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Abstract

The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion
cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas.
Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area
and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple
neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models
also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this
work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first
study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total
dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance
the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range
than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of
ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results
suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in
comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our
detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a
large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.
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Introduction

One of the many important features of the vertebrate retina is

the capacity to respond to signals over a wide range of intensities

with a dynamic range of several orders of magnitude [1,2].

Individual neurons have limited dynamic ranges, so the large

dynamic range of the retina must result from some interplay

between single neuron characteristics and network structure and

synaptic properties. This may be one the explanations for the

diversity of cell types found in the retina and the complexity of its

circuitry [3–6]. The ganglion cells in particular, which are the

output cells of the retina and transmit information to higher brain

regions in the form of action potentials that propagate along their

axons, must have dynamic range enhancement mechanisms that

prevent their firing rates from early saturation to preserve the

dynamic range achieved at earlier stages in the retina [7–9].

A single neuron characteristic, which is claimed to be

fundamental for enhancing the neuronal dynamic range in general

is the size and complexity of the neuronal dendritic tree with active

conductances [10,11]. The idea behind this claim is that dendritic

trees with many bifurcations and active ionic conductances act as

spatially extended excitable systems whose nonlinear input-output

transfer function endows the neuron with a large dynamic range.

If this hypothesis is valid, most cells of the vertebrate retina do not

benefit from this property because they have simple dendritic

structures. The possible exceptions are the ganglion and amacrine

cells, which are the most complex cells of the retina and have

relatively intricate dendritic arbors [12,13].

There is evidence in favor of a relationship between properties

of ganglion cell dendritic trees and their firing behavior, however

not exactly as predicted by the above theory. Computational

studies with morphologically reconstructed models of ganglion

cells of the salamander retina [12,14] indicate that the branching

complexity of the dendritic tree correlates only weekly with the

electrophysiological response pattern and the input-output transfer

function, measured by the firing rate versus stimulus current (F–I)

curve. These studies found strong correlations between the total

somatic plus dendritic surface area of the cell and its electrophys-

iological class and F-I curve.

From the point of view of network properties, a mechanism that

may contribute to enhance the collective dynamic range of the

network is electrical coupling between cells via gap junctions [15–

17]. The coupling would increase sensitivity to weak stimuli while

avoiding early saturation by nonlinear self-limiting mechanisms.

This mechanism may be important for the vertebrate retina, since
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there is extensive evidence for electrical coupling between different

cell types in the retina via connexin36 gap junctions [5,6,9,18,19].

Indeed, a biophysically detailed model of the rod pathways in the

vertebrate retina has shown that electrical synapses between rods

and AII amacrine cells may increase the dynamic range of the

system [20].

Ganglion cells of the vertebrate retina are coupled by electrical

synapses via dendrodendritic gap junctions [21–23]. In the spirit of

the theory mentioned above [15–17], this may be interpreted as a

means to enhance the collective dynamic range of the ganglion

cells. However, to our best knowledge, no one has yet investigated

the role of dendrodendritic gap junctions between ganglion cells

on the dynamic range of the network comprised of them,

especially with cell models that take into account dendritic

morphology.

In this work we use morphologically reconstructed, multi-

compartmental models of ganglion cells of the vertebrate retina

with realistic distributions of ion channels to perform two

computational studies on the dynamic range of ganglion cells.

The first is concerned with the dynamic range of isolated ganglion

cells and its objective is to compare the effects of active and passive

dendrites on the cells’ dynamic range and to assess what measure

of size of dendritic arbor correlates better with the ganglion cell

dynamic range: total dendritic surface area or number of dendritic

branches. We measure the correlation between dynamic range

and these two measures of dendritic tree size for a population of

cell models with either passive or active dendrites. Our results

show that active dendrites enhance the dynamic range in

comparison with passive dendrites and when dendrites are active

the dynamic range of isolated ganglion cells is positively correlated

with either measure of dendritic tree size, though more strongly

with total dendritic surface area than with number of dendritic

branches.

The second study is aimed at assessing the role of ganglion cell

coupling by gap junctions on the dynamic range of the ganglion

cell population. We construct a network of ganglion cells by

coupling them via dendrodendritic gap junctions with realistic

conductance values. The network simulates a small area of the

ganglion cell layer. We consider different configurations of the

network, with passive/active dendrites and different values of the

electrical synapse conductance. The dynamic range of the network

is measured either directly, by the average firing rate of all neurons

in the network, or indirectly, by the firing rate of a lateral

geniculate nucleus pyramidal neuron model coupled by chemical

synapses to all ganglion cells in the network. As far as we know,

this is the first computational investigation of the dynamic range of

a neural cell layer using reconstructed neurons with full

morphologies and realistic ion channel distributions. Our results

show unequivocally that electrical coupling, especially when

dendrites are active, increases the dynamic range in comparison

with the uncoupled case.

Our two results put together imply that to maximize the

dynamic range of a population of vertebrate ganglion cells the best

configuration would be cells with large and active dendritic trees

coupled by gap junctions.

Results

Dynamic range of isolated ganglion cells
We worked with a sample of 20 morphologically and

biophysically detailed models of ganglion cells from the tiger

salamander (for details see Methods). Cells belonged to four

different morphological groups (5 per group), based on the size

and complexity of their dendritic trees [24]: medium-complex

(MC), medium-simple (MS), small-complex (SC), and small-simple

(SS).

The dynamic range of each cell in the sample was determined

from its F-I curve (see Methods). To obtain the F-I curve of a cell

model, we submitted it to somatic step current injections ranging

from 101 to 2.103 pA in steps of 10 pA. In Figure 1A we show the

voltage response of a cell from the SS group. The cell responds

with a typical repetitive (tonic) firing of action potentials [24]. The

F-I curve for the same cell is shown in Figure 1B together with its

dynamic range. The firing frequency increases in approximately

linear fashion with current amplitude up to a maximum frequency

below 350 Hz.

The transition from tonic firing to rest observed in Figure 1B is

typical of all ganglion cell models studied in this work. This

behavior is also observed experimentally, where the tonic firing is

blocked by injection of a depolarizing current above a threshold

value [25–27]. The transition point corresponds to the cell’s

physiological limit beyond which further increases in current

amplitude may damage the cell. We have used dynamical systems

analysis [28] to study this behavior, and the explanation can be

understood with the help of Figure 2. Our analysis shows that the

ganglion cell model undergoes a supercritical Andronov-Hopf

bifurcation [29] as the current amplitude increases. When the

model is stimulated with current clamp for 1000 ms, the amplitude

of the spike gradually decreases with the current amplitude

increase until it reaches the bifurcation point near 0.6 nA

(Figure 2A). Phase portraits for the activation variable of the

potassium current show the transition from limit cycle oscillations

to a stable fixed point as the current crosses the critical point

(Figures 2B).

Figure 3 gives the main results of our first study. It shows scatter

plots of dynamic range versus number of dendritic branches

(Figure 3A) and total dendritic surface area (Figure 3B) for the 20

cells in the sample. Figures 3C and 3D show the same scatter plots

but for cells with passive dendrites. The dendrites were made

passive by blocking all active channels of the cells’ dendrites.

A comparison between plots in the first row of Figure 3, for

active dendrites, with plots in the second row, for passive

dendrites, shows that active dendrites enhance the dynamic range

of the cells. For passive dendrites, dynamic range values are always

below 18 dB and can be as low as 3 dB while, for active dendrites,

dynamic range values are always above 15 dB and can be as high

as 21 dB. The mean, median and standard deviation for the

dynamic range values are shown in Table 1.

Figure 3 also shows that, for active dendrites, the two dendritic

size measures considered by us, namely number of dendritic

branches and total dendritic surface area, are positively linearly

correlated with the dynamic range. The correlation is moderate

with number of dendritic branches (Figure 3A) but strong with

total dendritic surface area (Figure 3B). The linear regression lines

for the two cases are shown in the plots and the angular

coefficients are, a = 0.055 for the data in 3A and a = 0.001 for the

data in 3B. These results suggest that active dendrites of large size

enhance the dynamic range of single ganglion cells.

The positive correlation between dynamic range and size of the

dendritic tree is lost when dendrites become passive. Figure 3C

shows a moderate negative correlation between dynamic range

and number of dendritic branches and Figure 3D shows a weak

negative correlation between dynamic range and total dendritic

surface area. This suggests that, in opposition to the active

dendrites case, in the passive dendrites case large dendritic sizes

may be detrimental to dynamic range.

The strong correlation between dynamic range and total

dendritic surface area motivated us to do another experiment to
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investigate the effect of dendritic surface area alone on the

dynamic range. Since dendritic surface area and number of

dendritic branches are related, we designed an experiment in

which only dendritic surface area varied while the number of

dendritic branches remained constant. We chose a ganglion cell

model from the SS group with passive parameters described in

Table 2 and attached an extra dendritic compartment to its soma.

Then we run two sets of experiments in which constant current

steps of increasing amplitude were applied to the soma in the same

fashion as in the experiments related to Figure 3. In the first set of

experiments the extra compartment was passive, i.e. it had only

leak conductance, and its surface area was equal to the somatic

area multiplied by an area factor A that varied from 0.1 to 2. The

second set of experiments followed the same protocol of the first

but the extra compartment was now active, i.e. it had all

conductances present in the other dendritic compartments with

the same densities given in Table 3 (see Methods).

The results of this experiment are given in Figure 4. Figure 4A

shows plots of the cell’s dynamic range versus the area factor A for

the cases in which the extra dendritic compartment is passive and

active. The plots show that, for small areas (area factor #0.5), the

dynamic range is only marginally larger when the compartment is

active in comparison with when the compartment is passive.

However, for larger areas the behaviors of the cases diverge

dramatically: the dynamic range for the active case constantly

increases with area while the dynamic range for the passive case

constantly decreases with area. The difference C between the

dynamic ranges for the active and passive cases is shown in

Figure 4B as a function of the area factor. For an increase in the

area factor from 0.5 to 2, C increases by 6.5 dB. This result shows

that, for active dendrites, increases in dendritic surface area alone

are capable to enhance the dynamic range of a single ganglion cell.

The second study was designed to assess the effect of electrical

coupling between ganglion cells on the collective dynamic range of

the cells. We simulated a 363 square array of ganglion cells

coupled via dendrodendritic gap junctions as shown in Figure 5

(for details see Methods). All cells in the array were taken from the

SS group. Only the ganglion cell positioned at the center of the

array received external inputs while the other passively received

stimuli through the gap junctions. The ganglion cells were also

coupled by chemical synapses to a single neuron (also shown in

Figure 5), which represents a pyramidal neuron from the lateral

geniculate nucleus (LGN) of the thalamus. This pyramidal neuron

was modeled as a single-compartment cell [30] (see Methods).

In our experiments, step current inputs were applied to the

central neuron of the array with amplitudes varying from 101 to

105 pA. This central neuron excites the other neurons via gap

junctions so that we can relate the steady state firing frequency of

each one of the nine neurons in the array to the amplitude of the

applied current input. Figure 6 shows the responses of the ganglion

cells in the array for the range of input currents used. Figure 6A

shows responses for cells with passive dendrites and Figure 6B

shows responses for cells with active dendrites.

Each coupled cell exhibits a F-I pattern similar to the one of the

single cell in Figure 1, with firing rate increasing as a function of

the stimulus amplitude until the physiological limit is reached and

the cell is not able to spike anymore. In both figures 6A and 6B,

the leftmost curve is the F-I curve of the central cell. This cell has

the steepest F-I curve slope and reaches the physiological limit for

a current amplitude well below the amplitudes that put the other

cells at physiological limit. For some cells, the maximum current

amplitude is even beyond the range of input values used to plot the

graphs. As a consequence of this, the range of current amplitudes

for which the coupled cells can respond before saturating is

enhanced in comparison with the uncoupled cell case. The

Figure 1. Response functions. Current clamp response for a sample cell from the SS group. The sampled cell has 47 branches and total dendritic
area of 1284.67 mm2. (A) Voltage response to a current clamp of 10 pA amplitude. (B) FxI curve for the same cell model with inputs varying from
10 pA to 100 pA. The dashed lines indicate the minimum and maximum current amplitudes used to obtain the dynamic range of the cell.
doi:10.1371/journal.pone.0048517.g001
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dynamic range of the single (active) cell (Figure 1B) is 16.9 dB and

the dynamic range of the coupled cells is 31.9 dB when cells are

passive (Figure 6A) and 34.7 dB when cells are active (Figure 6B).

Although the enhancement was similar for the simulations with

passive and active trees, the maximum dynamic range was

obtained for the coupled array of ganglion cells with active

dendrites (Figure 6B). This result suggests that although coupling

by gap junctions may play a major role in the enhancement of the

dynamic range of the ganglion cell layer of the retina, intrinsic

ionic membrane mechanisms may also contribute to the

enhancement.

A quantitative estimate of the contribution of active dendrites to

the further enhancement of the dynamic range of a cell in the

coupled array is provided by factor f given in Figure 6B. The

factor f was calculated as IA/IP, where IA is the maximum current

amplitude for the indicated cell of the coupled array with active

dendrites and IP is the maximum current amplitude for the same

cell with passive dendrites. The calculated value of f = 2.94 shows

that when cells in the coupled array have active dendrites the

chosen cell can respond to inputs almost 3 times higher before

saturation when compared to the same cell in the same coupled

array but with all cells in the array with passive dendrites.

An indirect way to assess the dynamic range of the coupled

array of ganglion cells is by measuring the dynamic range of the

pyramidal neuron that receives input from them. Figure 7 shows

the steady state firing frequency of this pyramidal neuron as a

function of the amplitude of current injected in the central cell of

the coupled ganglion cell array (only the case of active cells was

considered). For comparison, the vertical dashed line shows the

maximum current amplitude supported by the uncoupled central

ganglion cell of the array. This current amplitude gives the upper

limit of the range of input currents applied to the central ganglion

cell of the array to which the pyramidal neuron responds when

ganglion cells are uncoupled. Figure 7 shows that when ganglion

cells are coupled this upper limit is displaced more than two orders

of magnitude to the right.

Discussion

The main result of our simulation studies with morphologically

reconstructed ganglion cell models is that active dendrites enhance

the dynamic range of the cells. The other two important results are

that (1) for isolated ganglion cells, the dynamic range has positive

and significant correlation with the size of the active dendritic tree

(the correlation is stronger with total dendritic surface area than

with number of dendritic branches), and (2) by coupling ganglion

Figure 2. Transition from tonic firing to rest. (A) Amplitude of the action potential as a function of increasing current step. The current clamp is
applied for 1000 ms and its amplitude increases linearly with time (I = 0.01t). (B) Two-dimensional phase diagram showing membrane potential in
the horizontal axis and the activation variable (n) of the potassion current for three different current clamp values: 0.1 nA (left), 0.6 nA (middle) and
1 nA (right). The left diagram shows a stable limit cycle while the right diagram shows a stable focus. The middle diagram corresponds to the region
around bifurcation, in which there are many low amplitude oscilations before convergence to the fixed point.
doi:10.1371/journal.pone.0048517.g002
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cells via gap junctions the dynamic range of the coupled cells is

further enhanced, being greater than the average dynamic range

of the individual cells.

Why a cell with active dendrites has a larger dynamic range

than a morphologically similar cell with passive dendrites? Passive

dendrites act as current sinks. Current injected at the soma escapes

to dendrites reducing the efficiency of the input current in making

the cell fire. Active dendrites, on the other hand, allow soma-

generated spikes to propagate into the dendritic tree. These in turn

generate dendritic spikes, which interact nonlinearly across the

dendritic arbor leading to creation and annihilation of spikes and

the consequent enhancement of the cell’s dynamic range [10].

This explains the lower values of dynamic range for ganglion

cells with passive dendrites in comparison with ganglion cells with

active dendrites. It also explains the positive correlation between

dynamic range and size of the dendritic tree for cells with active

dendrites and the negative correlation between dynamic range and

size of the dendritic tree for cells with passive dendrites. Since

passive dendrites act as current sinks, the larger the dendritic tree,

the more space for current to sink. On the other hand, larger

dendritic trees have more active ion channels to support spike

creation and summation.

And why dendritic surface area correlates better with dynamic

range than with number of dendritic branches? The stronger

correlation of dynamic range with dendritic surface area than with

number of dendritic branches means that dendritic surface area is

a better predictor of dynamic range than number of dendritic

branches. As commented above, the critical factor for the

enhancement of the dynamic range of a cell is to have active ion

channels distributed over its dendrites. So, surface area correlates

better with dynamic range simply because it is a better estimator of

the number of ion channels in a dendritic tree than number of

dendrites. This is because the number of ion channels in a

dendritic tree is determined by channel densities per area rather

than per dendrite.

A demonstration that the key factor to enhance the dynamic

range of a ganglion cell is the number of active ion channels in its

dendrites is given by the results shown in Figure 4. In that study,

the number of dendritic branches and, therefore, the complexity of

the dendritic tree, was kept constant and only the surface area of a

dendritic compartment attached to the soma varied. When this

compartment had only passive leakage channels, increases in its

Figure 3. Scatter plots of dynamic range versus number of dendrites and total dendritic surface area for active and passive
dendritic trees. Plots in the first row are for cells with active dendrites and plots in the second row are for cells with passive dendrites. The plots also
show the Pearson correlation coefficients and p-values. (A) Scatter plot of dynamic range versus number of dendritic branches (active dendrites). The
dashed line represents the best linear fit for the data (B) Scatter plot of dynamic range versus total dendritic surface area (active dendrites). The
dashed line represents the best linear fit for the data. (C) Scatter plot of dynamic range versus number of dendritic branches (passive dendrites). (D)
Scatter plot of dynamic range versus total dendritic surface area (passive dendrites).
doi:10.1371/journal.pone.0048517.g003

Table 1. Dynamic range statistics for single ganglion cell
models with active and passive dendrites.

Mean (dB) Median (dB) SD (dB)

Active 18.25 17.98 1.93

Passive 11.29 12.49 4.41

We used the Wilcoxon rank-sum test to reject the null hypothesis of equal
medians with p,0.001.
doi:10.1371/journal.pone.0048517.t001
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area lead to decrements in the dynamic range (surface area and

dynamic range were negatively correlated). But when the

compartment had active ion channels, increases in its surface

area corresponded to increases in dynamic range (the two were

positively correlated). Since the active ion-channel conductance

densities were kept constant during these experiments, increases in

surface area corresponded to increases in the absolute number of

active ion channels.

Our results show that when ganglion cells are coupled by gap

junctions their dynamic range is much higher than the average

dynamic range of isolated ganglion cells. Even ganglion cells with

passive dendrites, when coupled by gap junctions, have a larger

dynamic range than isolated ganglion cells with active dendrites.

The average dynamic range of these latter is 11.30 dB and the

dynamic range of the former is 31.9 dB. When the coupled cells

have active dendrites, the dynamic range of the array is a little

higher: 34.7 dB.

Why coupled cells with passive dendrites have a larger dynamic

range than isolated ganglion cells with active dendrites? The

reason for this is that dendrodendritic coupling by gap junctions

interlinks the somata of the cells, which have active ion channels,

transforming the system into a spatially extended excitable

medium. The mechanism responsible for the enhancement of

the dynamic range of the coupled ganglion cells with passive

dendrites is, therefore, the same one responsible for the

enhancement of the dynamic range of an isolated ganglion cell

with active dendrites, namely nonlinear summation of spikes

[10,15]. And the dynamic range is enhanced even more when the

dendrites of the coupled cells have active conductances themselves.

Based on our results on the dynamic range of coupled ganglion

cells we can make two predictions: (1) blockade of gap junctional

coupling of ganglion cells in the vertebrate retina should strongly

reduce (approximately by 40%) the output dynamic range of the

retina; and (2) selective suppression of dendritic (but not somatic)

spiking of coupled ganglion cells in the vertebrate retina should

reduce the output dynamic range of the retina by a much smaller

factor (approximately 9%). These reductions could be verified by

simultaneous recording from lateral geniculate nucleus pyramidal

cells.

In a previous work, we used a detailed model of the scotopic

pathways that convey information from rods to a single ganglion

cell of the vertebrate retina to study the effect of coupling by gap

junction at the first stages of these pathways on the dynamic

range of the ganglion cell [20]. In this work, we used

morphologically detailed ganglion cell models to extend our

early work and investigate dynamic range-enhancing mechanisms

at the final stage of retina. The combined results of our present

work imply that the largest possible dynamic range achievable at

this final stage is occurs when ganglion cells with large and active

dendritic trees are coupled by gap junctions. We propose that

these are the structures more likely to preserve the large dynamic

ranges achieved at earlier processing stages in the vertebrate

retina.

We further predict, based on our results, that it is unlikely that

any type of ganglion cell would have a passive tree or a very low

channel density at the dendrites. We also predict that, if there are

uncoupled ganglion cells in the retina, these are distributed over

the retina so that cells with large dendritic trees (which imply large

dynamic ranges) are able to integrate signals from circuits

mediated by rods and cones responding to dim and bright light

conditions. On the other hand, ganglion cells with small dendritic

trees should be specialized to photopic or scotopic conditions.

These predictions could be experimentally confirmed in the future

with a detailed study on the distribution of morphologically

distinct ganglion cells over the vertebrate retina.

Future investigations can provide a better understanding on

the roles of cell connectivity and membrane properties on the

dynamic range of the retina. The model can be further improved

with a more realistic synaptic input distribution over the

dendrites of ganglion cells and also extended to include the

main circuits involved with dim and bright light processing in the

retina.

Table 2. Passive parameters of the ganglion cell models.

Length (mm) Diameter (mm)
Axial resistance
(Vm)

Leakage conductance
density (mS/cm2)

Leakage reversal
potential (mV)

Soma - - 110 8.1023 262.5

Axon 5340 1 110 8.1023 262.5

Initial segment 40 1 110 8.1023 262.5

Narrow segment 90 0.4 110 8.1023 262.5

doi:10.1371/journal.pone.0048517.t002

Table 3. Maximum conductance densities of the active ion channels of the ganglion cell models.

Current type Soma (mS/cm2) Dendrites (mS/cm2) Axon (mS/cm2)

Sodium 80 25 70

Calcium 1.5 2 0

Potassium 18 12 18

A-type inactivating potassium 54 36 0

Calcium dependent potassium 0.065 0.008 0.065

doi:10.1371/journal.pone.0048517.t003
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Methods

Single cell models
We worked with a sample of 20 morphologically reconstructed,

three-dimensional ganglion cell models from the tiger salamander

(Ambystoma tigrinum) retina [23]. The models are available at

modelDB (http://senselab.med.yale.edu/modelDB). The recon-

structed neurons were classified into four groups: medium-

complex (MC), medium-simple (MS), small-complex (SC), and

small-simple (SS) [24]. Five different neurons were taken from

each group totalizing 20 neurons with distinct morphologies. In

addition to the reconstructed dendritic tree, each model includes

an axon with an initial and a narrow segment. The passive

parameters that are common to all cells are described in Table 2.

The length and diameter values for the soma are not given in

Table 2 because they are based on cell morphology data and have

a different value for each model.

The same set of active ion channels were placed in all ganglion

cell models. Each model has four voltage-dependent channels (Na,

Ca, K, and KA), one calcium-dependent channel (KCa). The

dynamics and parameters of the calcium current were able to fit

the high-voltage activated component of the calcium current (L-

type) described in a previous experimental work [31]. The K

channel simulates the classical delayed rectifier potassium current

and was modeled with no inactivation kinetics while the Na and

KA channels have inactivation kinetics. The channel densities for

each group of compartments are given in Table 3.

To obtain the F-I curve of an isolated ganglion cell we

submitted it to steps of somatic current clamp of fixed amplitudes.

The duration of each step was 300 ms and the current amplitudes

varied from 10 pA to 1000 pA. The duration of 300 ms was

chosen because, based on our studies, it is sufficient for a reliable

estimate of the steady state firing frequency of a ganglion cell to a

step current.

For all simulations, the dynamic range (D) was calculated as:

D~ log
Imax

Imin

� �
, ð1Þ

where Imin is the stimulus value for which the response reaches its

minimum value and Imax is the stimulus value for which the

response reaches its maximum value. The value D represents the

Figure 4. Effect of dendritic surface area on single cell’s dynamic range. (A) Dynamic range of the ganglion cell model as function of the
area factor (see main text for a definition) of the extra attached compartment. Black dots indicate active extra compartment, and black squares
indicate passive extra compartment. (B) Difference C between the dynamic ranges for active and passive cases as a function of the area factor.
doi:10.1371/journal.pone.0048517.g004

Figure 5. A scheme of the network model. Ganglion cells are
placed in the vertices of a 363 square grid and are coupled with their
first neighbors via dendrodendritic gap junctions. Each ganglion cell
makes an excitatory chemical synapse with a pyramidal cell from the
LGN. Only the central cell of the array (indicated by an arrow) receives
external input in the form of current clamps of varying amplitudes.
doi:10.1371/journal.pone.0048517.g005
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range of inputs that can be coded by the cell before its saturation

[15]. As exemplified in Figure 1B, D is calculated in dB where the

only information necessary are the lowest input that is capable of

generate at least a single spike in the model and the highest input

before the response maximum.

The single compartment model of a lateral geniculate nucleus

pyramidal neuron used to obtain Figure 7 was taken without

changes from a previous work [30]. It contains a slow voltage-

dependent K current, the INa and IK currents and the T-type

calcium current. The values of the parameters used to model these

channels can be seen at the original work [30].

Synaptic connections and network topology
We used experimental evidence of dendrodendritic bidirectional

gap junctions connecting ganglion cells [21–23] to simulate the

electrical coupling between two neighboring cells as a single

resistance with symmetrical conductance of 1.35 nS [21]. Since

the exact distribution of gap junctions over the dendritic tree is

unknown, in all simulations the gap junction connection between

two cells linked their primary dendrites.

The excitatory chemical synapse between the axon of a

ganglion cell and the LGN pyramidal cell was modeled by a

closed/open gating scheme (tbinding = 0.2 ms, tunbinding = 1.1 ms),

activated by square-wave transmitter pulses of amplitude 1 mM

and duration 0.3 ms [32]. The reversal potential of the synapse

was 0 mV and the maximal conductance was adjusted to 600 pS.

All synapses connecting ganglion cells to the pyramidal cell were

modeled with these parameters and dynamics.

Figure 6. F-I curves for ganglion cells in the array. In all cases, to calculate steady state firing frequencies, the input current was applied for
0.3 seconds. (A) Ganglion cells with passive dendritic trees. (B) Ganglion cells with active dendritic trees. The dashed line represents the maximum
current value for the cell with response curve indicated in blue in Figure A. The factor f shows the displacement of this maximum current to the right
when cells have active dendrites. The average dynamic range of the 9 ganglion cells of the network (d) for each case is shown above the
corresponding graph.
doi:10.1371/journal.pone.0048517.g006

Figure 7. F-I curve of the pyramidal neuron model. Firing
frequency of the pyramidal neuron of the LGN as a function of input
current applied to the central cell of the ganglion cell array. The vertical
dashed line gives the input current for which the central ganglion cell in
the array stops firing (580 pA). The dynamic range of the FxI curve is
34.8 dB.
doi:10.1371/journal.pone.0048517.g007
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The network model consisted of 9 ganglion cells and a single

LGN pyramidal cell. The ganglion cells were arranged in a 363

square grid and connected by gap junctions as shown in Figure 5.

The 9 ganglion cells make excitatory synapses to the pyramidal

neuron (Figure 5). In each simulation, only the ganglion cell

located at the center of the 363 array was stimulated by the

current clamp. The current was injected at the cell’s primary

dendrite. The 9 ganglion cells used to construct the array were

randomly chosen from the SS group. The same group of 9 cells

was used in all simulations. Cells were chosen from the SS group

because of their small dynamic ranges when uncoupled and to

reduce the computational cost of the simulations.

To obtain the average response of the ganglion cells and the

pyramidal neuron for a given amplitude of current clamp, we

stimulated the network with the current for 0.3 seconds and

counted the number of spikes during this period. We used current

amplitudes in the range from 101 pA to 105 pA separated by steps

of 10 pA. We consider 0.3 seconds a period sufficiently long for a

reliable estimate of the ganglion cells’ firing frequency and to

obtain the dynamic range of the ganglion cells and the pyramidal

neuron. The simulations were performed in NEURON 7.1

[33,34] and the numerical integration of the equations was

performed using the backward Euler method with a time step of

0.1 ms.
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