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Abstract
With disease-modifying approaches under evaluation in ataxia-telangiectasia and other ataxias, there is a need for objective 
and reliable biomarkers of free-living motor function. In this study, we test the hypothesis that metrics derived from a single 
wrist sensor worn at home provide accurate, reliable, and interpretable information about neurological disease severity in 
children with A-T.
A total of 15 children with A-T and 15 age- and sex-matched controls wore a sensor with a triaxial accelerometer on their 
dominant wrist for 1 week at home. Activity intensity measures, derived from the sensor data, were compared with in-person 
neurological evaluation on the Brief Ataxia Rating Scale (BARS) and performance on a validated computer mouse task.
Children with A-T were inactive the same proportion of each day as controls but produced more low intensity movements 
(p < 0.01; Cohen’s d = 1.48) and fewer high intensity movements (p < 0.001; Cohen’s d = 1.71). The range of activity inten-
sities was markedly reduced in A-T compared to controls (p < 0.0001; Cohen’s d = 2.72). The activity metrics correlated 
strongly with arm, gait, and total clinical severity (r: 0.71–0.87; p < 0.0001), correlated with specific computer task motor 
features (r: 0.67–0.92; p < 0.01), demonstrated high reliability (r: 0.86–0.93; p < 0.00001), and were not significantly influ-
enced by age in the healthy control group.
Motor activity metrics from a single, inexpensive wrist sensor during free-living behavior provide accurate and reliable 
information about diagnosis, neurological disease severity, and motor performance. These low-burden measurements are 
applicable independent of ambulatory status and are potential digital behavioral biomarkers in A-T.
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Introduction

Ataxia-telangiectasia (A-T) is a rare autosomal recessive 
neurodegenerative disorder that affects one in every 40,000 
to 100,000 children [1]. The neurological manifestation is 

characterized by progressive cerebellar atrophy and ataxia, 
peripheral neuropathy, and extrapyramidal features such as 
tremor, chorea, dystonia, and myoclonus[2, 3]. Heterogene-
ity in phenotype, day-to-day variability, and variable compli-
ance with the neurological examination add to the challenge 
of accurately and precisely measuring disease severity in 
clinical practice and interventional trials. Tools are needed 
to objectively, frequently, and holistically monitor children 
with A-T outside the clinic, as they go through their usual 
daily routines and without requiring precise performance 
of specific tasks (i.e., during free-living conditions). Such 
tools have the potential to capture more ecologically valid 
information about the patient’s state and produce measures 
that better reflect how the disease impacts everyday func-
tion. Furthermore, more frequent or continuous sampling 
could reduce variance of disease assessments and enable 
more sensitive detection of changes in motor and cognitive 
behavior[4–7]. Detection of longitudinal, disease-related 
changes is important in initial diagnosis/determination of 
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disease onset, monitoring for events that may require clinical 
intervention, and for determining efficacy in interventional 
trials. Wrist sensors with triaxial accelerometers are a prom-
ising tool for providing continuous movement information 
that is relatively low-burden and has the potential to be used 
in clinical practice and in clinical trials.

The use of wearable sensors for passive measurement of 
motor activity in real-world settings has yet to be investi-
gated in A-T; however, it has shown potential in other neu-
rodegenerative diseases including Parkinson’s disease[8], 
multiple sclerosis[9], and Huntington’s disease [10]. Assess-
ments of balance[11, 12], gai [13], functional decline [14], 
and sleep quality [15] have been demonstrated, including 
applications of a paired sensor and vibro-tactile feedback 
system in neurorehabilitation [16]. Prior work in A-T has 
employed wearable sensors[17, 18] and computer mice[19] 
to measure limb motor activity during in-person adminis-
tered tasks[20]. Recent work in other ataxias has focused 
on gait analysis from wearable sensor data in spinocerebel-
lar ataxia in real-life settings[21] as well as in Friedreich’s 
Ataxia[22], ataxia from spinocerebellar degeneration[23], 
and SCA-6 in clinic settings[24]. Gait is a functionally and 
clinically important disease component in A-T; however, 
wheelchair use typically begins early in the second decade 
of life[25] thereby limiting the applicability of gait assess-
ment in the second half of the disease.

Here we compared measures from a wrist-worn sensor 
to the physician-administered Brief Ataxia Rating Scale 
(BARS)[26, 27] and a validated computer mouse assess-
ment of ataxia and parkinsonism[19] to assess free-living 
activity metrics as biomarkers in A-T.

Methods

Participants

Thirty-six age- and sex-matched children with and without 
A-T were enrolled in the study. All participants were identi-
fied in partnership with the Ataxia-Telangiectasia Children’s 
Project (A-TCP). Written informed consent and assent were 
obtained from all participants prior to participation and the 
study. Control participants were siblings of A-T participants. 
Exclusion from enrollment in this study included as follows: 
younger than 4 years old, inability to tolerate wearing a wrist 
sensor for 1 week, inability to perform the computer mouse 
task, and the presence of another neurological disorder or 
other condition that affects arm function or mobility. Inclu-
sion in data analysis required wearing a sensor on the wrist 
of the dominant arm continuously for 1 week and undergo-
ing an in-person neurological examination. Three partici-
pants were excluded from analysis for non-compliance: two 
participants removed the device during the data collection 

period, while another participant was unable to wear the 
device for more than 24 h due to unrelated life circum-
stances. One participant’s device ran out of battery after one 
day of data collection and was excluded from the study. Two 
additional A-T participants were excluded because a BARS 
score could not be performed: one was due to escalation of 
the COVID-19 pandemic, and another child was enrolled 
too late in the day to perform the full neurological exam. Of 
the 30 children who successfully completed the study, 15 
had A-T and 15 were controls. All children with A-T were 
genetically confirmed to have the disease and were pheno-
typically characterized with the classic subtype upon clinical 
examination[1] (see Table 1). The median age of A-T and 
control participants was 10 and 11 years old, respectively. 
Participants with A-T spanned a range of ambulatory status 
from being able to walk without assistance (BARS gait sub-
score ≤ 4) to requiring a wheelchair for mobility (BARS gait 
subscore ≥ 7, see Table 1).

Wearable Sensor Data Collection

The study used the GENEActiv Original actigraphy device 
(ActivInsights Ltd., Cambridge, UK), which measures tri-
axial acceleration with an MEMS sensor (range: ± 8 g; res: 
12bit), light level with a silicon photodiode (res: 5 Lux typi-
cal), and temperature with a linear active thermister (res: 
0.25 °C). Participants were asked to wear the device on 
their dominant wrist 24 h per day for 1 week: which is the 
battery-life and data storage capacity of the device when set 
to record at a sampling frequency of 100 Hz.

Wearable devices were charged before being distributed 
to families either in-person or via mail. Study staff directed 
families through device placement and device activation. 
After 1 week of continuous wear, devices were mailed back 
and participant data were downloaded off of each device by 
study staff. Following data collection, study staff engaged 
in a guided interview with children and parents to discuss 
their experience with the wearable sensor. In four (13.3%) 
out of the 30 children who wore the device for 1 week, data 
were obtained for fewer than 7 days (3–6 days) due to battery 
charging issues.

Computer Mouse Task Data Collection

A browser-based task (Hevelius) hosted by Labinthewild.
org[28] was in this study. Hevelius quantifies arm function 
by extracting 32 age-normalized features from continuous, 
target-driven computer mouse trajectories. These features 
reflect the duration, speed, smoothness, and shape of the 
mouse movements and were previously shown to be inform-
ative for classifying and quantifying the severity of individu-
als with ataxia and parkinsonism in a clinic setting [19].
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Participants were asked to complete the Hevelius com-
puter mouse task once a week for up to 12 weeks at home. 
Individuals also completed the task once during the in-per-
son clinical assessment. In total, 27 of the 30 participants (14 
A-T, 13 controls) completed the task at least once and these 
27 individuals performed the task on average 8.4 times with 
a range of 5.25–11 times (25th–75th percentile). Hevelius 
features were computed from each session and the median 
feature values across each individual’s sessions were used 
in analysis.

Clinical Assessment

All A-T participants completed a detailed, in-person neu-
rological exam and were scored on the Brief Ataxia Rating 
Scale (BARS), which evaluates gait, speech, oculomotor 
function, the finger-nose-finger task, and the heel-to-shin 
task[26]. Participants wore the wearable sensor on their 
dominant wrist as they completed these clinical tasks. 
Twelve clinical assessments were performed within 1 month 
of the start of wearable sensor data collection and all assess-
ments were performed within 4 months of data collection.

Total BARS scores and subscores assigned to each A-T 
participant are shown in Table 1. For the two individuals 
for whom it was challenging to clinically assess speech 
and the one individual who was not properly participating 
in the right leg assessment, the subscore was assigned by 
taking the normalized average score of the other compo-
nents of their BARS score. All control participants were 
assigned BARS scores of 0.

In addition to BARS ataxia scores, the presence or 
absence of hyperkinetic movements (i.e., tics, chorea, 
myoclonus, ballismus, and arrhythmic adventitious move-
ments) and tremor/rhythmic movements, as defined in the 
A-T Neuro Examination Scale Toolkit (A-T NEST)[29], 
were retrospectively assessed from videos of the neuro-
logical examination (Table 1).

Wearable Sensor Data Processing and Feature 
Extraction

Each participant’s raw wearable sensor data were parti-
tioned into day and night segments based on clear changes 
in each child’s daily activity level represented in the accel-
erometer data (see Fig. 1A). To account for differences in 
the time of day that sensor recording began across partici-
pants, day/night segmentation was started at the onset of 
the first full night of recording. This produced a maximum 
of 6 consecutive 24-h periods of recording from a full 
week of data collection. Data analysis focused on daytime 
activity given that the majority of night-time was deter-
mined to be spent in an inactive state (91.9 ± 4.5% for chil-
dren with A-T and 92.1 ± 3.1% for controls) as measured 
by Activity Index (see below).

Activity Index Feature Extraction

Relative scale Activity Index (AI) is a non-proprietary 
measure of activity intensity derived from tri-axial 

Fig. 1   Sample of raw acceleration data and Activity Index (AI) his-
togram for A-T participants and controls. A–B Tri-axial acceleration 
and light measurements from a sample participant over 24 h. Dashed 
lines separate nighttime and daytime segments. C Histograms show 

the proportion of daytime participants spent at each AI (group medi-
ans shown). X-axis plotted in cubic scale. Dashed lines denote the 
upper bound of AI categories defined as inactive (AI < 0.0045), low 
(0.0045–8.63), moderate (8.63–44.8), and high (44.8–336)
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accelerometry data that has been shown to correlate with 
energy expenditure and differentiate between activity 
types[30]. Instead of measuring the magnitude of raw 
acceleration, the AI metric is based on the variance of 
acceleration in each of the three axes of motion. AI was 
computed for each 1-s period of sensor recording during 
the free-living recording. Visualizing the histogram of 
daytime AI values for A-T and control participants on a 
cubically scaled axis (Fig. 1C) demonstrated a large, dis-
continuous peak in the first bin representing very small 
AI values (AI < 0.0045). In the night-time AI histogram 
of both A-T and control participants (not shown), this first 
bin contained > 90% of all AI values. Thus, AI values less 
than 0.0045 were categorized as “inactive.” Percent of 
daytime spent inactive was used as a sensor-derived met-
ric in analysis. When computing statistics of the daytime 
AI distribution for each individual, periods of inactivity 
were excluded. Two sensor-derived metrics, mean AI and 
AI entropy, were extracted from this resultant AI distribu-
tion. AI entropy is highest when time is spent equally over 
all possible activity indices and lowest when all time is 
spent at a single Activity Index value.

Based on prior work, AI values were grouped into 
three categories: low intensity (0.0045 < AI < 8.63; e.g., 
watching a DVD while sitting quietly), moderate inten-
sity (8.63 < AI < 44.8; e.g., doing laundry while stand-
ing), and high intensity (44.8 < AI < 336; e.g., treadmill 
walking at 2–2.5 miles per hour)[30]. These categories 
were used to determine the percentage of daytime each 
individual spent performing low, moderate, and high 
intensity activities.

Activity Index During In‑person Clinical 
Assessments

To verify these categories in the A-T population and with 
a wrist sensor, AI was computed from recordings obtained 

during performance of the standard neurological examina-
tion. For each clinical task performed by an A-T participant, 
the 90th percentile AI value was used as a representation 
of the task activity intensity value during that specific task. 
90th percentile was used to account for periods surround-
ing performance of the task when individuals were not yet 
engaged in the task (see Table 2).

Total Power Feature Extraction

In order to calculate the metric of total power, we first com-
puted the magnitude of the tri-axial acceleration data for 
each time point during daytime. Data were filtered using a 
6th-order Butterworth bandpass filter with a 0.1-Hz lower 
cutoff frequency and a 20-Hz higher cutoff frequency. The 
discrete Fourier transform was subsequently performed on 
each participant’s data using a fast Fourier transform algo-
rithm. Power spectra were computed for the frequency range 
of 0.1–5 Hz since this band had previously been found to be 
informative in cerebellar ataxia[31]. Results were qualita-
tively unchanged when selecting the broader frequency band 
0.1–20 Hz. Total power was computed by taking the sum of 
power across the frequency band 0.1–5 Hz for all days of 
data collection and dividing by the number of 24-h data col-
lection periods. The total power metric captures the propor-
tion of acceleration signal power that falls in the 0.1–5-Hz 
frequency band.

Statistical Analyses

All statistical analyses were completed in MATLAB. The 
Mann–Whitney U-test and Cohen’s d effect size were used 
for group comparisons between A-T and control groups. 
Pearson correlation coefficients and p-values were employed 
to evaluate the relationship between wearable sensor meas-
ures and age, clinical scores, and computer task measures. 
Pearson correlation coefficients and p-values were also used 

Table 2   Activity Index (AI) 
during clinical assessments. 
For each of the 12 neurological 
assessments performed, 10th, 
50th, and 90th percentiles of the 
task AI value (see “Methods” 
section) across A-T participants 
(N = 15) are tabulated and 
ordered by the median value of 
the population

Task name 10th percentile Median 90th percentile

Low AI intensity (0.0045–8.63) Smooth pursuit 0.9891 2.6873 6.3021
Cookie theft 0.8515 3.5553 13.9469
Rest 3.2488 8.8554 18.7450

Moderate AI intensity (8.63–44.8) Heel-to-shin 4.0106 11.5878 29.5597
Stop traffic 9.1515 19.4239 27.5597
Palm down 14.0918 19.5320 29.1147
Finger tapping 15.3607 24.0080 40.9994
Mirroring 15.2486 24.8595 45.1429
Open-close 12.9863 27.1218 33.94591
Walking 15.8650 29.0743 55.7619
Finger-nose-finger 20.6801 30.9820 36.4549

High AI intensity (44.8–336) Light bulb 41.5071 70.2128 103.9444
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to evaluate the reliability of the wearable sensor measures 
over the recording period (i.e., comparing data from days 
1–3 versus days 4–6). P-values less than 0.05 were consid-
ered significant.

Results

Free‑Living Measures Distinguish A‑T vs Control 
Participants

Activity Index (AI) values were computed for each 1-s inter-
val over all days of data collection for children with A-T and 
were compared with age- and sex-matched controls. Visual 
inspection of the AI histograms (Fig. 1C) suggested that 
children with A-T spent more time performing lower inten-
sity behaviors (histogram shifted to left) and that there was a 
reduced range of activity intensity (histogram more peaked).

To further quantify activity differences between A-T 
and controls, AI was divided into four categories based 
on prior work relating AI values to specific behaviors[30] 
(see “Methods” section): inactive, low intensity, moder-
ate intensity, and high intensity. Children with A-T spent 
17.3 ± 11.1% (mean ± 1 standard deviation) of their day 
inactive, 50.8 ± 8.1% of their day performing low intensity 
behaviors, 29.2 ± 11.8% time performing moderate intensity 
behaviors, and 2.6 ± 2.0% time performing high intensity 
behaviors (Fig. 2).

Compared with controls, children with A-T spent more 
daytime performing low intensity behaviors (Mann–Whitney 
U-test, p < 0.01; Cohen’s d = 1.48) and less time perform-
ing high intensity behaviors (p < 0.001, Cohen’s d = 1.71). 
Mean AI was decreased in children with A-T versus con-
trols (p < 0.001, Cohen’s d = 1.88) and total power in the 
0.1–5-Hz range was also decreased in children with A-T 
(p < 0.0001, Cohen’s d = 2.02). There were no significant dif-
ferences between children with A-T and controls for amount 
of time inactive and amount of time performing moderate 
intensity behaviors (Fig. 2).

To quantify the range of activity intensity in children 
with A-T, the entropy of the Activity Index histogram was 
computed for each participant. Entropy was significantly 
reduced in children with A-T compared with controls, with 
this metric carrying the highest significance level and effect 
size (p < 0.0001, Cohen’s d = 2.72, Fig. 2). Thus, individu-
als with A-T produced a reduced range of activity indices 
compared with controls.

The remainder of the analyses investigated the proper-
ties of the four metrics with the largest difference between 
children with A-T and controls: percent high intensity, mean 
AI, entropy of AI, and total power.

Correlation with Neurological Severity

All four metrics were compared with physician scores on the 
Brief Ataxia Rating Scale (BARS). As shown in Fig. 3, the 

Fig. 2   Differentiating A-T versus controls based on daytime activity. 
A–D Proportion of daytime spent in each Activity Index (AI) cat-
egory; E mean AI; F entropy of AI; and G total power (0.1–5  Hz) 

in A-T versus control groups. Levels of significance are indicated: 
p < 0.05(*); p < 0.01(**); p < 0.001(***); p < 0.0001(****)
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four metrics correlated strongly and significantly with total 
BARS score, the BARS gait subscore, and the BARS score 
of the dominant arm, with Pearson correlations ranging in 
magnitude 0.64–0.78 for A-T participants only (p < 0.01) 
and increasing to 0.71–0.87 when considering A-T and con-
trols together (Fig. 3). As anticipated, there were no signifi-
cant correlations between the four metrics and speech, ocu-
lomotor, and leg subscores on BARS (data not shown). AI 
entropy demonstrated the highest correlations with BARS 
scores (absolute Pearson r of 0.85–0.87).

Reliability of Wearable Sensor Measures

Metric reliability was evaluated by splitting the data for each 
participant with 6 days of data (N = 26) into two periods 
(days 1–3 and days 4–6) and computing each of the four met-
rics separately for the two periods. The Pearson correlation 
for each metric across the two periods was highly significant 
(p < 0.00001) and ranged from 0.86 to 0.92, demonstrating 
high reliability (Fig. 4).

Influence of Age on Wearable Sensor Measures

As there was a relationship between neurological disease 
severity (as measured by BARS) and age (Fig. 5E), it was 
anticipated that there would be a relationship between the 
wearable sensor metrics and age for the A-T population and, 
indeed, the Pearson r between each metric and age ranged 
from − 0.59 to − 0.72. In order to determine if the four wear-
able sensor measures were related to age without the con-
founding factor of disease progression, relationship with age 
was examined separately in the control population. Percent 
high intensity and mean AI were significantly correlated 
with age amongst controls (Pearson r =  − 0.60 and − 0.59, 
respectively, p < 0.05), but entropy of AI and total power 
were not significantly correlated with age in control partici-
pants (Fig. 5).

Relationship with Task‑Based Digital Measures

To contextualize the four measures based on passively 
recorded movement from a wrist-worn sensor, we compared 

Fig. 3   Relationship between wearable sensor measures and clinical severity. Activity metrics from all participants (A-T: red; controls: green) 
were plotted against A–D BARS dominant arm, E–H BARS gait, and I–L total BARS scores. Line of best fit, Pearson r, and p-values are shown
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the measures with movement features on the Hevelius com-
puter mouse task[19]. A consistent set of Hevelius features 
(duration of longest pause, number of pauses, movement 
time, and click duration) correlated most strongly (Pearson 
r 0.67–0.92) and significantly (p < 0.01) with the four wear-
able sensor measures (Fig. 6). These four Hevelius features 
were all previously found to be significantly increased in 
individuals with ataxia, and movement time and click dura-
tion were important features for estimating ataxia sever-
ity[19]. On the other hand, Hevelius features including 
fraction of the distance to the target center covered in the 
main submovement and click slip, which were previously 
determined to be informative for estimating ataxia severity, 
were not significantly correlated with the wearable sensor 
measures (data not shown).

Activity Measures During Clinical Tasks

To further contextualize the activity intensity values com-
puted during free-living behavior, we computed AI from 
the wrist sensor data as the same participants with A-T 
performed several in-person neurological assessments. The 
median, 10th, and 90th percentile of maximum activity inten-
sity across A-T participants for each clinical task are shown 
in Table 1. Clinical tasks involving speech and eye move-
ments fell into the low intensity category (0.0045–8.63), 
tasks involving maintaining a posture or reaching fell into 
the moderate intensity category (8.63–44.8), and tasks 
involving fast repetitive arm movements fell into the high 
intensity category (44.8–336). Walking fell into the mod-
erate intensity category for some individuals and the high 

Fig. 4   Reliability of wearable sensor metrics. A–D The 4 wearable 
sensor measures were computed from the first half (days 1–3) and the 
second half (days 4–6) of the data collection period per participant 

(A-T: red; controls: green) and then plotted against each other. The 
black dashed line represents the y = x line. Pearson correlation coef-
ficients (r) and p-values are shown

Fig. 5   Relationship between 
wearable sensor metrics and 
age. A–D The four activity 
metrics of interest were plotted 
against participant age with 
A-T (red) and control (green) 
participants shown separately. 
Linear regression line through 
each group is shown and listed 
Pearson correlation coefficients 
(r) and p-values are based on 
control group data only. E Total 
BARS score in the A-T group is 
plotted with respect to age and 
the corresponding regression 
line is shown

375The Cerebellum  (2022) 21:368–379



intensity category for others since many children with A-T 
required assistance during the walking task.

Discussion

This study tested the hypothesis that motor activity met-
rics derived from 1 week of real-life wrist sensor data could 
accurately represent neurological disease state and severity 
in ataxia-telangiectasia. We found that children with A-T 
were inactive the same proportion of each day as healthy 
controls but were more likely to produce low intensity move-
ments and less likely to perform high intensity movements 

compared to controls. In particular, the entropy of Activity 
Index values and total power were reduced in A-T and had 
properties supporting their potential as a biomarker: they 
distinguished children with A-T from controls with very 
large effect size, correlated strongly with clinical neuro-
logical severity, demonstrated high reliability, and were not 
significantly influenced by age in the healthy control popula-
tion aged 4–15.

This study builds on prior work demonstrating that a wrist 
sensor can characterize hyperkinetic movements during 
specific motor tasks in A-T[17], can classify children with 
ataxia from controls during a reaching task[20], and that a 
three sensor array (feet and lumbar placement) can capture 
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Fig. 6   Relationship between wearable sensor measures and Hevelius 
computer task features. Activity measures were compared with com-
puter task features A–D longest pause, E–H number of pauses, I–L 

movement time, and M–P click duration. Feature values are medians 
across A-T participant weekly sessions. Line of best fit, Pearson r, 
and p-values are shown

376 The Cerebellum  (2022) 21:368–379



specific gait characteristics that correlate with severity dur-
ing real-life ambulation in adult degenerative ataxias[21]. 
The current study differs from prior work in several ways 
with the goal of evaluating the potential for low-burden 
clinical application in A-T: (1) a single wrist-worn sensor 
was used, (2) natural (task-free) behavior was measured, (3) 
there were no functional restrictions on participation, such 
as requiring individuals to be able to ambulate without aids, 
and (4) key properties supporting the metrics’ use as a bio-
marker were evaluated. This work extends our knowledge 
of the disease information captured by a single wrist sensor 
during natural behavior and provides support for its use in 
measuring neurological severity in A-T clinical trials.

One challenge with passively collected data in real-world 
settings where context is unknown and uncontrolled is find-
ing measures that are both informative and interpretable. 
Activity Index was used to represent activity intensity in 
each 1-s epoch of behavior as prior work established that this 
measure is sensitive for detecting sedentary, light, moder-
ate, and vigorous physical activities and correlates strongly 
with energy expenditure, based on a sensor placed at the 
hip[30]. Furthermore, AI was computed as A-T participants 
performed standard neurological examination tasks while 
wearing the sensor on their dominant wrist. This enabled a 
mapping between activity intensities produced in the free-
living setting with motor tasks performed during standard 
neurological assessments.

The daily distribution of AI measures is likely driven 
by several factors including the specific real-life behaviors 
performed by the individual, the intensity with which the 
behaviors were performed, and in A-T, the individual’s 
hyperkinetic and hypokinetic movement features. The A-T 
phenotype is known to include arrhythmic hyperkinetic 
movements (e.g., chorea, myoclonus, dystonia), rhythmic 
hyperkinetic movements (i.e., tremor), and bradykinesia[1]. 
Despite the presence of arrhythmic hyperkinetic movements 
in the limbs of all but one A-T participant, the A-T group 
produced more low intensity movements compared with the 
control group. This observation suggests that arrhythmic 
hyperkinetic movements have a relatively small impact on 
the daily distribution of AI, potentially because they make 
up a relatively small proportion of overall daily activity 
and/or are outweighed by other factors (i.e., the choices of 
behaviors and how they are performed). Only two A-T par-
ticipants (both in the 12–18-year-old group) had a rhythmic 
limb tremor. As shown in Fig. 5, all individuals with A-T in 
this older age group had markedly reduced mean AI; thus, 
rhythmic hyperkinetic movements, similar to arrhythmic 
movements, appear to be outweighed by the other factors 
that contribute to daily activity intensity.

Entropy of the distribution of activity intensities expe-
rienced over a period of time also offers interpretable data 
for how A-T affects motor function. The measure reflects 

how evenly distributed a participant’s activities are over the 
range of activity intensities. In individuals with A-T, entropy 
of this distribution was markedly decreased, indicating that 
activities were concentrated in a narrower range of intensity 
levels compared to controls. Decreased entropy is a conse-
quence of neurological disease that has been observed across 
different diagnoses and data types[32–35].

Entropy of AI and total power correlated strongly with 
total BARS score, BARS dominant arm finger-nose-finger 
task score, and BARS gait score, but not speech, oculomo-
tor, or heel-to-shin subscores. These observations are con-
sistent with the intuition that wrist-sensor based movement 
measures reflect gait and arm function. Additionally, strong 
correlations between the wearable sensor measures and 
certain Hevelius computer mouse task features related to 
task duration and pausing behavior suggest that the wear-
able sensor metrics reflect slowed and interrupted motor task 
performance in ataxia-telangiectasia. Thus, it is possible that 
the wearable sensor metrics described here may be useful 
in assessments in other neurological conditions such as Par-
kinson disease.

The data required to compute the wearable sensor meas-
ures were easy to collect and low-burden on children, as only 
a single lightweight wrist sensor was needed and individuals 
were not required to perform any specific tasks. The single-
sensor system was well-tolerated for a full week’s use in 
the majority of the pediatric cohort based on feedback from 
parents and children (see “Methods” section). Importantly, 
the measures could be computed from individuals who could 
not ambulate independently or were wheelchair-bound, and 
remained reflective of disease severity.

The low-cost wearable sensor-derived biomarkers 
reported here offer clinicians and researchers a mechanism 
to collect real-life, disease-relevant information, without 
requiring trips to the office and precise performance of 
behavioral tasks, which can be a challenge to obtain in chil-
dren. Continuous data collection enables the generation of 
more frequent severity estimates based on multiple days of 
data rather than a single visit, which may reduce variance in 
disease estimates and sample sizes in clinical trials[4]. Addi-
tionally, continuous data collection provides the opportunity 
to characterize diurnal and day-to-day fluctuations, as well 
as evaluate the effects of variables such as mood, fatigue, 
and sleep on motor activity in A-T.

These data demonstrated that children with A-T produced 
lower intensity movements; however, since the data were 
collected in the free-living context, the precise nature of 
the activities and behaviors remains unknown. Children 
with A-T could either be engaging in the same activities as 
healthy controls but less vigorously or they could be engag-
ing more often in different activities that are less strenu-
ous. The answer may be a combination of the two scenar-
ios, but further investigation is needed for a more granular 
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understanding of activities performed in the free-living con-
text. In addition, AI and its related metrics and categories 
have thus far been developed in the context of adult behav-
iors not pediatric behaviors and based on a hip-worn rather 
than a wrist-worn sensor. Measuring AI from a wrist-sensor 
in children with A-T as they participated in neurological 
assessments (Table 2) provided additional support and intui-
tion for evaluating AI in the free-living context; however, 
there is a need to further evaluate these activity metrics in a 
broader set of pediatric and adult populations. Furthermore, 
it will be important to examine clinical scoring scales other 
than the BARS, which specifically captures ataxia, in order 
to investigate the biomarker’s potential applicability to other 
neurological phenotypes present in A-T.
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