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Abstract

Species expand their geographical ranges following an environmental change, long range dispersal, or a new adaptation.
Range expansions not only bring an ecological change, but also affect the evolution of the expanding species. Although the
dynamics of deleterious, neutral, and beneficial mutations have been extensively studied in expanding populations, the fate
of alleles under frequency-dependent selection remains largely unexplored. The dynamics of cooperative alleles are
particularly interesting because selection can be both frequency and density dependent, resulting in a coupling between
population and evolutionary dynamics. This coupling leads to an increase in the frequency of cooperators at the expansion
front, and, under certain conditions, the entire front can be taken over by cooperators. Thus, a mixed population wave can
split into an expansion wave of only cooperators followed by an invasion wave of defectors. After the splitting, cooperators
increase in abundance by expanding into new territories faster than they are invaded by defectors. Our results not only
provide an explanation for the maintenance of cooperation but also elucidate the effect of eco-evolutionary feedback on
the maintenance of genetic diversity during range expansions. When cooperators do not split away, we find that defectors
can spread much faster with cooperators than they would be able to on their own or by invading cooperators. This
enhanced rate of expansion in mixed waves could counterbalance the loss of genetic diversity due to the founder effect for
mutations under frequency-dependent selection. Although we focus on cooperator-defector interactions, our analysis could
also be relevant for other systems described by reaction-diffusion equations.
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Introduction

Cooperation between organisms has always interested evolu-

tionary biologists [1–3]. On the one hand, cooperative interactions

are widespread in living systems. Microbes cooperate to digest

food, scavenge for scarce resources, or build a protective biofilm

[4]; animals cooperate to hunt or avoid predation [5]; and

individual cells cooperate to enable multicellular life [6,7]. On the

other hand, evolutionary theory has struggled to explain the mere

existence of cooperation [1–3]. Although cooperation is beneficial

to the species, it is susceptible to invasion by defectors, individuals

who reap the benefits of cooperation without paying the costs.

Defectors, having a higher relative fitness, are expected to take

over the population leading to the demise of cooperation. The

breakdown of cooperation often has devastating consequences

such as the tragedy of the commons [8] or cancer [9,10]. The

break down of cooperation can also be desirable, e.g., when it

destroys biofilms protecting pathogens from antibiotics and the

immune system [4]. Understanding the evolution and mainte-

nance of cooperation is therefore an important problem in

economics, medicine, and biology.

Several mechanisms have been proposed that can stabilize

cooperation against defection [1,2,11], including direct reciprocity

[12,13], group and kin selection [14–16], and spatial structure

[17–19]. Most of the previous studies have focused exclusively on

the changes in the relative frequencies of cooperators and defectors

and neglected possible changes in the population size. The naive

expectation, however, is that a reduced level of cooperation should

lead to a lower average fitness of the population and, therefore, to

a lower population size. Indeed, this effect of evolutionary on

ecological dynamics has been observed in several experimental

populations [20–22] as well as in ecological public goods games [23–

25]. In the latter studies, the authors also found that, under certain

conditions, cooperators are favored by natural selection at low

population densities while defectors are favored at high population

densities. This dependence of evolutionary dynamics on population

density suggests that the low-density edges of population ranges

might be conducive to the evolution of cooperation. The edge of an

expanding population is of particular interest because the new

territories might be colonized mostly by cooperators.

Range expansions and range shifts are common in nature [26–

33]. Examples include the recolonizations of temperate latitudes

between glaciations, the invasion of North American forests by the

Asian long-horned beetle (Anoplophora glabripennis), and the spread

of the western corn rootworm (Diabrotica virgifera) in the Midwest-

ern United States. Apart from ecological and sometimes economic

impact, range expansions bring about significant changes in the

genetic diversity and the evolutionary dynamics of the expanding

species [34–40]. In particular, genetic diversity is typically lost

because of the founder effect, and mutations appearing close to the

expansion edge are very likely to reach high frequencies in the

population even if they are neutral or slightly deleterious

[34,39,41–43]. Although the dynamics of neutral, deleterious,

and beneficial mutations arising at the edge of a range expansion

have been extensively studied, the fate of mutations subject to

frequency-dependent selection, e.g. encoding cooperative traits,

has received little attention.
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Here, we study how the interplay between ecological and

evolutionary processes affects the evolution of cooperation during

range expansions. To this end, we formulate a model that

combines the effect of genetic composition on population growth

and the effect of population density on the fitnesses of different

genotypes. We find that cooperators are favored at the edge of an

expanding population and, under certain conditions, cooperators

can outrun defectors and spread into unoccupied territories,

leaving defectors behind. This mechanism of maintaining coop-

eration might play an important role in populations that

experience frequent disturbances (e.g. forest fires) followed by

range expansions. More generally, we report the splitting of a

mixed two-species (or two-allele) traveling wave into a wave of one

species followed by an invasion wave of the other species. This

wave-splitting phenomenon might also be relevant to other

processes described by traveling reaction-diffusion waves, which

are widely used in biology and chemical kinetics [36,44,45].

Our works complements two previous studies of the evolution-

ary dynamics of cooperation in spatial populations [25,46]. In

[25], the intricate spatial patters of coexisting cooperators and

defectors were reported for ecological public goods games. In [46],

the authors found that cooperation can persist in a spatial

prisoner’s dilemma game because of the cyclic turnover of

cooperators, defectors, and extinctions. Similar to our work, their

results rely on the fact that cooperators grow faster than defectors

when spatially isolated from each other.

When splitting does not occur, defectors slow down cooperators,

and the rate of spreading is primarily controlled by the

evolutionary dynamics at the front. For example, we find that a

mixed wave of cooperators and defectors can experience long

periods of acceleration, as the genetic composition at the front

adjusts to the low-density conditions. We also find that defectors

can spread faster in mixed waves than they would be able in

isolation or by invading cooperators. This finding could be

important for conservation efforts to help ecosystems shift

cohesively in response to a rapid climate change or habitat

deterioration.

Models

To understand the fate of cooperation during range expansions,

we need a spatial model of a mixed population of cooperators and

defectors colonizing new territories. We first discuss range

expansions of pure cooperators and then consider defectors

invading cooperators. Although these two spreading phenomena

have a similar mathematical description, they have rarely been

studied together, because one is an ecological, and the other is an

evolutionary process. Finally, we introduce a complete model that

allows for changes in both population density and allele

frequencies and explicitly includes the coupling between these

two variables. For simplicity, only one-dimensional expansion

waves are considered, which should be a good approximation

when number fluctuations and the curvature of the wave front can

be neglected. The theoretical studies of range expansions were

pioneered in [47,48], and a good introduction to this topic can be

found in [44].

Ecological dynamics
We begin by considering populations of only cooperators.

Range expansions are driven by migration from colonized to new

territories and by population growth. When migration (or

dispersal) is short-range and isotropic, it can be approximated by

a diffusion term leading to the following reaction-diffusion model

of range expansions

Lc

Lt
~D

L2c

Lx2
zGc(c)c, ð1Þ

where c(t,x) is the population density at time t and spatial location

x, D is the effective diffusion constant, and Gc(c) is the per capita

growth rate.

Since any habitat has a limited carrying capacity, the per capita

growth rate, Gc(c), must decline and become negative at high

population densities. Populations with cooperative growth may

also experience reduced or negative growth rates at low population

densities because, for small c, the probability of forming

cooperating groups or the size of these groups is too small. Such

nonmonotonic dependence of the per capita growth rate on

population density is called an Allee effect and has been observed

in different species ranging from budding yeast to desert bighorn

sheep [49–55]. The most common model of an Allee effect

assumes the following growth rate [44,50]

Gc(c)c~gcc(K{c)(c{c�), ð2Þ

where K is the carrying capacity, c� is the Allee threshold, i.e. the

minimal density required for populations to grow, and gcK2 sets

the overall magnitude of the per capita growth rate. One typically

distinguishes a strong Allee effect when c�w0 and a weak Allee

effect when {Kvc�v0. Allee effect is absent when c�v{K
because Gc(c) monotonically decreases for cw0. Thus, equation

(2) is sufficiently flexible to describe populations with and without

an Allee effect.

Even if the growth rate is negative at small densities, populations

can spread into unoccupied territories. At t~0, we assume that

the habitat is colonized for all xv0, but it is empty for xw0. After

an initial transitory period, expansion waves typically move at a

constant velocity and the density profile does not change in the

comoving reference frame, i.e. the reference frame moving along

with the expansion wave; see figure 1ab. The expansion velocity is

known exactly [44,47,48,56,57] and is given by

Author Summary

Cooperation is beneficial for the species as a whole, but, at
the level of an individual, defection pays off. Natural
selection is then expected to favor defectors and eliminate
cooperation. This prediction is in stark contrast with the
abundance of cooperation at all levels of biological
systems: from bacterial biofilms to ecosystems and human
societies. Several explanations have been proposed to
resolve this paradox, including direct reciprocity and group
selection. Our work, however, builds upon an observation
that natural selection on cooperators might depend both
on their relative frequency in the population and on the
population density. We find that this feedback between
the population and evolutionary dynamics can substan-
tially increase the frequency of cooperators at the front of
an expanding population, and can even lead to a splitting
of cooperators from defectors. After splitting, only coop-
erators colonize new territories, while defectors slowly
invade them from behind. Since range expansions are very
common in nature, our work provides a new explanation
of the maintenance of cooperation. More generally, the
phenomena we describe could be of interest in other
situations when coexisting entities spread in space, be it
species in ecology or diffusing and reacting molecules in
chemical kinetics.
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vc~

ffiffiffiffiffiffiffiffi
Dgc

2

r
K{2c�ð Þ, c�§{K=2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DgcK Dc�D
p

, c�v{K=2:

8<
: ð3Þ

Coordinates in the comoving reference frame (t,f) are then

defined in term of (t,x) as t~t and f~x{vct. For c�§{K=2,

the shape of the wave profile is known exactly [44,56,57]:

c(f)~
K

1ze

ffiffiffiffiffi
gc
2D

p
Kf
: ð4Þ

For c�v{K=2, the front has a qualitatively similar shape with

c(f) declining from 1 to 0, as f goes from {? to z?. The width

of this transition scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

gcK Dc�D

r
, and c(f)*e{

ffiffiffiffiffiffiffiffiffi
gcK Dc� D

D

p
f for large

f [44,47,48].

Evolutionary dynamics
Similar to organisms, alleles encoding cooperator or defector

phenotypes can spread in populations. Under the assumption of

short-range and isotropic migration, the spreading of genetic

changes can also be modeled by a reaction-diffusion equation:

Lf

Lt
~D

L2f

Lx2
zGf (f )f , ð5Þ

provided the alleles do not affect how organisms migrate and

disperse. Here, f (t,x)[(0,1) is the frequency (fraction) of defectors,

and Gf (f ) is the relative growth rate of defectors describing the

force of frequency-dependent natural selection. Note that the

diffusion constant in equation (5) is the same as in equation (1)

because both genetic and population spreading are due to the

same migration process.

The following model of frequency-dependent selection is most

commonly used because of its simplicity and because it appears

naturally as a weak-selection limit of evolutionary game theory

[2,37,58].

Figure 1. Population, genetic, and mixed traveling waves. (a) A population of cooperators (blue) expands into an empty territory (black) with
a constant velocity vc . (b) shows the density profile of the population wave in (a). (c) Defectors invade cooperators establishing a mixed population.
The color encodes defector frequency with blue corresponding to pure cooperators and red to pure defectors. Mixed populations then have a
magenta color. The invasion wave moves at a constant velocity vi. (d) shows the defector density profile of a genetic wave in (c). (e) A mixed
population of defectors and cooperators expands into empty territory with a constant velocity vm . Initially, cooperators and defectors are
homogeneously mixed in equal proportion. As the population expands, the relative frequency of cooperators increases at the wave front, but stays
constant in the interior of the population. (f) The density profiles of defectors and cooperators show the enhancement of cooperation at the
expansion front and a small lag between defectors and cooperators. For all panels in this figure, we used K~1, c�(f )~0:2=(1{f ),
f �(c)~5 q (c{0:5){4:5, gc~2, gf ~0:25, D~0:5, and numerically solved equation (9). The wave profiles are plotted for t~94.
doi:10.1371/journal.pcbi.1002994.g001
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Gf (f )f ~gf f (1{f )(f �{f ), ð6Þ

where gf §0 is the strength of selection, and f � is the preferred or

equilibrium frequency of defectors. In spatially homogeneous

populations, cooperators and defectors coexist at a stable fixed

point f ~f �, provided f �[(0,1). The coexistence of cooperators

and defectors has been observed experimentally; see, e.g., [59].

When f �w1, defectors outcompete cooperators, while cooperators

prevail when f �v0. Negative gf and f �[(0,1) describe a bistable

behavior, e.g. due to a chemical warfare, and is not considered

here. In game theory, these four scenarios are known as the

snowdrift, prisoner’s dilemma, harmony, and coordination games

respectively [58].

To understand the maintenance of cooperation, we need to

know how defectors invade cooperators; see figure 1cd. The

velocity of this invasion can be calculated using the results of [48]

and is given by

vi~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DGf (0)

p
~2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dgf f �

p
: ð7Þ

In the comoving reference frame, the frequency of defectors

changes from 0 to f � (or from 0 to 1, if f �w1), as f goes from {?
to z?. The characteristic width of this transition scales asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D=(gf f �)
p

.

Coupling between ecological and evolutionary dynamics
In the preceding discussion of population and genetic waves, we

avoided the coupling between ecology and evolution either by

assuming a constant genetic composition (no defectors) or

neglecting the changes in population properties (e.g. carrying

capacity) due to defector invasion. More general situations require

a combined model with Gc and Gf depending on both c and f .

Here, we consider a natural extension of equations (2) and (6):

Gc(c,f )c~gc(f )c½K(f ){c�½c{c�(f )�
Gf (c,f )f ~gf (c)f (1{f )½f �(c){f �,

ð8Þ

where the parameters of population dynamics depend on the

genetic composition, and the parameters of evolutionary dynamics

depend on population density.

Two comments on the functional form of our model are in

order. First, equation (8) allows for the most general dynamics that

reduces to the classic models of frequency-dependent selection and

cooperative growth with an Allee effect. Second, Gc(c,f ) and

Gf (c,f ) of an arbitrary functional form can be recast in the form of

equation (8) by allowing gc to depend on c and gf on f . We expect

these dependences to be small in many situations because the

other terms in equation (8) describe the most important aspects of

the population dynamics. The analysis presented below, however,

does not depend on the assumption that gc is only a function of f
and gf in only a function of c, provided gc(c,f )w0, gf (c,f )w0,

and Gf is a decreasing function of f for f [(0,f �). In the following,

we will assume that Gc and Gf satisfy these conditions and will

illustrate our results in the context of a simpler model given by

equation (8). The advantage of this approach is that many

calculations can be carried out explicitly in the simpler model thus

allowing us to provide an intuitive interpretation of the results.

We also note that equation (8) is phenomenological in nature

and is not derived from a more mechanistic description of species

interactions. One the one hand, this approach allows us to present

a very general analysis that is valid for a large number of

populations. On the other hand, our model cannot answer more

mechanistic questions, e.g., how the dynamics of f �(c) are

constrained in any particular population, or how an increase in

the death rate affects the evolutionary dynamics.

The behavior of gc(f ) and gf (c) has not been previously

investigated; therefore, we typically assume that these two

functions are constants. The dependencies of other model

parameters in equation (8) on c or f are known qualitatively from

previous experimental and theoretical studies. Note, however, that

most of our results are derived for general functional forms and do

not depend on any specific assumptions about the parameters.

Several experiments have confirmed the naive expectation that

K(f ) is a decreasing function [20–22]. Interestingly, the opposite

effect of defectors has also been observed in recent experiments

with budding yeast, where it was established that mixed

populations of defectors and cooperators have a higher carrying

capacity than pure populations of cooperators [60]. For simplicity,

we assume that K is a constant in most numerical solutions.

The Allee threshold c� is expected to increase with f , and this

was indeed observed both in models [23] and recent experiments

[61]. In numerical solutions, we use c�(f )~c�(0)=(1{f ), which is

equivalent to requiring a certain density of cooperators to produce

a sufficient amount of public goods for population growth.

As we show below, the dependence of the preferred frequency f �

on population density is particularly important for the cooperator-

defector dynamics during range expansions. Modeling of public

goods games revealed that, under certain conditions, f � is a

increasing function of c [23,24], which has recently been confirmed

by experiments with budding yeast [61]. For simplicity, in

numerical solutions we assume that f � changes from a high to a

low value at a critical population density �cc; in other words, we use

f �(c)~f �(0)z½f �(1){f �(0)�q(c{�cc), where q(:) is the Heaviside

step function, which equals one for positive arguments and zero for

negative arguments. Note that the value of f (0) can be negative

when cooperators outcompete defectors at low population densities.

A spatial model with Gc and Gf defined in equation (8) cannot

be obtained by simply combining equations (1) and (5) because

changes in population density and defector frequency due to

migration are not independent. Instead, migration terms have to

be added to the dynamics of cooperator and defector densities,

defined as cc~c(1{f ) and cd~cf . Upon using equation (8) to

calculate the growth rates for cc and cd and adding the diffusion

terms, we obtain that the spatial dynamics of mixed populations

can be described by the following equation

Lcc

Lt
~D

L2cc

Lx2
zGccc{Gf cd

Lcd

Lt
~D

L2cd

Lx2
zGccdzGf cd:

ð9Þ

Here, the terms with Gc come from the ecological dynamics

controlling the population density, and the terms with Gf come

from the evolutionary dynamics controlling the relative abun-

dances of cooperators and defectors. Note that we used the same

diffusion constants for both cooperators and defectors. This is

justified as long as the mutations causing defector phenotype do

not affect dispersal.

A range expansion of a mixed population is shown in figure 1ef.

Similar to the pure cooperator and invasion waves, mixed waves

can spread with a constant velocity vm after an initial transient.

The Fate of Cooperation during Range Expansions
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Both cooperator and defector density profiles reach a constant

shape in the comoving reference frame, but these shapes are

different. In particular, the relative frequency of cooperators is

much higher at the front than in the population bulk. This

behavior is expected because f � is a decreasing function of c, and

population density declines at the front.

It is convenient to separate evolutionary and ecological

dynamics, so we recast equation (9) in terms of population density

and defector frequency:

Lc

Lt
~D

L2c

Lx2
zGc(c,f )c

Lf

Lt
~D

L2f

Lx2
z2D

L ln(c)

Lx

Lf

Lx
zGf (c,f )f

ð10Þ

Note that the additional advection term 2D
L ln(c)

Lx

Lf

Lx
appears

because changes in f (t,x) due to migration depend on c(t,x). In

particular, migration increases the relative frequency of organisms

in low-density regions if these organisms are more abundant in

nearby high-density regions because regions with higher density

send out more migrants. This effect of density gradients is

particularly important at the wave front, where c(t,x) is changing

rapidly, and there is a constant imbalance between migrants

coming from the high-density colonized regions and migrants

coming from low-density uncolonized regions. A more general

discussion of the advection terms in populations with many

different species (or alleles) can be found in [36].

Numerical solutions and simulations
Numerical solutions of equation (9) can be easily obtained by

standard methods [62]. Equations (1) and (5) did not require a

separate solver because they are special cases of equation (9). We

used an explicit forward-time centered-space (FTCS) finite-

difference method (4-point stencil) [62]. Spatial discretization step

was 0:1, and temporal discretization step was minf10{3=D,

10{2=maxfgf maxfDf �D,1g,gcK2gg. This level of discretization

was sufficient to ensure that numerical wave velocities did not

differ from the analytical results in equations (3) and (7) by more

than a percent. For cooperator and mixed waves, the initial

population typically occupied the left 10% of the habitat. For

genetic waves, the whole habitat was occupied by cooperators,

while defectors were initially present only the left 10% of the

habitat. At t~0, populations were always in local equilibrium, i.e.

with c~K(f ) and f ~f �(c). We used no-flux boundary conditions

and computed solutions up to the time when the wave had spread

into 90% of the habitat. The habitat size L, i.e. the distance

between the left and right boundaries, was typically equal to 100.

We also performed individual-based simulations to demonstrate

the possibility of stochastic splitting. The simulations were done on

a one-dimensional lattice of sites each with a carrying capacity K .

Every time step consisted of one possible migration event and one

reproduction or death event at every site. During a migration

event, a randomly chosen organism migrated with probability m to

one of the two neighboring sites. Migration was isotropic, and we

imposed no-flux boundary conditions. During a reproduction or

death event, the population at a site could increase by one,

decrease by one, or remain unchanged. The probability of birth

was given by gcc2(Kzc�)=K3=(1zgcc2(Kzc�)=K3zgc(c3z

cKc�)=K3), and the probability of death was given by

gc(c3zcKc�)=K3=(1zgcc2(Kzc�)=K3zgc(c3zcKc�)=K3). Death

events were equally likely to eliminate cooperators and defectors,

but birth events created either a new cooperator or a new defector

with probabilities determined by the interaction matrix A which

was chosen to mimic equation (8). Given that a birth event

occurred, a cooperator was born with probability (1{f )(Acc

(1{f )zAcdf )=(Acc(1{f )2zAcd(1{f )f zAdcf (1{f )zAddf 2),
where f is the frequency of defectors, and we used letters c and d
as indices. Otherwise, a defector was born. K time steps

constituted a generation.

Results

In the previous section, we formulated a reaction-diffusion

model that includes the coupling between ecological and

evolutionary dynamics of cooperators and defectors. This model,

equation (10), and its special cases, equations (1) and (5), describe

range expansions of cooperators with velocity vc, invasion of

cooperators by defectors with velocity vi, and spreading of mixed

waves of defectors and cooperators with velocity vm. For mixed

waves, we find that the frequency of cooperators is higher at the

wave front because cooperators are favored at low population

densities; see figure 1ef. In this section, we show that, under certain

conditions, cooperators can take over the entire wave front and

split from defectors by colonizing new territories faster than

defectors can invade from behind. We also investigate how the

speed of mixed waves depends on the parameters of the model and

show that, when evolutionary dynamics are much slower than

ecological dynamics (gf %gcK2), mixed waves can experience long

periods of acceleration.

The behavior of mixed waves depends on the ratio of cooperator

and invasion velocities. When viwvc, defectors invade faster than

cooperators can spread into new territories; therefore, any initial

condition leads to a mixed population of defectors and cooperators.

This mixed population will expand into empty territories with both

defectors and cooperators spreading at the same velocity vm. When

vcwvi, two qualitatively different outcomes are possible. Either

cooperators and defectors can spread together in a mixed wave with

velocity vm (figure 2abc), or a mixed wave can split into an ecological

expansion wave and an evolutionary invasion wave (figure 2def). In

the latter scenario, the population expansion with velocity vc is

driven solely by cooperators followed by a slower invasion by

defectors with velocity vi.

The analysis of equation (10) is complicated both by the

coupling between the two differential equations and by the

unknown dependences of the parameters on population density

and defector frequency. To reduce this complexity, we first

consider the effect of evolution on ecology and the effect of ecology

on evolution separately and then analyze the general case.

Effects of evolutionary on ecological dynamics
By neglecting the effect of ecology on evolution and setting

gf (c)~gf and f �(c)~f �, we can immediately see that f (t,x)~f �

is a stationary solution of equation (10). With this solution for

f (t,x), the dynamics of c(t,x) become identical to that in equation

(1) with the parameters c�, K , and gc evaluated at f ~f �.
Therefore, the velocity and density profile of the mixed wave can

be immediately obtained from equations (3) and (4), e.g., the

mixed velocity vm is given by

vf �~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dgc(f �)

2

r
K(f �){2c�(f �)½ �, c�(f �)§{K=2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dgc(f �)K(f �)½{c�(f �)�

p
, c�(f �)v{K=2:

8><
>: ð11Þ
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Defectors are expected to decrease the rate of spatial expansions

[63]. Consistent with this expectation, equation (11) predicts that

vf �vvc, provided that all or some of the growth parameters (gc, K ,

and c�) substantially decrease with f . Note that, because f � is an

attracting fixed point everywhere in space, equation (10) does not

allow wave splitting when evolutionary dynamics are decoupled

from population dynamics.

Effects of ecological on evolutionary dynamics
To understand the effect of ecology on evolution, we assume

that the ecological parameters do not depend on the frequency of

defectors: K(f )~K , gc(f )~gc, and c�(f )~c�. The partial

differential equation for c(t,x) is then independent from the

dynamics of f (t,x), so the velocity of the population wave and

wave profile are given by equations (3) and (4) respectively. As a

result, equation (10) is reduced to a single equation for the defector

frequency f (t,x) by substituting the solution for c(t,x). In the

reference frame (t,f) comoving with the population wave, this

substitution results in an explicit dependence of the growth

dynamics on f through the c-dependence of Gf and

2D
L
Lx

ln(c)
Lf

Lx
. Compared to equation (5), the additional term

2D
L
Lx

ln(c)
Lf

Lx
comes from the effect of density gradients on spatial

diffusion of alleles. This term is similar to advection in reaction-

diffusion equations with the medium moving at a velocity

va~{2D
L
Lx

ln(c). To make this analogy explicit, we need to

take the advection velocity va inside the partial derivative, which

results in the following equation for f (t,f)

Lf

Lt
~D

L2f

Lf2
z

L
Lf
½(vc{va)f �z½Gf z

Lva

Lf
�f , ð12Þ

Figure 2. Splitting of cooperators from defectors. The top panels (a), (b), and (c) show a mixed wave where cooperators and defectors spread
together. The bottom panels (d), (e), and (f) show cooperators splitting from defectors and colonizing new territories faster than defectors can invade
them from behind. For all panels in this figure, we used K~1, c�~0:1=(1{f ), gc~3, gf ~0:25, D~0:5, and numerically solved equation (9). The
difference between the top and the bottom panels is in f �(c). No splitting occurs for f �~5 q (c{0:2){4:5, in the top panels, but a higher value of �cc
ensures splitting in the bottom panels, where f �~5 q (c{0:9){4:5. (a) and (d) show a mixed wave expanding into new territories. In both panels, the
front has a higher frequency of cooperators (blue) compared to the population bulk (magenta). However, the size of the region enriched in
cooperators remains constant in the top panel, while it grows linearly with time in the bottom panel. (b) and (e) show the positions of the expansion
fronts for cooperators and defectors as a function of time. The position of the front is defined as the rightmost point where the density of cooperators
or defectors reaches half of its value in the bulk. The asymptotic rates of expansions are shown with dashed lines. From (e), we know the velocity of
cooperators vc~0:69 and the invasion velocity vi~0:44. These velocities are the same as in (b) because they do not depend on �cc. Note that the mixed
velocity vm~0:66 is smaller than vc because defectors increase the Allee threshold and slow down the population. More importantly, defectors, which
are also spreading with velocity vm, colonize new territories faster than they can invade cooperators (vmwvi). (c) and (f) show density profiles of
defectors and cooperators at t~75. As expected, the lag between cooperators and defectors is larger in (f), where there is a region of pure
cooperators at the carrying capacity.
doi:10.1371/journal.pcbi.1002994.g002
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where the term with vc appears because we changed to the

comoving reference frame. From equation (12), one can see that

2D
L
Lx

ln(c)
Lf

Lx
results in both effective advection and effective

growth. The effective terms are only functions of f and can be

computed from the known density profile c(f). For c�w{K=2,

this computation can be carried out explicitly with the following

results

va:{2D
L
Lx

ln(c)~
ffiffiffiffiffiffiffiffiffiffiffi
2Dgc

p
K(1{c=K)

ge:
Lva

Lf
~gcc(K{c):

ð13Þ

The effective growth term is always positive and peaks at the

middle of the population wave front where c~K=2 and f~0 (by

definition). The effective advection term is also positive, provided f
decreases with f, which is expected when cooperators are favored

at low population densities. As we show below and in Text S1,

these two terms in some cases allow defectors to keep pace with

cooperators even when vivvc.

The existence of a mixed traveling wave, where both

cooperators and defectors spread at the same velocity, is

equivalent to the existence of a steady state for f (t,f) in equation

(12). When a steady state does not exist, population and genetic

waves split, and f (t,f) shifts to negative f with velocity vc{vi.

Since Gf decreases with f , the existence of a steady state requires

that operator L, obtained by linearizing the right hand side of

equation (12) with respect to f , has a positive eigenvalue l. Indeed,

if all eigenvalues of L are negative, then
Lf

Lt
v0 because

Gf (c,f )vGf (c,0), while a positive eigenvalue ensures that small

f (t,f) will increase until Gf (c,f ) is sufficiently diminished so that

Lf

Lt
~0. Thus, we look for a solution of the following equation with

lw0

Df ’’(f)z½vc{va(f)�f ’(f)zgl(f)f (f)~lf (f), ð14Þ

where gl(f)~Gf (c(f),0), and we used primes to denote derivatives

with respect to f. Equation (14) can be transformed to a canonical

form by the following change of variables

f (f)~e{u(f)y(f), where

u(f)~

Ð
vc{va(f)

2D
df, ð15Þ

which also insures that y(+?)~0; see Text S1. The result reads

{Dy’’zV (f)y~{ly, where

V (f)~{gl(f){
1

2
va
0(f)z

1

4D
½vc{va(f)�2: ð16Þ

We can now use the standard theory of second order differential

equations to establish conditions necessary for the existence of a

solution for lw0; see [64,65]. These conditions require that there

must be a sufficiently large region where the potential V (f) is

negative and the values of V (f) in this region must be sufficiently

low. To show this, we multiply both sides of equation (16) by y

and integrate over f, which gives

D

ð?
{?

y’2(f)dfzl

ð?
{?

y2(f)dfz

ð?
{?

V (f)y2(f)df~0 ð17Þ

after an integration by parts in the first term. Since the first two

terms in equation (17) are positive, the third term must be

negative, which in turn requires that there exists a region where

V (f)v0 because y2(f)§0. This region has a finite width because

V (+?)w0, which follows from equations (8) and (13). Indeed,

for f?{?, we find that V ({?)~{gf (K)f �(K)zv2
c=(4D)

~(v2
c{v2

i )=(4D), which is positive since vcwvi. In agreement with

the earlier discussion, when vcvvi, the potential at {? is

negative ensuring the existence of eigenfunction for lw0 and,

therefore, the existence of mixed waves. For f?z?, we find that

V (z?)~{gf (0)f �(0)z½vc{va(z?)�2=(4D), which is positive

as long as defectors are sufficiently disfavored at low densities, e.g.

when f �(0)v0. Thus, V (f) is a potential well, and the existence of

an eigenfunction for lw0 requires that this potential well be

sufficiently wide and deep.

We now interpret the effects of the three terms on the right

hand side of equation (16) in the context of the depth and width of

the potential well V(f). The first term lowers V (f) for cw�cc in the

population bulk (f?{?), but it increases V (f) for cv�cc at the

front (f?z?). The second term is always negative; it deepens the

potential well around f~0 and vanishes for f?+?. The third

term is always positive, but the reduction in the depth of the

potential well due to vc is lessened by va (at least for some f). The

transition from non-splitting to splitting behavior can then be

achieved by reducing the potential well. In particular, the

transition threshold can be crossed by increasing �cc, the density

at which natural selection starts to favor cooperators over

defectors, as shown in figures 2 and 3a. Decreasing f �(0) or

vi=vc has a similar effect.

To understand wave splitting better, we solve a special case of

equation (14) exactly in Text S1 and find how the threshold

between splitting and non-splitting behavior depends on model

parameters. An exact solution can be found when c�~0, and

f �(c)~f � for cw�cc, but defectors are not viable for cv�cc. In other

words, we impose an absorbing boundary condition at �ff such that

c(�ff)~�cc. With these simplifications, we find that splitting occurs

provided

�cc

K
w

1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{v2

i =v2
c

q
2

: ð18Þ

We draw three important conclusions from this result. First, the

exact solution confirms that both splitting and non-splitting

behaviors are possible depending on the parameters of the model.

Second, the severity of selection against defectors required for

splitting increases as vi approaches vc. Third, defectors can spread

faster in mixed waves than they can invade cooperators when

splitting does not occur. These three conclusions do not depend on

the simplifying assumptions used to derive equation (18); see the

discussion below and figures 2 and 3a. We now discuss the

biological significance of wave splitting.

The possibility of wave splitting has important implications for

the evolution of cooperation. When splitting is possible, cooper-

ators outrun defectors, leading to a constant increase in the relative

abundance of cooperators for as long as there are uncolonized

territories. Frequent local extinctions followed by recolonizations

The Fate of Cooperation during Range Expansions
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could therefore maintain high levels of cooperation in natural

populations. Equation (18) also suggests that traits that have little

effect on the dynamics in well-mixed populations might be under

selection during range expansions. One such trait is gf . In well-

mixed populations, it only determines the rate of approach to the

equilibrium not the equilibrium itself, while, in expanding

populations, gf affects the invasion velocity and the conditions

for wave splitting, both of which are expected to be under

selection. The critical density �cc is another examples. It has little

effect in the well-mixed populations, but large �cc allows cooperators

to escape from defectors during range expansions.

The possibility of non-splitting highlights the importance of the

coupling between ecology and evolution in the maintenance of

genetic or species diversity during range expansions. Quite

surprisingly, we find that defectors can spread in a mixed wave

faster than they can invade cooperators despite the fact that

defectors are disfavored or even eliminated by natural selection at

the front. In other words, the community of cooperators and

defectors is able to move to new territories while preserving the

coexistence between the two phenotypes. Our results could,

therefore, have important implications for conservation efforts to

preserve genetic diversity or ecosystem integrity during potentially

rapid range shifts due to climate change or habitat deterioration.

For negative frequency-dependence discussed here, we found that

diversity is more stable than one would naively predict from just

measuring vc and vi. Other types of interactions could be less

resilient and would require managed interventions to prevent

splitting. In Text S1, we show that interventions increasing

advection or relative growth rate at the front can achieve that goal.

General case of eco-evolutionary feedback
In the general case when ecology and evolution affect each

other, the nature of the transition from non-splitting to splitting

behavior remains the same. In particular, the condition for

splitting is still given by the existence of a solution of equation (14)

with lw0 because, close to the splitting transition, the expansion

front is populated almost exclusively by cooperators. To show this,

let us consider how the dynamics at the front changes as one of the

model parameters, say �cc, is varied so that the system behavior

changes from non-splitting to splitting. Increasing �cc directly

increases the abundance of cooperators at the front and increases

the velocity of the mixed wave from vf � , when �cc~0, to vc, when

splitting occurs. In addition to that, defectors lag more and more

behind the front, as the splitting transition is approached.

Indeed, close to the transition, Gf is barely sufficient for

defectors to keep up with cooperators, and, since Gf decreases

with f , the fraction of defectors at the front must approach zero

right before splitting occurs. These dynamics are illustrated in

figure 3a and further discussed in Text S1. Another effect of the

coupling between ecology and evolution is that vi is no longer

given by equation (7) and one has to solve equation (10) to

describe defector invasion.

We would now like to discuss the effect of initial conditions on

wave splitting. One may naively think that deterministic wave

splitting can be achieved simply by creating a region of pure

cooperators in front of a mixed population, even if populations do

not split when started from a well-mixed state. Initially, the range

expansion started from such an initial condition indeed resembles

splitting with cooperators transiently outrunning defectors and

increasing in relative abundance; see figure 3b. Nevertheless,

defectors eventually catch up because any initial condition (with

c(0,x)w0 and f (0,x)w0) has a nonzero projection on the

eigenfunction of the operator L with the largest positive

eigenvalue. The growth of this projection ensures the establish-

ment of defector population at the front even when vivvc as

shown in figure 3b. The ability of defectors to catch up, however,

relies on the assumption that c(t,x) and f (t,x) vary continuously

and can increase from arbitrarily small values. When the discrete

Figure 3. Wave splitting under different conditions. (a) shows how the velocities of cooperators (blue circles), defectors (red dots) depend on
the critical density, �cc. For small �cc, the population moves with the velocity vf � . As �cc increases, the expansion first reaches velocity vc and then splits into
a population and a genetic wave, which occurs when the velocities of cooperators and defectors are no longer the same. At this point, the velocity of
cooperators and the population expansion is vc , while the velocity of defectors is vi. For this panel, we used K~1, gc~2, gf ~0:05,
c�(f )~0:24=(1{f ), f �~10 q (c{�cc){9:5, and D~0:5. We used large habitat lengths up to 1800 because, close to the splitting transition, transient
dynamics decay slowly. (b) Creation of a region of pure cooperators in front of a mixed population leads to transient splitting. Initially, cooperators
seem to outrun defectors because vcwvi . At later times, however, defectors catch up because the conditions for deterministic splitting are not met,
and a small number of defectors that migrated to the front can follow cooperators and grow until a stable mixed wave is formed. For this panel, we
used K~1, gc~3, gf ~0:25, c�(f )~0:1=(1{f ), f �~5 q (c{0:1){4:5, and D~0:5. (c) Stochastic splitting is possible even when the conditions for

deterministic splitting are not satisfied, but vcwvi . The waiting time for stochastic splitting can however be very long (here 104 generations), even for
moderately low population densities of 100 individuals per site used in this simulation, because splitting is caused by a rare fluctuation that creates a
sufficiently large region of pure cooperators at the front. For this panel we used L~1000, m~0:1, K~100, gc~0:05, c�~0, and the entries of the
interaction matrix are given by Acc~2:5, Acd~1:5, Adc~2:65 and Add~1.
doi:10.1371/journal.pcbi.1002994.g003
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nature of organisms is taken into account, one finds that wave

fronts have a finite width [66]. Therefore, initial conditions can

force splitting provided vcwvi and the region of pure cooperators

is sufficiently large compared to the width of expansion and

invasion wave profiles.

Number fluctuations must also be considered for traveling

waves of discrete entities. For biological systems, these fluctuations

could arise due to random fluctuations of the environment or due

to the randomness of births and deaths, which is known as genetic

or ecological drift. Number fluctuations are largely irrelevant when

viwvc because defectors can always catch up with cooperators. In

contrast, when vivvc, splitting is the ultimate outcome because,

given enough time, a fluctuation will create a region of pure

cooperators, which is sufficiently large to prevent defectors from

catching up. This region of pure cooperators will then grow with

time making it exceedingly unlikely for another fluctuation to

destroy it. Although splitting is inevitable, it may take a very long

time (e.g. 104 generations in figure 3c) because the deterministic

dynamics discussed above create an effective activation barrier for

stochastic splitting; see figure 3c and 4. The magnitude of this

barrier goes to zero as the conditions for deterministic splitting are

approached. Stochastic splitting is also possible for frequency-

independent selection, provided expansion and invasion velocities

are different; see for example [42].

In the preceding discussion, we neglected possible transitions

between cooperators and defectors due to mutations or other heritable

changes. This is justified on short time scales because mutation rates are

typically small and even beneficial mutations struggle to survive

number fluctuations (genetic drift) [35,67]. On long time scales,

mutations will change the dynamics in two ways. First, the coexistence

fraction f � will be determined by both natural selection and the

mutational pressures similar to the classic theory of two genetic variants

[35,67]. This shift in f � does not change the dynamics qualitatively and

could be included in our theory by modifying Gf (c,f ) accordingly.

The second and more important difference is that the region of pure

cooperators will not expand indefinitely following a splitting event

because defectors will appear in the interior of the region of pure

cooperation due to a mutation in addition to invading the region of

pure cooperators from behind. In the limit of rare mutations, the

average length of the region of pure cooperators Lpc will be

determined by the balance between the time necessary to create this

region after splitting and the time to the next successful defector

mutation in the region of pure cooperators. The former time scales as

Lpc=(vc{vi) for deterministic splitting. While the latter time scales as

the inverse of the product of the mutation rate from cooperators to

defectors md, population size K(0)Lpc, and fixation probability

gf ½K(0)�f �½K(0)�, i.e. as fmdLpcK(0)gf ½K(0)�f �½K(0)�g{1
; see

[35,67]. For deterministic splitting, this balance yields

Lpc&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(vc{vi)=fmdK(0)gf ½K(0)�f �½K(0)�g

p
, while, for stochastic

splitting, Lpc will also be affected by the average waiting time to

stochastic splitting. In the other limit of very frequent mutations,

splitting would not be able to occur before additional defectors arise at

the front, and the dynamics would be primarily determined by the

balance between mutational transitions leading to mixed populations.

Another interesting consequence of the coupling between

ecological and evolutionary dynamics is wave acceleration. We

found that cooperators are favored at the wave front (see figure 1c).

As the frequency of cooperators is increasing at the front, the

instantaneous velocity of the expansion wave must also increase

because defectors slow down expansions (see figure 2). The

evolutionary change could however be very slow compared to the

colonization dynamics leading to a gradual acceleration of the

range expansion. Indeed, long periods of dramatic wave acceler-

ation are possible in our model and are shown in figure 5. The

acceleration of expansion fronts has been observed in a number of

species and is typically explained by the evolution of shorter

generation times, greater dispersal abilities, or specific adaptations

to the environment in the newly colonized regions [30,31,68,69].

Our analysis of cooperator and defector waves suggests that a

changing rate of expansion could simply be a consequence of the

slow adjustment of the genetic composition at the wave front to a

new low-density optimum, which is different from that in the

population bulk.

Discussion

Understanding the link between ecology and evolution remains

a major open problem [70]. This coupling is particularly

important during range expansions, which are often accompanied

by both demographic and evolutionary changes [26,30,31,69]. We

formulated a simple two-allele model that is capable of describing

a wide range of frequency and density dependencies of selection

and growth. Our analysis revealed the necessity of taking eco-

evolutionary feedback into account in order to make accurate

predictions. In particular, we found that the genetic composition of

the population bulk may be a poor predictor for the genetic

composition of the population front. Similarly, the measurements

at the expansion front may be a poor predictor of the properties of

the new population once it is fully established. These differences

between the population bulk and expansion front make it also

harder to predict the rates of expansions. Indeed, we found that

the rates of expansions could be accelerating as the result of slow

evolutionary changes at the expanding population edge and that

Figure 4. The average time to stochastic splitting shows an
exponential-like increase with the carrying capacity of the
sites. The parameters used in these simulations are the same as in
figure 3c with the exception of L~2000 for Kv100 and L~3000 for
K~100. The error bars show the standard deviation of the mean.
Similar increase in the average time to splitting was observed for
increasing migration because larger m leads to longer wave profiles
containing more organisms, and, therefore, smaller number fluctua-
tions.
doi:10.1371/journal.pcbi.1002994.g004
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species can spread faster in mixed waves than in isolation or by

invading already established populations.

Our main result is that colonization of new territories can

proceed in two qualitatively different ways. The first possibility is a

single mixed wave, where both alleles (or species) move with the

same velocity and their relative abundances reach a steady state in

the reference frame comoving with the expansion. The second

possibility is that one of the alleles (or species) outruns the other.

The faster allele is solely responsible for the colonization, while the

slower allele invades the faster one from behind with a smaller

velocity. As a result, there is a growing region occupied exclusively

by the faster allele. The effect of wave splitting could be especially

dramatic for species that have markedly smaller migration rates in

the population bulk compared to population front [71,72] because

the invasion by the slower allele would be significantly slower than

the range expansion. The existence of secondary genetic waves

could lead to unexpected population and genetic dynamics, which

cannot be described by the classic models of range expansions

[47,48,56,57]. It would be interesting to know when the

commonly observed changes behind the expansion front [69]

are caused by de novo adaptation to the new environment and

when they are caused by the secondary genetic waves, which could

reach and alter populations at the newly colonized territories

many generations after the arrival of the population wave.

In the context of cooperator-defector interactions, wave splitting

and the increase in cooperation at the front could stabilize

cooperation against defectors in populations that experience

frequent disturbances followed by recolonizations. This mecha-

nism of maintaining cooperation does not rely on reciprocity or

multi-level selection, but is instead grounded in the density

dependence of the evolutionary dynamics. More importantly, we

have demonstrated that the coupling between ecological and

evolutionary dynamics can have a profound effect on the fate of

cooperation and should, therefore, be considered in both

theoretical and experimental studies.

Supporting Information

Text S1 Text S1 contains the derivation of the boundary

conditions for equation (15), the derivation of equation (18), and

the discussion of the effects of effective advection and growth on

the ability of defectors to travel faster during a range expansion

with cooperators than during an invasion into a population of

cooperators.

(PDF)
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