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Tuberculosis (TB) is the second most common cause of death from infectious diseases. About 90% of those infected are
asymptomatic—the so-called latent TB infections (LTBI), with a 10% lifetime chance of progressing to active TB. To further
understand themolecular pathogenesis of TB, several molecular studies have attempted to compare the expression profiles between
healthy controls and active TB or LTBI patients. However, the results vary due to diverse genetic backgrounds and study designs
and the inherent complexity of the disease process. Thus, developing a sensitive and efficient method for the detection of LTBI
is both crucial and challenging. For the present study, we performed a systematic analysis of the gene and microRNA profiles of
healthy individuals versus those affected with TB or LTBI. Combined with a series of in silico analysis utilizing publicly available
microRNA knowledge bases and published literature data, we have uncovered several microRNA-gene interactions that specifically
target both the blood and lungs. Some of these molecular interactions are novel and may serve as potential biomarkers of TB
and LTBI, facilitating the development for a more sensitive, efficient, and cost-effective diagnostic assay for TB and LTBI for the
Taiwanese population.

1. Introduction

Tuberculosis (TB) is an infectious disease usually caused by
Mycobacterium tuberculosis (Mtb) [1]. Approximately one-
third of the world’s population is estimated to be latently
infected with Mtb [2]. In other words, the host immune
mechanism can sometimes keep the extent of the bacterial
attack arrested at latent TB infection (LTBI). When the host’s
immune system becomes weakened, LTBI can progress to
active pulmonary, or in fewer cases, extrapulmonary TB
[3]. In fact, about 90% of those infected with Mtb are
asymptomatic, showing signs of LTBI, with a 10% lifetime
chance of developing active TB [4].

In primary active TB, the bacteria overcome the immune
system defense and begin to multiply soon after the initial
infection [1]. However, in LTBI, the bacteria remain dor-
mant for many years before progressing to active TB. Even
after treatment, there is still the risk of reactivation due to
immunosuppression, or multiple-drug resistant TB bacteria
[5].

Despite the advancement in pulmonary medicine, TB
remains a significant global health issue. The only currently
available vaccine is bacillus Calmette-Guérin (BCG), which
shows decreased effectiveness after about ten years [5]. The
tuberculin skin test (TST) and the interferon-gamma release
assays (IGRA) are the usual clinical method for the diagnosis
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of TB and LTBI, with the latter being regarded as the more
sensitive assay which measures the amount of interferon-
gamma (IFN-𝛾) released by blood cells in response to specific
Mtb antigens [6]. However, these methods often produce
false positive results.Thus, developing a sensitive and efficient
method for the detection of LTBI and understanding the
disease pathology of TB represent a major challenge in the
prevention of the disease.

To date, several studies have compared the gene expres-
sion profiles between healthy individuals and active TB
or LTBI patients [7–10]. These findings reveal important
transcriptionally regulated markers of key biological pro-
cesses, including genes involved in inflammatory responses,
immune defense, cell activation, homeostatic processes, and
regulation of cell proliferation and apoptosis. It appears that
TB and LTBI share similar affected pathways, in which
specific molecular markers may be able to discriminate the
two disease statuses.

More recent evidence suggests the use of microRNAs
as biomarkers for active TB. MicroRNAs (miRNAs) are
small, noncoding, single-stranded RNAs that modulate the
expression of genes involved in development, cell differen-
tiation, proliferation, and apoptosis [11]. It is estimated that
as many as 20% of all human transcripts are targeted by
microRNAs [12]. These tiny RNA molecules, proven to be
more stable than messenger RNAs [13], actively circulate in
bodily fluids and, thus, are thought to represent a more direct
indicator of altered physiology [14]. Indeed, the therapeutic
and diagnostic potentials of microRNAs have been the target
of extensive study [15], especially in cancer research [16, 17].

In fact, microRNAs have been implicated to play impor-
tant roles in the disease mechanisms of various infectious
diseases. For example, the mouse microRNA, mmu-miR-
29, has been shown to target IFN-𝛾 and suppress immune
responses against intracellular pathogens [18]. The human
microRNA hsa-miR-32 has been found to modulate retro-
virus PFV-1 replication [19]. Moreover, specific microRNA-
gene interactions appeared to regulate the pathogenesis of
HIV-1 infection [20].

Recently, through the use of expression array technology
to explore the transcriptome on a global scale, several groups
have investigated the possibility of using microRNAs or
specific microRNA-gene associations as biomarkers for the
diagnosis of TB or the differentiation between active TB and
LTBI. These gene and microRNA expression studies identi-
fied candidate genes and microRNAs involved in cytokine
and chemokine responses, inflammation, and intracellular
trafficking in the progression from latent infection to active
TB [7, 21–24]. Unfortunately, few of these findings are
consistent with each other. Many of the discoveredmolecular
markers vary due to diverse genetic background of the study
population, differences in the study design, and the inherent
complexity of the disease process.

With the latest advances in technology and bioinformat-
ics, we believe utilizing complementary platforms to examine
the differences in transcriptome between TB and LTBI in
the Taiwanese population will help uncover novel biomarkers
and build upon the knowledge regarding the disease diag-
nosis and pathology. Here, we present a systematic approach

of combining gene and microRNA expression profiling to
uncover the complex networks of molecular interactions
associated with TB and LTBI. Our study began with the
analysis of gene and microRNA expression profiles among
active TB, LTBI, and healthy individuals. Candidate genes
and microRNAs that appeared to be inversely correlated
in expression were subsequently selected for a series of
bioinformatics analyses to determine the nature of their
relationships. Based on the computational predictions, a
comprehensive microRNA-gene interaction network was
constructed, revealing previously validated and novel molec-
ular signatures that help improve our understanding and the
diagnostic differentiation of TB and LTBI.

2. Materials and Methods

The analytical flow of the present study is illustrated in
Figure 1. Profiling of microRNA and gene expression was
performed to identify differentially expressed transcripts
among 7 healthy control, 7 active TB, and 7 LTBI individuals.
Differentially expressed candidates were categorized into up-
and downregulated genes and microRNAs, and divided into
three groups: TB versus healthy control, LTBI versus healthy
control, and LTBI versus TB. Putative microRNAs targeting
the differentially expressed transcripts were predicted using
six microRNA knowledge bases.

2.1. Clinical Sample Collection. All procedures were reviewed
and approved by the Institutional Review Board of Taoyuan
General Hospital, Ministry of Health and Welfare, Taoyuan,
Taiwan. Written informed consents were obtained from all
participants. Eligibility for entry into the study was based on
clinical signs and symptoms of Mtb infection. LTBI subjects
were recruited from close contact with active TB patients,
with positive T-SPOT TB test and negative chest radiograph,
but without clinical evidence of active TB. Healthy controls
were individuals who had not been in close contact with TB
or LTBI patients and showed no clinical signs of TB or LTBI.
Individuals with allergic diseases, diabetes, cancer, immune-
compromised conditions, and coinfections with any types
of infectious diseases were excluded. In total, seven healthy
individuals, seven patients with active TB, and seven subjects
with LTBI were included in the present study.

2.2. RNA Isolation. RNA was isolated from peripheral blood
mononuclear cells. RNAquality was determined by an optical
density (OD) 260/280 ratio ≥ 1.8 and OD 260/230 ratio ≥
1.5 on a spectrophotometer and by the intensity of the 18 S
and 28 S rRNA bands on a 1% formaldehyde-agarose gel.
RNA quantity was detected by a spectrophotometer. RNA
integrity was examined on an Agilent Bioanalyzer. RNA with
a RNA integrity number (RIN) ≥ 6.0 and 28 S/18 S > 0.7 was
subjected to microarray analysis.

2.3. MicroRNA and Gene Expression Analysis. RNA sam-
ples were subjected to Human OneArray v6 and Human
microRNA OneArray v5 (Phalanx Biotech, Hsinchu, Tai-
wan). Data were analyzed with Rosetta Resolver System soft-
ware (Rosetta Biosoftware, USA). Standard selection criteria
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Figure 1: System flow of our analysis.

to identify differentially expressed genes were (1) absolute
log
2
fold change ≥1; (2) false discovery rate of <0.05; (3) the

intensity difference between two samples under comparison
≥1000; (4) individual intensity ≥500. Genes and microRNAs
showing significant differential expression were categorized
into TB versus healthy control, LTBI versus healthy control,
and LTBI versus TB.

2.4. Bioinformatics Analysis. The candidate microRNAs were
analyzed for associations with the candidate genes to reveal
potential microRNA-gene interactions, in which decreased
microRNA expression may be correlated with increased tar-
get gene expression and vice versa. In order to establish an in

silico correlation between the microRNA profile in the blood
and lung tissues, we input our list of differentially expressed
microRNAs on miRWalk [25], a database that curates pub-
lished results on experimentally verified microRNA tissue
specificity, target genes, and disease associations. Next, for
the selected microRNA candidates that have been shown to
be active in both blood and lungs, a list of validated target
genes was obtained from miRWalk [25]. For microRNAs
with no validated target genes, target gene predictions were
obtained by comparing among six microRNA knowledge
bases, including miRWalk [25], miRTar [26], miRDB [27],
miRANDA [28], RNA22 [29], and TargetScan [30], so as to
take advantage of the strengths of each microRNA target



4 BioMed Research International

Table 1: Number of differentially expressed genes and microRNAs
among TB, LTBI, and healthy controls.

Comparison Upregulated Downregulated
Genes

TB versus control 16 111
LTBI versus control 31 267
LTBI versus TB 105 67

mircroRNA
TB versus control 0 1
LTBI versus control 16 6
LTBI versus TB 9 1

Absolute fold change ≥ 1, FDR < 0.05.

prediction algorithm. A gene would be included in the target
gene list if four out of these six databases generated the
same prediction.The validated and predicted genes were then
compared with differentially expressed microRNA-induced
upregulated and downregulated genes in TB and LTBI.
For matched genes, their tissues-specific expression profiles
were determined through a search on the Ensembl system
[31]. Only those target genes expressed in both blood and
lungs were selected. Candidate microRNAs that have been
implicated in TB were also determined through a search with
the disease target tool in miRWalk [25].

2.5. MicroRNA-Gene Interaction Analysis. STRING (v9.1)
[32, 33] was utilized to determine any known and putative
interactions among the differentially expressed genes that
were also estimated to be targeted by the differentially
expressed microRNAs. The predicted relationships were
based on a confidence level of 0.7, coexpression evidence,
experimental validation, or database detection. To visualize
the relationships among these TB- and LTBI-specific molec-
ular signatures, a potential interaction network incorporating
expression information was built with Cytoscape v3.1.0 [34].
In addition, genes targeted by TB-related microRNAs were
mapped to KEGG pathways [35] by the gene set enrichment
function in miRTar [26].

3. Results

Between LTBI and TB, 172 genes and 10 microRNAs pre-
sented significant differences in expression (Table 1). Addi-
tionally, there were 11 upregulated and 111 downregulated
genes, plus one downregulated microRNA between TB and
healthy controls. In contrast, 31 genes and 16 microRNAs
showed increased expression, while 267 genes as well as six
microRNAs exhibited decreased expression in LTBI com-
pared to healthy individuals.

By using the validated target organ search in miRWalk
[25], 11 out of the 30 differentially expressedmicroRNAs were
found to target both blood and lungs. We hypothesize that
these microRNAs represent potential correlates between the
molecular profiles between the two tissues. Therefore, subse-
quent analyses were focused on these candidate microRNAs.

To uncover the potential microRNA-mediated regulation
underlying the gene expression differences between TB and

LTB, we utilized six microRNA target prediction databases
and cross-validated the results to find putative microRNA-
gene interactions (Table 2). Disease target search inmiRWalk
[25] indicated that some of these microRNAs have been
implicated in other TB studies. However, our study also iden-
tified some novel microRNA-gene interactions that exhibited
differential expression among TB, LTBI, and healthy controls.

The STRING [32, 33] network mapping tool was also
employed to identify coexpressing or experimentally vali-
dated relationships among the candidate genes. The system-
atic prediction results based on validated and predicted gene,
tissue, and disease targets were used to link the microRNAs
and target genes in an interaction network (Figure 2). TB-
and LTBI-specific differentially expressed microRNAs and
genes may be involved in complex and dynamic interactions.
The integration of the differential expression patterns in this
graphical representation revealed the potential regulatory
relationships among these molecular signatures.

Finally, by performing a disease target search, we identi-
fied candidatemicroRNAs that have also been associatedwith
TB in the literature (Table 2). These TB-related microRNAs
may be important key molecules specific to the disease
pathology. In particular, the association between hsa-miR-
150-5p and 𝛽-arrestin 2 (ARRB2) gene was mapped to the
chemokine signaling pathway. Interestingly, LTBI-specific
upregulated hsa-miR-16-5p and TB-specific upregulated hsa-
let-7i-5p both target the same pathogenic infection pathway,
though via different genes (Figure 3). In addition, microRNA
hsa-miR-221-3p, with its target FOS (FBJ murine osteosar-
coma viral oncogene homolog), were predicted to be involved
in MAPK, B-cell receptor, and T-cell receptor signaling
pathways.

4. Discussion

In this study, we integrated the available gene and microRNA
expression array technology and bioinformatics tools to
investigate the possibility of uncovering molecular events
indicative of TB and LTBI. Our system flow allowed us to
assess the results of gene and microRNA expression profiling
through a combination of computational prediction and
validation with published data.

Some of the candidate microRNAs identified by other
groups were confirmed in our analysis, though with
some inconsistencies in expression pattern. For example,
microRNA hsa-miR-146a-5p appeared to be downregulated
in TB patients in Spinelli et al.’s study [36] but was found
to be upregulated by Furci et al. [37]. As well, microRNA
hsa-miR-223-3p showed reduced expression in TB in one
study [24] but enhanced expression in another published
finding [38]. Our analysis, however, revealed downregulated
hsa-miR-223-3p expression specific to LTBI. Whereas Meng
et al. observed a lower expression of hsa-miR-150-5p in
LTBI compared with healthy controls [39], we found the
microRNA being expressed at a higher level in LTBI relative
to TB. On the other hand, consistent with [22, 40], we found
the level of hsa-miR-142-3p and hsa-miR-21-5p expression
to be enhanced in LTBI relative to TB, and hsa-let-7i-5p
expression, increased in TB compared with healthy controls.
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Table 2: Selected blood- and lung-targeting microRNAs and their validated or predicted target genes.

microRNA Target genes
TB versus control downregulated

hsa-let-7i-5p ADM, HMGA2, LRRK2, SERPING1, TLR4
LTBI versus control upregulated

hsa-miR-107 BTG2, EIF5
hsa-miR-142-3pa,b KLF4, POMC, JUN, PMAIP1, PDGFRB, SIK1
hsa-miR-16-5p SIK1, NR4A1, IER2, AGPAT4, CSRNP1, PLEKHG2, CD69
hsa-miR-21-5pb CD69, H3F3B, TAF1C, TRIB1, PMAIP1
hsa-miR-22-3p H3F3B, TAF1C, TRIB1, PMAIP1, BTG2
hsa-miR-221-3p FOS, ZBTB24, EIF1, MYLIP, NAP1L5, SOCS3
hsa-miR-223-3pb RHOB, CXCL2

LTBI versus TB upregulated
hsa-miR-146a-5pb ST20
hsa-miR-150-5pb CPD, ARRB2, FFAR2, NUP214, PNMA3, C20orf24, C16orf57
hsa-miR-16-5p CPD, C15orf39, C16orf57, TUBA1A
hsa-miR-221-3p ANXA1, FOS, PLAUR, TIMP2, C16orf57, MIDN

aValidated microRNA-target interaction; bindicates that these microRNAs have been implicated in tuberculosis.

The discrepancies among studies emphasize the influence
of genetic background and experimental design on the
study results, underscoring the difficulty of deciphering the
molecular mechanisms underlying TB pathology.

Yet, the most interesting inconsistency between our
results and other studies is probably the expression pattern
of hsa-miR-223 among active TB, LTBI, and healthy subjects.
While Wang et al. [23] observed enhanced expression of
hsa-miR-223 in TB patients versus nonactive TB group, the
same microRNA appeared to be most abundant in healthy
individuals, though the latter group was able to successfully
validate their observation in a murine model. We, on the
other hand, found this microRNA to be expressed at a higher
level in individuals latently infected with TB.

Nevertheless, similar to Dorhoi et al.’s results [38], our
computational prediction, coupled with the gene expression
array data, showed an inverse correlation in expression
patterns between hsa-miR-223 and its target gene CXCL2,
a chemokine, that is, synthesized to facilitate an inflam-
matory response after injuries [41]. Deletion of miR-223
resulted in increased susceptibility to TB infection in mice
and significantly augmented CXCL2 production, but upon
neutralization of CXCL2, the severity of TB infection could
be slightly reversed [38]. Thus, it appears that hsa-miR-223,
as well as its modulation of CXCL2 abundance, may be able
to determine, at least in part, the chance that an individual
would succumb to a full-blown TB infection. This makes
sense in the context of our finding, in which LTBI individuals
possessed a higher level of hsa-miR-223 expression. It is likely
that hsa-miR-223 transcription is induced upon the initial
Mtb attack to arrest the infection at a latent state in individuals
with LTBI.

In addition, we identified a potential interaction between
hsa-miR-150-5p and the ARBB2 (𝛽-arrestin 2) gene, an
immune regulator involved in cell adhesion, migration,
and proliferation [42]. In particular, ARBB2 modulates the

activity of G protein-coupled receptors to facilitate down-
stream inflammatory and immune responses [42]. The role
that ARBB2 plays in the immune system is evidenced by its
association with toll-like receptors, cytokines, chemokines,
and various cell cycle and cell stress regulating signaling
pathways in diseases such as rheumatoid arthritis, endotox-
emia, sepsis, asthma, multiple sclerosis, and atherosclerosis
[43]. Moreover, differential expression of ARBB2 has been
observed in tuberculosis [44, 45] and reduced expression
of ARBB2 has been correlated with an augmented level
of IFN-𝛾 [46], underscoring the importance of ARBB2 in
the regulation of immune response. In our study, LTBI-
specific downregulated ARBB2 gene is the predicted target
of the LTBI-specific upregulated hsa-miR-150-5p.The inverse
relationship may indicate that this particular interaction
plays a regulatory role in the immune response against Mtb
bacteria.

Furthermore, we have also uncovered novel microRNA-
gene interactions that may regulate the disease progression
from latent to active TB. For example, in LTBI, both hsa-
mir-16-5p and hsa-mir-221-3p appeared to be significantly
upregulated compared with TB and healthy control. The
microRNA hsa-mir-16 is a known inducer of apoptosis [47].
Our miRNA-gene interaction network revealed TUBA1A
(tubulin alpha-1A) as a novel target gene that may modulate
the host response to pathogenic infections through the inter-
action with hsa-mir-16-5p. Interestingly, TB-specific down-
regulated microRNA hsa-let-7i and its target gene TLR4, a
toll-like receptor involved in innate immunity [48], were
also mapped to the same pathway. Moreover, the potential
interaction between hsa-miR-221-3p and FOS was linked
to the T-cell and B-cell receptor signaling pathways. The
FOS gene regulates various important biological processes
such as cell proliferation, differentiation, and survival [49].
The potential interaction between the differentially expressed
microRNAs and their target genes plays important roles in
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Figure 2: Potential TB- and LTBI-differentiating microRNA-gene interaction network. Color intensity indicates the expression of each
molecule. Red indicates upregulated expression and green indicates downregulated expression.

innate and adaptive immune responses in TB pathology.They
may be used as molecular identifiers indicative of the two
infection states.

In conclusion, we have performed a complementary
analysis of gene and microRNA expression profiling and
established a comprehensive microRNA-gene interaction
network that may help differentiate between TB and LTBI.
Note that our work is limited by the small sample size, and
therefore the biomarkers may be specific to this particular
study group. However, the strength of our analysis lies in
the integration of various publicly available computational

tools and experimental resources, allowing us to identify
the most promising microRNA-gene associations through
in silico predictions, gene expression profiling data, and
published findings. Further, in hope to identify microRNA-
gene interactions in the blood that would represent specific
physiological conditions in the lungs, we filtered the candi-
date microRNAs and the corresponding target genes based
on the similarity of their regulatory relationships in these two
tissues.

Our work built on the emerging evidence that
microRNA-gene interactions can be used as useful clinical
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biomarkers. Moreover, we have also uncovered novel TB and
LTBI biomarkers specific to the Taiwanese population. These
new molecular signatures are based on microRNA-gene
interactions that may reflect the differences in TB disease
state, further our understanding of TB pathogenesis, and
facilitate the development of a molecular diagnostic platform
for LTBI detection.
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