agriculture 
sector of China. The Technology Gap Ratio (TGR) of China’s eastern region is superior to that of 
the central and western regions, consistently approaching 1. This suggests that the eastern 
provinces possess more advanced agricultural technologies, allowing them to optimize resource 
utilization for maximum output. The Malmquist–Luenberger index (MLI) score of 1.103 indicates 
a 10.3 % growth in the total factor energy productivity of China’s agricultural sector. Further 
analysis reveals that this growth is primarily driven by technological change (TC), with a TC value 
of 1.080 surpassing the efficiency change (EC) value of 1.028. Among the three agricultural re-
gions, the eastern region exhibits the highest total factor energy productivity. Specifically, Zhe-
jiang (1.23), Shanghai (1.197), Liaoning (1.184), and Hebei (1.147) are identified as the top 
performers in total factor energy productivity growth in China’s agricultural sector. Additionally, 
the Kruskal-Wallis test confirmed statistically significant differences in EE and TGR among the 
three regions.  
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1. Introduction 

The agricultural sector plays a crucial part in the overall economic development of a Country. The agricultural sector ensures food 
security by providing a consistent and reliable food supply. Additionally, it is a significant source of employment for a considerable 
proportion of the population, thereby contributing to economic growth and development [1]. Moreover, agriculture is an essential 
source of income for farmers and laborers, further enhancing their livelihoods and overall well-being. A resilient agricultural sector 
catalyzes rural development, mitigating the influx of individuals into urban regions and fostering enhancements in rural infrastructure 
[2,3]. The agricultural sector in top-producing countries often plays a crucial role in generating export revenues, earning foreign 
reserves, and providing raw materials for other industries [4,5]. Innovative farming practices create economic progress, facilitate 
technical improvements, and contribute to environmental sustainability [6,7]. China’s agricultural sector is one of the world’s largest 
and most diverse, defined by its vastness, crop variety, and modernization efforts. It is the biggest global producer of rice and wheat 
[8]. Land reforms, particularly the Household Responsibility System, have empowered individual farmers and enhanced agricultural 
output. The sector has diversified to fulfil the dietary needs of its enormous population, although rural-to-urban migration has led to 
labor shortages in some places [9]. Environmental problems, such as soil degradation and water scarcity, have encouraged a shift 
toward sustainable farming practices. China’s agricultural policies influence global food markets, and the government promotes food 
security through strategic reserves and self-sufficiency in critical staples [10]. Moreover, the impact of energy efficiency on CO2 
emissions is more noticeable in provinces with higher quantiles, which can be attributable to significant differences in financing for 
research and development and investments in staff [11]. 

Implementing innovative and sustainable farming practices is crucial in improving China’s agricultural production efficiency. 
These practices enhance productivity by utilizing advanced technologies and implementing precision agriculture techniques to tackle 
the challenging task of providing sustenance to a vast global population effectively [12]. Moreover, Sustainable practices are of utmost 
importance in environmental preservation, as they are crucial in mitigating concerns such as soil pollution and water scarcity [13]. The 
optimization of energy usage is an essential input within the agricultural sector and is of paramount importance due to a multitude of 
factors. The utilization of automated farming, irrigation, and transportation in agriculture has been found to impact production, 
substantially increasing efficiency [14]. It contributes to the economic sustainability of the agricultural sector by reducing operational 
costs. Furthermore, optimizing energy usage is crucial in reducing the environmental consequences of resource-intensive agricultural 
methods, preserving valuable resources, and decreasing pollution [15]. Implementing emission reduction strategies and adopting 
energy conservation practices actively contributes to endeavors to mitigate climate change [16]. In addition, implementing 
energy-efficient methods fosters innovation, empowers rural communities, strengthens global trade competitiveness, and serves as a 
foundation for long-term sustainability [17]. Studies show a direct correlation between the size of a farm and its Fuel Use Efficiency 
(FUE). On average, for every 1 % increase in farm size, there is a 0.2 % rise in FUE. This highlights the environmental advantages of 
larger farms [18]. 

Modern technologies are pivotal in transforming the agriculture industry through substantial enhancements in energy efficiency 
and reducing carbon emissions [19]. The implementation of precision agriculture, facilitated by advanced technology such as 
GPS-guided machinery and drones, enables the targeted allocation of resources, resulting in a reduction in energy consumption and a 
simultaneous increase in crop yields [20]. Innovative irrigation systems, enhanced by automation and soil moisture sensors, effectively 
optimize water utilization, preserving energy and crucial water resources [21]. Further, incorporating renewable energy resources, 
such as photovoltaic panels and wind turbines, enables agricultural establishments to produce environmentally friendly energy 
autonomously, thereby diminishing their dependence on non-renewable energy sources and mitigating greenhouse gas emissions [22]. 
Moreover, sophisticated machinery featuring highly efficient engines and optimized design elements reduces fuel usage [23]. Using 
data analytics and biotechnology provides valuable insights and facilitates the development of crop types that necessitate reduced 
resource consumption, significantly contributing to enhancing energy efficiency [24]. Waste-to-energy systems boost the conversion of 
agricultural residues into bioenergy, thereby effectively resolving concerns related to sustainability and emissions [25]. Numerous 
agricultural countries increase the renewable energy share in total energy consumption in agriculture to reduce the environmental 
impact [26]. 

The Chinese government has adopted a comprehensive strategy to improve energy efficiency within the agricultural sector, with a 
particular emphasis on diminishing the utilization of fossil fuels, augmenting the proportion of renewable energy sources, and 
improving agrarian technology [27]. A significant approach entails advocating for using sustainable energy sources, such as solar 
panels and biogas technology, to produce environmentally friendly energy for diverse agricultural practices. Simultaneously, China 
has substantially invested in technological advancements such as precision agriculture and innovative irrigation systems [28]. These 
initiatives involve the usage of data and automation to optimize the utilization of resources effectively. Efforts to mitigate reliance on 
fossil fuels encompass several strategies, such as promoting the utilization of electric-powered farm machinery and investigating the 
potential of biofuels derived from agricultural waste [29]. 

Furthermore, the government has tried to establish uniformity and compatibility in agricultural technologies to minimize varia-
tions in production techniques across different regions [30]. The dissemination of knowledge and implementation of training programs 
play a pivotal role in promoting the widespread adoption of energy-efficient methods, hence facilitating a sense of consistency and 
standardization across diverse agricultural regions within the country. The integrated projects exemplify China’s dedication to 
implementing sustainable and energy-efficient techniques within the agriculture industry [31]. 

However, the extent to which the Chinese government’s initiatives to enhance energy efficiency (EE), promote total factor pro-
ductivity growth, and reduce regional production technology heterogeneity in the agricultural sector have been successful remains 
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unclear and merits thorough investigation. This study addresses this gap by employing the DEA Super-SBM model to assess the EE of 
the agricultural sector across 30 mainland Chinese provinces from 2000 to 2020. This assessment identifies the level of EE within 
China’s agricultural sector over the study period and distinguishes the provinces that are most efficient in agricultural energy utili-
zation. In the second stage, Meta-frontier analysis is used to evaluate the technology gap ratio (TGR) among China’s three agricultural 
regions—east, center, and west—thereby assessing the heterogeneity in production technology across these regions and the effec-
tiveness of government efforts to reduce it over time. The third stage utilizes the Malmquist–Luenberger index to measure changes in 
total factor energy productivity (TFEPC) within China’s agricultural sector, determining whether there has been growth or decline in 
TFEP over the study period and identifying whether efficiency change or technology change is the primary driver of TFEPC. Finally, the 
Kruskal-Wallis test is applied to ascertain statistically significant differences among the three agricultural regions of China in terms of 
EE, TGR, and TFEPC, thereby reinforcing the study’s findings. The structure of the study is as follows: Section 2 provides a compre-
hensive literature review, Section 3 details the methodology, Section 4 discusses variable selection and data collection, Section 5 
presents the results and discussion, and Section 6 covers the conclusions and policy implications. 

2. Literature review 

The importance of energy efficiency in agriculture is crucial as it significantly affects both economic and environmental sustain-
ability. The implementation of energy-efficient technologies by farmers can lead to substantial reductions in operational expenses, 
thereby enhancing the economic sustainability of their agricultural enterprises [32]. Furthermore, the decrease in energy consumption 
reduces greenhouse gas emissions, thereby mitigating the sector’s impact on climate change [33]. Concurrently, enhanced energy 
efficiency facilitates the preservation of resources by encouraging responsible utilization of water, reduction of waste, and sustainable 
management of land [34]. Fundamentally, placing a high priority on energy efficiency within the agricultural sector is a crucial stride 
toward fostering a farming future that is both robust and environmentally responsible [35]. Numerous research studies employed DEA 
to gauge the energy efficiency in the agriculture sector of different countries and regions. 

Latruffe et al. [36] examine the disparities in technological efficiency, productivity change, and technology gaps within the dairy, 
cereal, oilseed, and protein crops (COP) sectors in France and Hungary from 2001 to 2007. The study employed national Farm 
Accountancy Data Network (FADN) data. It utilized Data Envelopment Analysis (DEA) to assess and evaluate the efficiency levels of 
farms operating under their respective technology and a meta frontier. The study’s results suggest that, on average, the technological 
efficiency of COP farms in France was higher than that of their Hungarian counterparts. However, no statistically significant difference 
was observed in the technical efficiency of dairy farms between the two countries. 

Nevertheless, while analyzing the meta-technology ratios derived from the meta frontier, it was observed that Hungarian tech-
nology exhibited higher levels of productivity in both the dairy and COP sectors, with a notable emphasis on COP output. Bogoviz et al. 
[37] provide a critical analysis of Russia’s energy efficiency policies in the agricultural sector between 2008 and 2016. The study 
evaluates federal-level papers and indicators from the Ministry of Energy, concluding that Russia’s energy sector policies are lacking 
and fail to fully utilize its potential for energy efficiency. 

Wysokiński et al. [38] found that Contemporary agricultural practices are extensively dependent on external energy sources, 
primarily derived from non-renewable sources. This reliance contributes significantly to the generation of greenhouse gases and the 
destruction of the environment. Therefore, it is evident that a distinct imperative exists to augment energy efficiency and modify the 
composition of energy sources. The research aims to assess agriculture’s economic and energy efficiency in European Union (EU) 
member states. It will be achieved by analyzing the energy consumption per employee or hectare of agricultural land utilized. This 
study examines the changes in energy consumption within the agrarian sector of the European Union (EU) and its constituent member 
states, using data sourced from Eurostat. Shi et al. [39] argued that redirecting crop straw use from cooking, heating, and open burning 
to bioenergy production can prevent the release of 122 million metric tons of greenhouse gas emissions. Furthermore, substituting 
fossil fuels with bioenergy can cut 34–86 million metric tons of emissions. This emphasizes the importance of bioenergy as a crucial 
approach for sustainable straw use. Moreover, using a multi-regional input-output model in research demonstrates that alterations in 
demand and consumption patterns play a substantial role in increasing carbon emissions. Conversely, enhancements in energy effi-
ciency have been effective in reducing these emissions, emphasizing the necessity for sustainable policy interventions [40]. 

Demуdenko et al. [41] investigate the relationship between energy efficiency in crop production and the carbon monoxide balance 
in the Cherkasy region’s agro-industrial complex. Specifically, the study focuses on the transition from using manure to utilizing 
by-products as organic fertilizer throughout the period spanning from 1956 to 2020. Through the application of information-analytical 
and mathematical-statistical techniques, the investigation uncovered a correlation between enhanced energy efficiency and a 
reduction in the production of humus from organic fertilizers. The relative contribution of CO2 emissions from manure and residues to 
humus displays variability, with waste as a more significant source. Abbas et al. [42] investigate a concerning trend in Pakistan 
regarding the productivity of maize yield and energy input, particularly the significant input sources. The ensemble technique gives an 
average efficiency score of 59.67 %, suggesting the possibility of achieving energy savings. Significantly, this approach addresses 
limitations in efficiency reporting compared to individual models. The results of this study provide valuable insights that might inform 
decision-making processes, particularly about resource conservation and the enhancement of energy efficiency in maize production in 
Pakistan. These numerous studies employed the DEA to gauge the EE in different industries and sectors [43–53]. 

Previous research studies have explored energy efficiency in many countries and industries, but there is a significant lack of studies 
that explicitly investigate energy efficiency in China’s agriculture sector. This study aims to fill this void by utilizing DEA methodology 
to assess energy efficiency in various provinces of China. It enhances the existing body of knowledge by offering valuable perspectives 
on the energy efficiency situation in China’s agricultural sector and pinpointing possible avenues for enhancement. Further, the 
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technological heterogeneity in different agricultural regions of China is evaluated. In addition, this research goes beyond past studies 
by considering regional differences and factors that affect the overall energy productivity shift in China’s agriculture sector. The 
thorough analysis aims to provide significant insights that might guide policy measures to enhance energy efficiency and sustainability 
in China’s agricultural sector. 

3. Methodology 

3.1. Super-SBM model with bad outputs 

Tone [54] introduced a non-radial Data Envelopment Analysis (DEA) model based on the super Slack-Based Measure (SBM), which 
facilitates the evaluation of efficiency from both input and output perspectives. Unlike radial DEA models, the super SBM model in-
cludes slack variables, offering significant advantages in addressing the limitations of radial measurements and effectively differen-
tiating among efficient decision-making units (DMUs). Building on this, Tone [55] advanced the model by developing the 
Super-Efficiency SBM, which was the first to incorporate undesirable outputs into the SBM framework. This enhancement allows 
for a more thorough and accurate assessment of efficiency. The model is defined as follows: 

The input-output matrix has the formulas X = [x1⋯xn] ∈ Rm×n,Ynd =
[
yd

1⋯yd
n
]
∈ Rs1×n, and Yu =

[
yA

1 ⋯yut
n
]
∈ Rs2×n. Below is the 

equation of the super-efficient SBM model with bad output. 
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In Equation (1), the slack variables for input, desirable output, and undesirable output are represented as as x, yd and yu , 
respectively. The weight vector is denoted by λj, and ρ∗ serves as the estimate of the optimal value. When ρ∗ is greater than or equal to 
1, the decision-making unit (DMU) is considered efficient. 

3.2. Meta-frontier model 

The Meta-frontier Model allows for more precise evaluations of DMU efficiency across different groups. To ensure fair comparisons, 
it is recommended to compare DMUs within the same group, as they have equal access to technology. The Technology Gap Ratio (TGR) 
can be employed to gauge the extent of technological development among different groups. TGR can be specifically presented for a 
particular group to assess their technological advancement [56,57]. 

TGR=
MAEE
GAEEi

(2) 

The assessment evaluates the Energy Efficiency (EE) of all Decision-Making Units (DMUs). In equation (2), GAEEi denotes the 
agricultural energy efficiency of DMUs within a specific group, while MAEE represents the Meta-agriculture Energy Efficiency of DMUs 
at a particular technical level. The Technology Gap Ratio (TGR) employs a distance metric to determine a meta-frontier technology’s 
proximity to a specific group’s frontier technology [58]. TGR is commonly used to evaluate regional differences. A TGR value 1 in-
dicates no technological gap between the group and the meta-frontier. 

3.3. Malmquist–Luenberger index 

However, the DEA model has limitations in analyzing dynamic changes in energy efficiency, as it can only evaluate technical 
efficiency (TE) within a fixed period. To examine variable productivity, the Malmquist index serves as a valuable tool. Chung et al. [59] 
adapted the Malmquist index into the Malmquist-Luenberger index (MLI) by incorporating an undesirable directional distance 
function. The MLI includes distinct components: the efficiency component (EC) and the technology component (TC) [60]. The change 
in the MLI from time t to t+1 is as follows in equation (3): 
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here, x, y, and b denote input, desired, and undesirable output, respectively. The distance functions during time intervals t and t+1 are 

represented by (D 0 t) Dt
0

̅→(
x2, yr, br; yt , − bt) and Dt+1

0
̅̅→(

xs+1,yt+1,bt+1; yt+1, − bt+1) respectively (see equation (4)). Under the technical 

conditions of the t+1 period, the distance function for the t+1 period is Dt
0

̅→ (
xs+1,ys+1,bt+1; ys+1, − bt+1

)
, and under the t+1 technical 

conditions, the t period distance function is Dt+1
0
̅̅→(

xt ,yt ,bt ; yt , − bt)(see equation 5). An ML value greater than 1 indicates an increase in 
total factor productivity, while ML = 1 ML = 1 signifies no change, and ML < 1 indicates a decline. Similarly, an EC value greater than 1 
denotes growth in efficiency, EC = 1 implies no change, and EC < 1 EC < 1 signifies deterioration. Finally, a TC value greater than 1 
represents technological advancement, TC = 1 indicates constancy, and TC < 1 suggests decline. 

3.4. Kruskal–Wallis test 

The Kruskal-Wallis test is highly valuable in statistical analysis since it is a non-parametric method and is not reliant on the as-
sumptions typically needed by parametric tests, making it more robust. Unlike tests such as the t-test or ANOVA, this method does not 
make assumptions about the normality of the data. As a result, it is appropriate for analyzing ordinal data and situations where the 
sample sizes are not equal. The adaptability of this method is enhanced by its capacity to handle circumstances in which the 
assumption of homogeneity of variances is violated, making it applicable to many experimental designs. With broad applicability 
across various disciplines, from biology to social sciences, this method yields results that are easily understood through the use of a p- 
value, which indicates the presence of significant differences between groups. In addition, while assessing overall differences, it is 
necessary to conduct post-hoc studies such as Dunn’s test to discover specific inequalities between groups. Significantly, its depen-
dence on rankings instead of raw data values makes it resistant to outliers, hence improving its reliability in actual research settings. 
The Kruskal-Wallis test is a powerful tool that allows for thorough comparisons between groups, while also addressing typical sta-
tistical assumptions and problems [56]. For this study, we utilize the Kruskal-Wallis test to identify statistically significant variations 
among the three Chinese regions concerning average EE, TGR, and MLI. The hypotheses are delineated as follows: 

H01. The EE of the agriculture sector is the same in three different Chinese regions. 

H02. The TGR of the agriculture sector is the same in three different Chinese regions. 

H03. The MLI of the agriculture sector is the same in three different Chinese regions. 

4. Data collection and variable selection 

Data for the agricultural sector of 30 mainland provinces in China, excluding Tibet, from 2000 to 2020 are gathered from various 
sources, including China’s Rural Statistical Yearbook, China Statistical Yearbook, and China Energy Statistical Yearbook (refer to 
Table 1). 

Table 1 
Input-output variables used for EE and energy productivity estimation of the agriculture sector.  

Inputs Outputs 

Labor: Total number of employees working in the agriculture sector in that year (10,000 
people) 

Expected output value-added of the agriculture sector (100 million 
yuan) 

Capital: Capital stock of the agriculture sector (ten thousand yuan) Carbon dioxide emissions (10,000 tons) in the agriculture sector: 
Undesired output 

Energy: Total energy consumption of each province (10,000 tons of standard coal) for the 
agriculture sector   
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5. Results and discussion 

Section 5 presents the change in energy efficiency, technology gap ratio, and energy productivity in China’s agriculture sector. 

5.1. Energy efficiency evaluation of the agricultural sector in China (2000–2020) 

Using the DEA super-SBM model, this study assessed the energy efficiency of China’s agriculture sector by examining various inputs 
and outputs from 2000 to 2020. The findings reveal that the average energy efficiency (EE) of China’s agriculture sector is 0.8492. This 
suggests that, on average, there is still a 15.08 % potential for improving EE growth within the sector. Such improvement could be 
achieved through either reducing inputs or increasing outputs in China’s agriculture sector. Further elaborating the results study in 
Fig. 1, it found that the EE of the agriculture sector was higher in the year 2020 with an average EE = 0.9163; in 2012, it was found to 
be 0.9133, while in 2019, its value was 0.8917. On the contrary, the EE was found to be lowest in the study years of 2002 with an 
average EE = 0.7857; in 2008, it was 0.8123, while in 2009, it was found to be 0.815. Results illustrate that although there were many 
fluctuations in the EE, a continuing inclining trend was noticed over the study period, which was close to the highest value of the study 
period in 2020. The analysis suggests that there has been a notable increase in energy efficiency within the agriculture sector in China 
over time, and there is still room for future improvements. The results of this study can provide valuable insights for developing 
policies and initiatives that aim to enhance resource utilization and foster sustainable practices within the agriculture industry. 
Advanced technologies like precision farming tools and innovative equipment maximize resource use in agriculture, improving energy 
efficiency. Renewable energy sources like solar and wind power can reduce non-renewable use. Upgrades to energy-efficient equip-
ment and water-efficient irrigation systems boost efficiency. Sustainable agricultural methods like crop rotation and diversification 
minimize resource use. Energy audits and farmer sustainability education are essential for continuous development. Innovative, 
energy-efficient technology can be adopted faster with government policies, incentives, and research and development. Supply chain 
optimization and waste management also reduce energy use. Collaboration and knowledge sharing among farmers and stakeholders 
help create an energy-efficient agriculture sector [61]. 

Fig. 2 presents the average EE level of the agriculture sector of each Chinese province over the study period. Results indicate that 
Qinghai (1.5828), Shanghai (1.3716), and Hainan (1.3582) are found to be the top 3 performers with the highest EE level in 30 inland 
Chinese provinces. Except this, the EE of Hainan, Jiangsu, Guangxi, Shandong, Hunan, Fujian, Sichuan, Guangdong, and Ningxia is 
over 1, indicating that these provinces perform better in terms of energy efficiency in the agriculture sector. Beijing, Hebei, Henan, 
Jiangxi, Liaoning, Anhui, Zhejiang, Tianjin, Jilin, Hubei, and Chongqing EE is between 0.60 and 1. Finally, the EE of Shaanxi, Guizhou, 
Yunnan, Xinjiang, Heilongjiang, Inner Mongolia, Gansu, and Shanxi is between 0.22 and 0.60. The results of this study reveal a 
significant discrepancy in energy efficiency among various provinces in China. It highlights the necessity of implementing focused 
approaches to enhance agricultural sustainability and optimize resource utilization in particular areas [62]. 

This study investigates the regional variations in energy efficiency levels within China’s agricultural sector, specifically focusing on 
categorizing provinces into three distinct regions: East, Central, and West. According to the data presented in Table 2, it can be 
observed that the Eastern area demonstrates a high level of excellence in the field of EE, with a value of 1.0532. It denotes the 
achievement of efficient energy utilization in the agricultural sector, characterized by minimum resource inefficiencies and the 
implementation of superior operational approaches. The Western region exhibits a higher EE level of 0.7797 compared to the Central 
region’s 0.7147, suggesting proficient utilization of resources and operational effectiveness. The differences in environmental effi-
ciency (EE) across regions can be attributed to climate, soil conditions, agricultural techniques, and disparities in economic growth. 
The benefits of the Eastern area can be ascribed to its utilization of advanced technologies, superior infrastructure, and elevated levels 
of economic development. Various tactics can be employed to improve energy efficiency in currently less efficient regions. These 
strategies encompass the transfer of technology, provision of training, development of infrastructure, support of policies, and 

Fig. 1. Average EE trends in China’s agriculture sector over the study period (2000–2020).  

X. Luan et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e35043

7

implementation of targeted research and extension services. By considering these criteria, regions with lower efficiency can strive to 
enhance energy efficiency in the agricultural sector, making a valuable contribution to the goals of sustainability and production [63]. 

5.2. Meta-frontier analysis results of the agricultural sector in China 

The agriculture industry’s energy efficiency (EE) in different regions of China is significantly impacted by the variety of regional 
production technologies. Diverse agricultural practices, technologies, and production methods are adopted by other areas, influenced 
by their distinct environmental conditions, available resources, and levels of economic development. The variations mentioned can 
affect the agricultural industry’s overall energy efficiency, as different technologies may exhibit varying energy intensity levels. Those 
who possess advanced irrigation systems, precise farming technologies, and efficient machinery are more likely to demonstrate higher 
levels of energy efficiency in comparison to those who rely on conventional or less advanced agricultural practices. Table 3 explains the 
results of meta frontier analysis. GEE is the group energy efficiency of a particular province. 

Similarly, the MEE is the meta energy efficiency of the province in the meta group of all 30 provinces. These two columns present 
the performance of a particular DMU in the meta frontier and then in a specific group. Finally, TGR is the technology gap ratio of a 
particular province. It illustrates the technological gap of a DMU from its group to the Meta-technology of all provinces under 
consideration. Qinghai, Shanghai, Hainan, Jiangsu, and Guangxi were found to be the top performers in the MEE. Qinghai, Sichuan, 
Henan, Hainan, and Shanghai were the best performers in group EE over the study period. The GEE of Henan (1.4379) province is at its 
highest level in the central region. At the same time, Heilongjiang was the least efficient, with an average value of 0.8916. Hainan 
performs at an optimum GEE level of 1.4065 in the eastern region. 

While Zhejiang was found to be the least efficient, with a GEE of 0.7977. Finally, Qinghai (1.698) is the highest position in the 

Fig. 2. Average EE of the agriculture sector in different Chinese provinces.  

Table 2 
Average EE in three different agricultural regions of China.  

Years East Central West 

2000 1.104 0.757 0.723 
2001 0.957 0.787 0.745 
2002 1.048 0.612 0.697 
2003 1.021 0.647 0.798 
2004 1.034 0.709 0.736 
2005 1.08 0.697 0.799 
2006 1.042 0.677 0.764 
2007 0.994 0.688 0.783 
2008 1 0.669 0.768 
2009 0.986 0.73 0.729 
2010 1.084 0.798 0.775 
2011 1.002 0.773 0.834 
2012 1.073 0.79 0.877 
2013 1.013 0.715 0.746 
2014 1.072 0.704 0.719 
2015 1.109 0.683 0.821 
2016 1.111 0.764 0.776 
2017 1.055 0.699 0.802 
2018 1.021 0.674 0.806 
2019 1.146 0.699 0.83 
2020 1.166 0.737 0.846 
Average 1.0532 0.7147 0.7797  
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Western region. However, the Gansu is the least efficient, with a GEE of 0.5361. A TGR of 1 indicates the superior technology of any 
DMU. In Table 3, the last column presents the TGR of each province. Results illustrate that the TGR value of Zhejiang indicates the 
superior production technology utilized in the agriculture sector to utilize energy resources efficiently. Except for Zhejiang, the TGR of 
Liaoning, Jiangsu, Shanghai, Guangdong, Ningxia, and Hainan is above 0.96 and near 1, indicating superior production technology in 
the agriculture sector of China. 

Moreover, Fig. 3 indicates that the average TGR of China’s eastern region is superior to that of the central and western regions. It is 
always near to 1 and indicates that the eastern provinces have the more advanced agricultural technology to utilize the resources to get 
optimum output. The western region is ranked second in production technology advancement, while the agricultural production 
technology of the central region is the most inferior of the three regions. The impact of regional variations in production technology on 
energy efficiency outcomes within China’s agricultural sector is significant. The energy intensity levels fluctuate due to the variable 
adoption of agricultural techniques, technology, and production methods across different locations. Environmental conditions and 
levels of economic development influence these variations. Provinces that utilize new technologies demonstrate higher levels of energy 
efficiency, whereas those that rely on conventional practices may experience a relative lack of progress in this regard. The insights 

Table 3 
GEE, MEE and TGR in Chinese provinces (2000–2020).  

Region Province GEE MEE TGR 

Central Anhui 1.1245 0.802 0.7177 
East Beijing 1.0043 0.9624 0.9571 
West Fujian 1.2211 1.0937 0.9157 
East Gansu 0.5361 0.3754 0.7811 
West Guangdong 1.0629 1.0483 0.9873 
East Guangxi 1.3788 1.2328 0.8969 
West Guizhou 0.9109 0.5676 0.6763 
West Hainan 1.4065 1.3582 0.965 
East Hebei 1.0319 0.9485 0.9366 
East Henan 1.4379 0.9127 0.6286 
Central Heilongjiang 0.8916 0.4929 0.5801 
Central Hubei 0.9707 0.6451 0.6793 
Central Hunan 1.3459 1.1213 0.837 
Central Jilin 1.1331 0.6612 0.5845 
West Jiangsu 1.271 1.2635 0.9947 
East Jiangxi 1.3077 0.8564 0.6654 
Central Liaoning 0.8171 0.8161 0.9988 
Central Inner-Mongolia 1.0038 0.431 0.4332 
East Ningxia 1.0367 1 0.9673 
West Qinghai 1.698 1.5828 0.9341 
West Shandong 1.3313 1.1945 0.899 
West Shanxi 1.065 0.2263 0.2471 
East Shaanxi 0.6665 0.5846 0.9008 
East Shanghai 1.3805 1.3716 0.9936 
Central Sichuan 1.5763 1.0836 0.6909 
West Tianjin 0.8154 0.7323 0.9175 
East Xinjiang 1.0914 0.5492 0.5025 
West Yunnan 0.6125 0.5631 0.9274 
West Zhejiang 0.7977 0.7977 1.0000 
East Chongqing 0.8476 0.6064 0.7183  

Fig. 3. Average TGR in three different regions of China.  
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derived from the meta-frontier analysis results presented in Table 3 highlight the significance of Group Energy Efficiency (GEE), Meta 
Energy Efficiency (MEE), and Technology Gap Ratio (TGR). Zhejiang province exhibits a technology gap ratio (TGR) of 1, suggesting 
the exploitation of modern agriculture technology. 

In contrast, other provinces such as Liaoning, Jiangsu, Shanghai, Guangdong, Ningxia, and Hainan demonstrate TGR values above 
0.96, suggesting superior production technology implementation. The imperative to enhance overall energy efficiency (EE) in the 
agriculture sector necessitates the reduction of production technological heterogeneity. Various strategies, including technology 
transfer, training programs, research and development, and policy support, can significantly reduce technological disparity [64]. 

Policymakers and stakeholders must give precedence to projects that promote the transfer of innovative technologies, provide 
education to farmers in less efficient regions, allocate resources towards region-specific technological solutions, and enforce policies 
that encourage the adoption of energy-efficient techniques. The significance of these tactics shown by the TGR values accentuates the 
imperative of technological progress in various geographical areas. Fig. 3 provides more evidence supporting the notion that the 
Eastern region’s average Total Growth Rate (TGR) is higher, suggesting the presence of more sophisticated agricultural technology. 
The Western region is positioned as the second-ranked region in terms of advancements in industrial technology. Still, the Central 
region exhibits a comparatively lower level of progress in this regard. The attainment of a more universally efficient and sustainable 
agriculture sector in China necessitates implementing coordinated endeavors to reduce the technology disparity across different re-
gions [65]. 

5.3. Malmquist –Luenberger index results of the agricultural sector in China 

By applying the Malmquist-Luenberger index (MLI) on data spanning 2000 to 2020 from 30 Chinese provinces, this study estimates 
the dynamic variation in total factor energy productivity growth within China’s agriculture sector. Table 4 presents an average MLI 
score of 1.103 for the agriculture sector of Chinese provinces, indicating a 10.3 % growth in total factor energy productivity over the 
study period. Further analysis reveals that this growth in MLI is primarily attributed to technological change (TC), with a value of 
1.080, surpassing the efficiency change (EC) value of 1.028. The TC value suggests a growth of 0.8 % over the study period, while the 
EC value indicates a growth of 0.28 %. These findings underscore the significance of technological progress in driving the increase in 

Table 4 
MLI, EC, and TC in 30 Chinese provinces and 3 regions.  

Region Province MLI EC TC 

Central Anhui 1.074 1.007 1.067  
Henan 1.106 0.993 1.141  
Heilongjiang 1.098 1.021 1.061  
Hubei 1.116 1.049 1.064  
Hunan 1.112 1.021 1.094  
Jilin 1.122 1.009 1.117  
Jiangxi 1.097 1.042 1.047  
Shanxi 1.102 1.037 1.08 

Ave. Central  1.103 1.022 1.084 

East Beijing 1.053 1.008 1.054  
Fujian 1.107 1.006 1.098  
Guangdong 1.116 1.025 1.107  
Hainan 1.076 1.015 1.064  
Hebei 1.147 1.036 1.116  
Jiangsu 1.098 1.002 1.091  
Liaoning 1.184 1.05 1.139  
Shandong 1.106 0.987 1.122  
Shanghai 1.197 1.152 1.053  
Tianjin 1.063 1.05 1.078  
Zhejiang 1.23 1.061 1.171 

Ave. East  1.125 1.036 1.099 

West Gansu 1.066 1.016 1.068  
Guangxi 1.068 1.013 1.056  
Guizhou 1.093 1.070 1.025  
Inner- Mongolia 1.105 1.045 1.058  
Ningxia 1.116 1.000 1.116  
Qinghai 1.036 1.000 1.035  
Shaanxi 1.050 1.003 1.052  
Sichuan 1.082 1.005 1.084  
Xinjiang 1.090 1.003 1.085  
Yunnan 1.062 1.056 1.012  
Chongqing 1.116 1.067 1.051 

Ave. west  1.0800 1.025 1.058 

Ave. all  1.103 1.028 1.080  
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total factor energy productivity change across various dimensions. Technological progress is vital in improving energy efficiency, 
enabling the creation of the same results with less energy consumption. 

Furthermore, technological advancements drive innovation in energy sources, identifying and implementing cleaner and more 
environmentally friendly options [66]. Innovative technology and industry automation enhance energy efficiency by dynamically 
changing usage in response to real-time demand and supply. Data analytics enhances understanding energy use patterns by offering 
significant information [67]. The integration of renewable energy sources, enabled by technological advancements, enhances the 
sustainability and productivity of the energy sector. Advanced technologies additionally minimize energy wastage by creating efficient 
appliances, machines, and processes. Moreover, technology facilitates adjusting to evolving energy needs, promoting a flexible and 
effective energy distribution system. In essence, the ongoing advancement of technology not only enhances overall energy efficiency 
but also supports worldwide initiatives for environmental preservation, tackling the issues presented by climate change [68]. 

Further examination of the regional Malmquist-Luenberger index (MLI) results reveals significant variations in total factor energy 
productivity across China’s agricultural regions. The study identifies the Eastern region as the top performer, boasting the highest total 
factor energy productivity among the three regions. With a MLI score of 1.125, indicating a growth of 12.5 %, this region’s 
achievement is primarily attributed to a technological growth rate of 0.99 %. In comparison, the central agricultural sector of China 
experienced a total factor energy productivity increase of 10.3 % over the study period. Similar to the Eastern region, the growth in MLI 
is predominantly driven by technological advancement, with a growth rate of 0.84 %. On the other hand, the western agricultural 
sector of China ranks third, with a total energy productivity growth of 0.80 % over the study period. Like the Eastern and central 
regions, the main determinant of MLI growth in the western region is technological advancement, with a growth rate of 0.58 %. The 
analysis of regional MLI outcomes underscores notable disparities in total factor energy productivity across China’s agricultural re-
gions, with the Eastern region emerging as the top performer. It achieved an excellent MLI score of 1.125, suggesting a significant gain 
of 12.5 percent throughout the research period. The main factor driving this impressive performance is mostly ascribed to technical 
advancement, which makes a major contribution, accounting for 0.99 percent of the whole rise. 

A significant increase of 10.3 percent in total factor energy productivity is noted in China’s central agricultural sector, which is 
consistent with the pattern seen in the eastern region. In the same way, technological progress is essential for this expansion, ac-
counting for 0.84 percent of the total MLI score. Despite being ranked third in growth at 8.0 percent, the Western agricultural sector 
shows a commendable gain. Similar to the other regions, technical advancement has led to an increase in the overall MLI, which 
accounts for 0.58 percent of the growth. The regional differences highlight the critical role of technological improvements in influ-
encing overall energy productivity, offering valuable information for policymakers and stakeholders as they navigate the varied 
agricultural environments in China [69]. A comprehensive approach is necessary to tackle the variations in total factor energy pro-
ductivity development among the three agricultural areas in China. A critical approach is to promote the transfer of technology and 
knowledge sharing, enabling regions with higher productivity to teach modern agricultural practices to regions with lower output. 
Simultaneously, allocating resources to enhance infrastructure, such as energy-efficient buildings and transport systems, can establish 
a fairer basis for the wider use of technology. Providing more resources to conduct research and development activities specifically 
focused on each region is essential. It will enable the customization of technologies to address the distinct requirements of each part, 
ultimately reducing the technological disparity. It is recommended to introduce training programmers and capacity-building initia-
tives to improve the technical expertise of farmers and stakeholders in regions with lower productivity. Aligning national and regional 
policies can simplify regulatory procedures and offer uniform assistance for implementing technology. Moreover, providing subsidies 
and financial aid to farmers in less productive areas might help mitigate the expenses associated with implementing energy-efficient 
technologies and motivate their adoption. Encouraging collaboration within regions, promoting customized technical solutions, and 
establishing vital monitoring and evaluation procedures to minimize regional differences and encourage sustainable growth in China’s 
agricultural landscape [70]. 

Finally, Table 4 also compares the MLI growth of the different agricultural sectors of 30 Chinese provinces. Results indicate that 
Zhejiang (1.23), Shanghai (1.197), Liaoning (1.184), and Hebei (1.147) are the top performers in total factor productivity growth in 
the agricultural sector of China. Results further elaborate that all these 4 provinces belong to the eastern region of China. The 
determinant of MLI growth in all these 4 provinces is technological advancement. Further, Jilin (1.122) from Central is the top MLI 
scorer, while Ningxia (1.116) in Western China witnessed the highest growth in total factor energy productivity. Qinghai (1.036) from 
Western China, Shaanxi (1.05) from Western China, and Beijing (1.053) from Eastern China are the lowest performers in MLI growth 
over the study period. These results indicate that in most provinces, the efficiency change is less than technological change. By 
analyzing the growth of agricultural sectors in 30 Chinese provinces using MLI, specific recommendations can be developed to improve 
total factor energy productivity. Provinces in the Eastern area, namely Zhejiang, Shanghai, Liaoning, and Hebei, have achieved notable 
success primarily due to technological developments. To emulate their achievements, other provinces should prioritize 
implementation. 

Furthermore, it is advisable to promote inter-regional collaboration activities to ease the exchange of optimal methods and stra-
tegies. As demonstrated by Jilin’s highest MLI score, Provinces in the Central area necessitate customized assistance for the adoption of 
technology and the development of capabilities [71]. In the Western region, particularly in provinces such as Ningxia that demonstrate 
promising growth, it is imperative to prioritize improving resource efficiency and adopting sustainable practices. Provinces like 
Qinghai, Shaanxi, and Beijing, which have had slower MLI growth (Multidimensional Livelihood Index), should prioritize enhancing 
efficiency and advancing technology. It is crucial to align policies with national goals and implement incentives to enhance energy 
productivity increases. Regular monitoring and evaluation methods would allow provinces to improve plans, thus achieving a more 
equitable and effective agriculture sector throughout China [72]. 
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5.4. Statistical significance difference 

Sections 5.1, 5.2, and 5.3 of the study reveal notable differences in average energy efficiency (EE), total factor growth rate (TGR), 
and Multilateral Instrument (MLI) scores across the agriculture sectors of the three Chinese regions, indicating heterogeneity among 
them. However, determining the statistical significance of these differences is crucial for the research community. To address this, the 
study employed the Kruskal-Wallis test to evaluate the significance of variations in EE, TGR, and MLI among all three agricultural 
regions of China. The results are presented in Table 5 and Figs. A1, A2, and A3. The significance level for the first hypothesis is 0.037, 
below the conventional threshold of 0.05, indicating a significant difference in EE among the regions. Thus, the null hypothesis is 
rejected, suggesting a statistically significant disparity in EE levels across all three agricultural regions. Similarly, the significance level 
for the second hypothesis is 0.001, also below 0.05, indicating a significant statistical difference in TGR among the regions. Conversely, 
the significance level for the third hypothesis is 0.067, exceeding 0.05, suggesting that MLI across all three regions does not exhibit 
statistically significant differences. 

These findings, presented in Table 5 and Figs. A1, A2, and A3, offer valuable insights into the variation of average EE, TGR, and MLI 
scores within the agricultural sectors of the three Chinese regions, demonstrating the robustness of utilizing the Kruskal-Wallis test to 
assess statistical significance in such disparities. The test results indicate a noteworthy gap in EE and TGR among the three locations, 
with p-values of 0.037 and 0.001, respectively, below the traditional significance level of 0.05. These findings suggest that the dif-
ferences in EE and TGR are statistically significant, supporting the conclusion that these regions’ agricultural sectors function at 
varying efficiency and growth levels. Conversely, the findings of the MLI analysis indicate a significance level of 0.067, which is barely 
above the threshold of 0.05. It suggests no statistically significant difference in MLI across the three regions [48]. 

6. Conclusions and policy implications 

The agricultural sector in China plays a crucial role in the country’s economic development, food security, employment, and rural 
infrastructure due to its extensive size, diverse range of crops, and continuous efforts towards modernization. To effectively manage 
the requirements of a large population, combat labor shortages caused by movement from rural to urban areas, and handle envi-
ronmental issues, it is crucial to implement creative and sustainable agricultural methods. The Chinese government is actively 
enhancing energy efficiency in agriculture by reducing fossil fuel consumption, promoting renewable energy sources, and advancing 
agrarian technologies. This includes promoting sustainable energy sources such as solar panels, biogas technologies, and investments 
in precision agriculture and innovative irrigation systems to enhance resource use efficiency. Efforts to decrease dependence on fossil 
fuels encompass the promotion of electric-powered farm machinery and the investigation of biofuels derived from agricultural waste. 
In addition, the government seeks to standardize agricultural technologies to reduce regional disparities in production methods. 
Knowledge dissemination and training initiatives facilitate the broader adoption of energy-efficient techniques. China’s commitment 
to sustainable practices in agriculture is evident through these integrated initiatives. However, the government’s actual achievement in 
improving energy efficiency, total factor productivity growth, and reducing regional production technology heterogeneity in the 
agricultural sector requires additional investigation. 

The study investigates variations in energy efficiency (EE), technological gap ratio (TGR), and total factor energy productivity 
change (TFEPC) across 30 provinces and three distinct regions in China, revealing significant discrepancies. The study assesses the 
statistical significance of differences in EE and TGR among these regions by applying the Kruskal-Wallis test. The findings indicate that 
the average EE of China’s agriculture sector is 0.8492, suggesting that, on average, there is a 15.08 % potential for improving EE 
growth within the sector. This improvement could be achieved by reducing inputs or increasing outputs in China’s agriculture sector. 
Notably, the EE of the agriculture sector peaked in 2020, with an average EE of 0.9163. Results further indicate that Qinghai (1.5828), 
Shanghai (1.3716), and Hainan (1.3582) are found to be the top 3 performers with the highest EE level in 30 inland Chinese provinces. 
The Eastern region demonstrates high excellence in EE, with a value of 1.0532. It denotes the achievement of efficient energy utili-
zation in the agricultural sector, characterized by minimum resource inefficiencies and the implementation of superior operational 
approaches. The Western region exhibits a higher EE level of 0.7797 compared to the Central region’s 0.7147, suggesting proficient 
utilization of resources and operational effectiveness. 

Meta-frontier analysis shows that Qinghai, Shanghai, Hainan, Jiangsu, and Guangxi were the top performers in the MEE. Qinghai, 
Sichuan, Henan, Hainan, and Shanghai were the best performers in group EE over the study period. The GEE of Henan (1.4379) 
province is at its highest level in the central region. At the same time, Heilongjiang was the least efficient, with an average value of 
0.8916. Hainan performs at an optimum GEE level of 1.4065 in the eastern part. At the same time, Zhejiang was the least efficient, with 
a GEE of 0.7977. Finally, Qinghai (1.698) is in the highest position in the Western region. However, the Gansu is the least efficient, with 

Table 5 
Kruskal Wallis test results.  

Hypothesis Test Summary 

Null Hypothesis Test Sig. Decision 

1 The EE of the agriculture sector is the same in three different Chinese regions. Independent-Samples 
Kruskal– Wallis Test 

0.037 Reject 

2 The TGR of the agriculture sector is the same in three different Chinese regions.  0.001 Reject 
3 The MLI of the agriculture sector is the same in three different Chinese regions.  0.067 Retain  
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a GEE of 0.5361. Results further illustrate that the TGR value of Zhejiang indicates the superior production technology utilized in the 
agriculture sector to utilize energy resources efficiently. Except for Zhejiang, the TGR of Liaoning, Jiangsu, Shanghai, Guangdong, 
Ningxia, and Hainan is above 0.96 and near 1, indicating superior production technology in the agriculture sector of China. 

Moreover, Fig. 3 indicates that the average TGR of China’s Eastern region is superior to that of central and western areas. It is 
always near to 1, meaning that the eastern provinces have the more advanced agricultural technology to utilize the resources for 
optimum output. The western region is ranked second in production technology advancement, while the agricultural production 
technology of the central region is the most inferior of the three regions. 

The Malmquist-Luenberger index (MLI) score of 1.103 indicates a 10.3 % growth in total factor energy productivity within China’s 
agricultural sector. Further analysis reveals that this increase in MLI is primarily driven by technological change (TC), with a value of 
1.080, surpassing the efficiency change (EC) value of 1.028. The TC value suggests a growth of 0.8 % over the study period, while the 
EC value indicates a growth of 0.28 %. The significance of technological progress in driving the increase in total factor energy pro-
ductivity change is notable across various dimensions. The total factor energy productivity of the Eastern region surpasses that of all 
other agricultural regions, with an MLI score of 1.125, indicating a growth of 12.5 %. This growth is primarily attributed to tech-
nological advancement, with a rate of 0.99 %. Similarly, the central agricultural sector of China witnessed a 10.3 % increase in total 
factor energy productivity over the study period, with MLI growth primarily driven by technological advancements of 0.84 %. 
Conversely, the western agricultural sector of China ranks third, with a total factor energy productivity growth of 0.80 % over the study 
period. Like the Eastern and central regions, the primary determinant of MLI growth in the western region is technological 
advancement, with a growth rate of 0.58 %. 

Analyzing regional MLI outcomes reveals notable disparities in total factor energy productivity across China’s agricultural areas. 
Moreover, the analysis of MLI growth across the agricultural sectors of 30 Chinese provinces identifies Zhejiang (1.23), Shanghai 
(1.197), Liaoning (1.184), and Hebei (1.147) as the top performers in total factor productivity growth. Interestingly, all these prov-
inces belong to the eastern region of China, with technological advancement being the key determinant of MLI growth. Additionally, 
Jilin (1.122) from the central region emerges as the top MLI scorer, while Ningxia (1.116) in western China exhibits the highest total 
factor energy productivity growth. Conversely, Qinghai (1.036) and Shaanxi (1.05) from western China, along with Beijing (1.053) 
from eastern China, are identified as the lowest performers in MLI growth over the study period. The Kruskal-Wallis test results 
demonstrate a statistically significant difference between EE and TGR in the three Chinese agricultural regions, while MLI is not 
significantly different among the regions. 

The study’s findings indicate several policy implications for improving China’s agriculture industry’s effectiveness and long-term 
viability. Policymakers should prioritize a customized strategy due to significant regional energy efficiency and technical innovation 
differences. Provinces with lower efficiency levels can benefit from region-specific interventions, such as customized research and 
development grants and technology transfer initiatives, which can cater to their specific needs. In addition, the government needs to 
continue its admirable focus on developing sustainable energy sources such as solar panels and biogas technologies. Continuing in-
centives, such as subsidies and tax benefits, can promote wider adoption. Implementing standardized agricultural technologies is 
crucial in addressing regional variations in production methods. Creating and enforcing national standards is necessary to establish 
consistent procedures, promote effectiveness, and facilitate knowledge sharing. It is crucial to tackle environmental issues related to 
agriculture, and rules and incentives should encourage the adoption of eco-friendly technologies such as precision agriculture and 
innovative irrigation systems. Enhancing farmers’ ability to embrace contemporary and effective technology is imperative through 
educational programs and extension services, contributing to human capital development. Finally, it is crucial to establish a 
comprehensive monitoring and evaluation system at both regional and national levels to effectively evaluate the performance of 
policies, identify areas that need development, and ensure continuous advancement in the agricultural sector. Integrating these policy 
implications into the broader agricultural development agenda will advance China’s progress toward sustainable and efficient prac-
tices in all regions. The study’s use of data at the province level may hide specific trends in localized areas, necessitating a more 
detailed investigation at the sub-regional level. 

Furthermore, the data’s temporal cut-off may overlook recent advancements, necessitating more frequent updates. The study’s 
concentration on a particular group of variables excludes essential elements, such as socio-economic circumstances and policy in-
tricacies, restricting the investigation’s thoroughness. The idea that provinces are homogeneous oversimplifies the complex agricul-
tural environment, and so it is necessary to investigate the variances within smaller regions. Subsequent investigations could utilize a 
longitudinal methodology to monitor alterations and evaluate the direct influence of particular agricultural policies on energy effi-
ciency and productivity. Augmenting quantitative data with qualitative methods, such as interviews, can provide more profound 
insights into the determinants that shape farmers’ decision-making. Furthermore, investigating the impact of climate change on 
agricultural methods and performing a comparison examination with other nations encountering comparable difficulties would offer 
significant standards for policy formulation. Conducting a study at the farm level would provide a clearer understanding of the specific 
dynamics at play, which would help make more precise policy suggestions. 

Optimizing resource allocation is essential, with policies emphasizing encouraging the adoption of modern technologies and 
precision agriculture to enhance energy efficiency and productivity. It is crucial to address regional differences by implementing 
customized methods that consider various agricultural regions’ distinct characteristics and requirements. Furthermore, providing 
government assistance through subsidies, training initiatives, and incentives can significantly enhance the sustainability of the agri-
cultural industry by encouraging the adoption of energy-efficient technologies. Supporting the uptake of new technologies among 
farmers and agricultural practitioners is practical and beneficial. Implementing automated irrigation systems, integrating renewable 
energy sources, and embracing other technological advancements have the potential to optimize efficiency and mitigate environ-
mental impacts. Offering training and guidance to farmers on the benefits and implementation of energy-efficient practices is essential 
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to improve the overall efficiency of the sector. Investing in rural infrastructure, such as energy-efficient transportation and storage 
systems, is critical to reducing post-harvest losses and improving the supply chain. 

This study lays a solid foundation for future agricultural efficiency and sustainability research. It is suggested that future studies 
include longitudinal analyses to investigate the long-term impacts of policy changes and technological advancements on agricultural 
energy efficiency. Such research can provide valuable insights for enhancing the resilience and sustainability of the agricultural sector. 
Comparative studies across different countries or areas could provide more profound insights into the efficacy of different agricultural 
methods and policies. Furthermore, researching climate change’s influence on energy efficiency and production in agriculture could 
yield significant insights for devising adaptive measures to alleviate detrimental consequences. 
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Appendix 

Fig. A1. Average EE distribution of the agriculture sector in three different regions of China.   

Fig. A2. Average TGR distribution of the agriculture sector in three different regions of China.   
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Fig. A3. Average MLI distribution of the agriculture sector in three different regions of China.  
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