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Simple Summary: Circulating tumor DNA, or ctDNA, are fragments of tumor DNA that can be
detected in the blood of patients with colorectal cancer. Measuring ctDNA levels in the blood has
shown the potential to provide important information that can be helpful in the clinical care of
patients with colorectal cancer. For example, in patients with colon cancer that has been removed by
surgery, measuring ctDNA in the blood can predict the likelihood of cancer recurrence, while in those
with metastatic colorectal cancer, measuring ctDNA can inform the clinician whether chemotherapy
is effective at earlier timepoints than currently available tests. In this review, we discuss the results
from ongoing studies describing the utility of ctDNA measurements across all stages of colorectal
cancer. We also discuss the various clinical scenarios that ctDNA may have the most immediate
impact in colorectal cancer management.

Abstract: Emerging data suggest that circulating tumor DNA (ctDNA) can detect colorectal cancer
(CRC)-specific signals across both non-metastatic and metastatic settings. With the development of
multiple platforms, including tumor-informed and tumor-agnostic ctDNA assays and demonstration
of their provocative analytic performance to detect minimal residual disease, there are now ongoing,
phase IIl randomized clinical trials to evaluate their role in the management paradigm of CRC. In
this review, we highlight landmark studies that have formed the basis for ongoing studies on the
clinically applicability of plasma ctDNA assays in resected, stage I-IIIl CRC and metastatic CRC. We
discuss clinical settings by which ctDNA may have the most immediate impact in routine clinical
practice. These include the potential for ctDNA to (1) guide surveillance and intensification or
de-intensification strategies of adjuvant therapy in resected, stage I-III CRC, (2) predict treatment
response to neoadjuvant therapy in locally advanced rectal cancer inclusive of total neoadjuvant
therapy (TNT), and (3) predict response to systemic and surgical therapies in metastatic disease.
We end by considering clinical variables that can influence our ability to reliably interpret ctDNA
dynamics in the clinic.

Keywords: circulating tumor DNA; minimal residual disease; tumor-informed; tumor-agnostic;
colorectal cancer

1. Introduction

Colorectal cancer (CRC) is the third-leading cause of cancer mortality in men and
women in the U.S. with an estimated 52,980 deaths in 2021 [1]. For stage I colon cancer,
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surgery alone is definitive with 5-year survival rates approximating 99% [2]. Upfront
surgery remains the standard for stage II colon cancer followed by observation in those
with microsatellite instability-high status (MSI-H) or low-risk disease, while adjuvant
capecitabine and oxaliplatin (CAPOX) for 3 months or 5-fluorouracil/leucovorin and oxali-
platin (FOLFOX) for 6 months are accepted options in those with high-risk features [2—4].
The standard treatment for stage III colon cancer is comprised of surgery followed by
adjuvant CAPOX for 3 months in low-risk disease and CAPOX or FOLFOX for 6 months in
high-risk disease [2,4-6]. It has been recently proposed that 3 months of adjuvant CAPOX
can be used for all stage III colon cancer [5]. In locally advanced rectal cancer (LARC),
neoadjuvant therapy and surgery are mainstays of treatment although total neoadjuvant
therapy (TNT) has increasingly been recognized as an alternative to classical neoadju-
vant chemoradiation therapy with promising clinical response rates, especially if organ
preservation is preferred or in high-risk LARC [7-10].

Nearly half of all cases of CRC will develop incurable metastatic disease where the
standard of care (SOC) remains systemic therapy in this setting [11]. In a subset of patients
with metastatic colorectal cancer (mCRC), particularly having limited burden oligometas-
tases within the liver or lung, systemic chemotherapy along with metastasectomy or
ablative therapy carries the potential for durable long-term survival [4,9,12].

In all cases of stage I-III CRC, surveillance after surgery is routinely recommended
with a combination of clinical, radiographic, endoscopic, and/or serologic (carcinoembry-
onic antigen or CEA) assessments over time to detect recurrences [2,4,9,13]. In mCRC, CEA
has long been used in clinical practice as the standard tumor marker to assess response to
systemic therapy [14]. In mCRC, monitoring of treatment responses, particularly with CEA,
can assist in the prediction of response to systemic chemotherapy and prognostication
of long-term outcomes [15]. Ultimately, the goal of postoperative surveillance in stage
I-IIT CRC is to detect early relapses with the potential for curative intent resections while
maximizing opportunities to improve survival in the metastatic setting.

More recently, analysis of circulating tumor DNA (ctDNA), which are fragments of
DNA released by tumor cells into the bloodstream representing a fraction of the total
cell-free DNA (cfDNA) pool, has become increasingly recognized as a non-invasive method
to detect CRC-specific signals across both non-metastatic and metastatic settings [16]. The
purpose of this review is to highlight where the field is moving in the clinical applications
of ctDNA in CRC. We do not to cover the technical considerations in isolation, sample
analysis, performance, validation, standardization, or bioinformatics analysis of ctDNA
assays herein as these have been extensively reviewed elsewhere [16-18]. Specifically, we
focus on the applications of ctDNA that have the most immediate potential for impact and
implementation into routine clinical practice. Namely, we discuss the potential for ctDNA
to (1) guide surveillance and intensification and de-intensification of adjuvant therapies in
resected, stage I-1II CRC, (2) predict treatment response to neoadjuvant therapy in LARC
including TNT, and (3) predict response to systemic and surgical therapies in mCRC.

2. Detection of Minimal Residual Disease and Recurrences in Resected, Stage I-11I
Colorectal Cancer

Some of the first groups to demonstrate the feasibility of serial quantification of
ctDNA in plasma samples from patients with CRC used mutations identified by Sanger
sequencing in tumors to detect tumor-derived DNA in patient plasma by real-time PCR
and BEAMing [19]. Here, ctDNA was detectable in all subjects who had predominantly
metastatic disease before surgery. ctDNA appeared to be a more sensitive indicator of
tumor burden than standard CEA and all subjects who had detectable ctDNA after surgery
generally relapsed within 1 year. This study was among the first to support the use of
ctDNA as a measure of tumor dynamics in CRC.

2.1. Tumor-Informed ctDNA Assessment

Since then, several groups have demonstrated that serial ctDNA assessments can de-
tect minimal residual disease (MRD) in blood samples of patients with resected, localized
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colon cancer (Table 1). In a cohort of 230 resected stage II cases, ctDNA quantified by
the highest mutant allele fraction (MAF) relative to the MAF in healthy control in plasma
samples (Safe-SeqS assay) identified a significant difference in recurrence-free survival
(RFS) among ctDNA-positive and -negative patients postoperatively [20]. Interestingly;,
postoperative ctDNA status had a greater impact on RFS than any individual clinicopatho-
logical risk factor or any combination of factors with a 48% sensitivity and 100% specificity
of postoperative ctDNA to predict recurrence at 36 months. A median lead-time of 167 days
between ctDNA detection and radiologic recurrence was observed compared to a median
lead-time of 61 days between CEA elevation and radiologic recurrence (p = 0.04). The same
Australian group later investigated the above tumor-informed ctDNA assay in a cohort
of 96 stage III colon cancer patients having undergone RO resection with blood collected
a median of 42 days (interquartile range or IQR 32-52) after surgery who were planned
for 24 weeks of adjuvant chemotherapy [21]. With a median follow-up of 28.9 months,
postsurgical and post-adjuvant chemotherapy ctDNA-positivity was significantly associ-
ated with worse RFS compared to ctDNA-negative cases (Table 1). Again, postsurgical
ctDNA-positivity was not associated with any known clinicopathologic factor, while post-
surgical CEA level was elevated in 7/96 (7%) compared to 20/96 (21%) with postsurgical
ctDNA-positivity, suggesting that ctDNA may be more useful to clinically guide adjuvant
chemotherapy strategies than CEA. In a separate cohort of resected, stage I-1II CRC pa-
tients, Safe-SeqS ctDNA plasma assays identified a 0% recurrence rate in ctDNA-negative
patients suggesting the potential of ctDNA as a rule-out test for patients in whom less
frequent radiographic exams or follow-ups may be sufficient [22].

Table 1. Select landmark studies in ctDNA detection of recurrent CRC.

Setting, n

Tumor-Informed or -Agnostic Key Findings Ref.

Stage II, n = 230

Informed (1 tumor-derived somatic CI 7.9-40, p = 2.6 x 10712 postoperatively in those not
mutation with highest MAF) receiving ACT; poorer RFS for ctDNA+ after >3 mos

3-yr RFS 0% (ctDNA+) vs. 90% (ctDNA—, HR 18, 95%
[20]
ACT (HR 11, 95% CI 1.8-68, p = 0.001)

Stage III, n = 96

Informed (1 tumor-derived somatic 3-yr RFS for ctDNA+ vs. ctDNA— 47% vs. 76% after
mutation with highest MAF) surgery (HR 3.8, 95% CI 2.4-21, p < 0.001) and 30% vs.

ctDNA+ in 10/66 (15%) pts completing 24 wks ACT;
[21]
77% after ACT (HR 6.8, 95% CI 11.0-157, p < 0.001)

Stage I-11I, n = 94

Informed (29 somatic gene panel)

Pretreatment ctDNA significantly lower in stage I than
stage II-1II tumors (p = 0.018); median 11.5 mos lead
time over radiologic relapse with ctDNA+; poorer DFS
with ctDNA+ after surgery (HR 11.64, 95% CI
3.67-36.88, p < 0.001) and ACT (HR 10.02, 95% CI
9.202-307.3; p < 0.0001)

[23]

Stage I-III, n = 58

Informed (1 tumor-derived somatic with ctDNA+; recurrence rate in ctDNA+ 77% (10/13
mutation with highest MAF) pts); recurrence rate in ctDNA over 49 mos follow-up

Median lead time 4 mos over radiographic relapse
[22]
postoperatively 0% (0/45 pts, 95% CI 0-7.9)

Stage I-1II, n = 125

Informed (16 high-ranked
patient-specific SNVs and short indels)

Postoperative 30-day ctDNA status associated with
70.0% (7/10 pts ctDNA+) vs. 11.9% (10/84 pts
ctDNA —) recurrence rate (HR for RFS 7.2, 95% CI
2.7-19.0, p < 0.001); of 58 pts with post-ACT samples,

7/7 (100%) ctDNA+ relapsed while 7/51 (13.7%) [24]
ctDNA — relapsed; of 75 pts with longitudinal samples,
ctDNA+ associated with worse RFS (HR 39.9, 95% CI
7.5-211.0, p < 0.001); mean lead-time from ctDNA+ to

radiographic relapse 8.7 mos (range 0.8-16.5)
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Setting, n Tumor-Informed or -Agnostic Key Findings Ref.
ctDNA+ at postoperative wk 4, 12, and 24 associated

Stage I-III 1 = 808 Informed (16 high-ranked with inferior DFS (HR 46.8, sensitivity for relapse [25]

& T patient-specific SNVs and short indels) detection 93.1%); 6-month DFS rate in ctDNA —
postoperatively was >99%

2-yr RFS 39.3% (HR 10.98, 95% CI 5.31-22.72, p < 0.001)

Stage 111, 1 = 240 Informed (425-gene panel) for ctDNA+ postoperatively days 3-7; 2-yr RFS 25.0% [26]

(12/137 pts ctDNA+) vs. 87.7% (125/137 pts ctDNA—)
post-ACT

Stage I-11I, n = 82

Agnostic (10 subregions of SEPT9 gene

73/82 pts (89.0%) preoperative ctDNA+; ctDNA+ 2
wks postoperatively associated with poorer RFS
(median 288 days vs. 460 days for ctDNA—, HR 4.20, [27]
95% CI 2.30-18.73, p = 0.0005); 83.3% concordance (5/6
cases) with targeted NGS for recurrence

promoter)

Stage II-11I, n = 322

Agnostic (2-gene BCAT1/IKZF1

Sensitivity /specificity of 63.0/91.5% (ctDNA) vs.
48.1/96.3% (CEA) in 27 /322 pts with postoperative [28]

methylation panel) recurrence

ctDNA+ in 140/1017 pts (13.8%) pre-ACT; 3-yr DFS
pre-ACT was 66.4% (ctDNA+) vs. 76.7% (ctDNA—,

Agnostic (2-gene DNA methylation HR 1.46, 95% CI 1.08-1.97, p = 0.015); 5-yr OS 81%
Stage Il n = 1017 & 5 panel) Y (CtDNA+) vs. 87% (ctDNZr, HR 1.56,y95% CI [29]
1.08-2.26; p = 0.018); ctDNA prognostic for DFS for T4
and/or N2 tumors and ACT of 3 mos only
17/70 pts (24%) ctDNA+ at 1 mo after definitive
Stage I-IV Agnostic (aberrant DNA methylation +  therapy; with >1yr follow-up, recurrence rate 100%
(curative intent targeted NGS of standard CRC (15/15 pts ctDNA+) vs. 24.5% (12/49 pts ctDNA—); [30]

surgery), n = 84

genomic alterations) with longitudinal surveillance, sensitivity and
specificity of 69.0% and 100%, respectively

ctDNA, circulating tumor DNA; CRC, colorectal cancer; MAF, mutant allele fraction; RFS, recurrence-free survival; HR, hazard ratio; CI,
confidence interval; ACT, adjuvant chemotherapy; DFS, disease-free survival; NGS, next-generation sequencing; CEA, carcinoembryonic

antigen.

The use of massively parallel, next-generation sequencing (NGS) of colorectal tumors
to identify somatic mutations detected as ctDNA in plasma samples by quantitative PCR
has demonstrated feasibility to detect MRD by several groups as well [31,32]. More recently,
the performance of an ultradeep multiplex PCR-based NGS ctDNA assay (Signatera™,
Natera, Inc., San Carlos, CA, USA) using whole-exome sequencing (WES) of tumors
to select for 16 high-ranked patient-specific somatic mutations has been described in a
resected, stage I-III CRC cohort [24]. ctDNA was detected in 108/122 preoperative samples
(88.5%), while an 88% sensitivity and 95% specificity of the plasma assay for relapse was
shown over longitudinally collected samples from 75 patients. Interestingly, in 8 ctDNA-
positive subjects with blood collected prior to adjuvant chemotherapy, ctDNA was not
cleared in 4/8 patients (50.0%) following adjuvant chemotherapy. All of these patients
experienced disease recurrence, indicating that MRD is associated with the failure to
eliminate residual disease with adjuvant therapy. Of note, the Signatera test is a Clinical
Laboratory Improvement Amendments (CLIA)-certified ctDNA assay that has received
U.S. Food and Drug Administration (FDA) Breakthrough Device designation for MRD
testing as of 8 May 2019.

Preliminary results from the CIRCULATE-Japan study, which included a prospective
large-scale patient-screening registry, GALAXY, employing the Signatera ctDNA assay
were recently reported [25,33]. Of 808 patients included in the analysis, 65, 280, and
301 patients had pathological stages I, II, and III CRC with preoperative ctDNA detected in
50 (77%), 267 (95%), and 288 (96%) patients, respectively. Notably, no association between
RAS, BRAF V600E, and MSI status were found, but ctDNA-positivity at 4 weeks was
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significantly associated with an inferior DFS, suggesting that this would be an ideal time
point for ctDNA-based adjuvant studies. Remarkably, the postoperative 6-month DFS in
ctDNA-negative pathologic stage I-1II cases was >99% (Table 1).

Other groups have similarly corroborated a low recurrence risk in ctDNA-negative
patients for resected stage II-III CRC (2-year RFS rate of 89.4%) based on blood draws
as early as 3-7 days postoperatively [26], whereas postoperative ctDNA-positivity has
been associated with increased recurrence risk using tumor-informed assays in localized,
resected CRC [23,34-39].

2.2. Tumor-Agnostic ccDNA Assessment

Beyond tumor-informed or NGS-based ctDNA assessments of MRD in localized CRC,
several groups have published on the viability of tumor-agnostic ctDNA assays in this
arena (i.e., blood-based ctDNA assays that are not dependent a priori on tumor profiling
with detection of ctDNAs based on top-ranked hits in each patient’s tumor specimen). In a
large series of resected stage III colon cancer patients, ctDNA was tested for WIF1 and NPY
DNA methylation in pre-adjuvant chemotherapy samples that showed high concordance
with NGS-based ctDNA assessment (87/95 tested samples concordant, 91.6%) and inferior
3-year DFS for ctDNA-positive patients than ctDNA-negative patients treated with 3 or
6 months of adjuvant chemotherapy [29].

A separate group evaluated the feasibility of tumor-uninformed MRD detection using
the plasma-only ctDNA assay (Guardant Reveal™, Guardant Health) in a cohort of stage
I-IV CRC patients undergoing curative intent surgeries [30]. Here, the ctDNA assay was
designed to look for a combination of aberrant DNA methylation and targeted NGS of
standard genomic alterations employed by most MRD assays without requiring parallel
assessment of tumor tissue in blood samples collected at a landmark of 1 month following
definitive therapy. A 100% recurrence rate was seen for those who were ctDNA-positive
compared to a 24.5% recurrence rate for ctDNA-negative on landmark analysis. Sensitivity
and specificity were comparable to other tumor-informed approaches (Table 1). Across all
ctDNA-positive samples, 47% were positive by both epigenomic and genomic calls, while
they were individually positive in 28% and 25% of samples, respectively, whereby incor-
porating epigenomic signatures increased sensitivity by 25-36% over genomic alterations
alone.

The COLVERA® (Clinical Genomics, Bridgewater, NJ, USA) assay is a 2-gene (BCAT1/
IKZF1) methylation-specific, plasma ctDNA platform that is also commercially avail-
able and has shown greater sensitivity for recurrence in resected, localized CRC than
CEA [28,40-43]. Among the earlier genes whose methylation in ctDNA has been described
in CRC includes SEPTY, for which several groups have shown that postoperative ctDNA-
positivity for SEPT9 carries high specificity for predicting recurrent CRC [44—48] while
conferring a median lead time of 8 months prior to radiographic detection of recurrence in
resected CRC patients [27].

2.3. Interventional Clinical Trials with Blood-Based ctDNA Assays in Resected CRC

With the impressive potential to detect MRD in resected, stage I-III colon cancer
through a non-invasive fashion, the logical next step in integrating these ctDNA assays
into clinical practice would be to study their utility in prospective, ideally randomized
control trials comparing ctDNA-informed approaches to SOC approaches. One area of po-
tential clinical impact for ctDNA would be in the postoperative or adjuvant chemotherapy
settings where survival benefits have been demonstrated for 3 or 6 months of adjuvant
chemotherapy and are now widely recommended by consensus guidelines [2,4]. In the
Signatera NGS-based ctDNA cohort, all patients with postoperative colon cancer with
ctDNA-positivity prior to adjuvant chemotherapy and whose ctDNA remained positive
after adjuvant chemotherapy experienced disease recurrence, underscoring the importance
of clearance of MRD for improved postoperative DFS [24]. Interestingly, the prognosis of
ctDNA-positive cases treated with 6 months of adjuvant chemotherapy approximated that
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of the ctDNA-negative cases treated with 3 months of adjuvant therapy in a recent cohort of
resected, stage III colon cancer patients were evaluated using a tumor-uninformed ctDNA
assay [29]. The worst outcomes were seen in those with ctDNA-positive high-risk stage III
cases treated with 3 months of adjuvant chemotherapy, suggesting that a longer adjuvant
treatment period may decrease the prognostic impact of ctDNA by clearing MRD.

Accordingly, the field is now moving towards the investigation of blood-based ctDNA
assays in guiding the intensification or de-intensification of adjuvant chemotherapy in
those with resected, localized colon cancer (Table 2). For example, in resected, stage II colon
cancer where adjuvant chemotherapy (3 months of CAPOX) has largely been recommended
in those with high-risk disease [3], several groups are seeking to investigate the escalation to
6 months of oxaliplatin-based chemotherapy (NRG-GI005 or COBRA) for stage IIA disease
as well as other stage II colon cancer cohorts (CIRCULATE-PRODIGE 70, IMPROVE-IT,
MEDOCC-CrEATE) who have ctDNA-positivity postoperatively. Other groups allow an in-
termediate 3 months of oxaliplatin-based chemotherapy for postoperative ctDNA-positive,
stage II colon cancer (DYNAMIC, CIRCULATE AIO-KRK 0217). The phase II IMPROVE-IT
trial is also investigating the benefit of 6 months of oxaliplatin-based chemotherapy in
postoperative ctDNA-positive, stage I-1I colon cancer patients who otherwise would not be
receiving adjuvant chemotherapy under standard conditions. In high-risk stage II or stage
III where questions of 3 vs. 6 months of oxaliplatin-based chemotherapy remain, the PE-
GASUS trial will uniquely investigate de-escalation strategies based on ctDNA clearance to
initial adjuvant chemotherapy, while escalation to a full 6 months of systemic therapy with
5-FU and irinotecan (FOLFIRI) occurs if ctDNA-positivity remains or reappears after an
initial period of clearance. In a similar population, the DYNAMIC-III phase II/11I trial will
be assigning patients based on ctDNA assessments to escalation of adjuvant chemotherapy
(to even a triplet of 5-FU, oxaliplatin, and irinotecan or FOLFOXIRI) for ctDNA-positivity
or de-escalation to no adjuvant chemotherapy or fluoropyrimidine with or without oxali-
platin for ctDNA-negativity depending on clinician discretion (Table 2). Other groups are
investigating intensification of therapy with novel agents (immunotherapy), single-agent
cytotoxics such as TAS-102, or combination cytotoxics (FOLFIRI, TAS-102 and irinotecan,
or continuation of FOLFOX or CAPOX up to 6 months) for failure to clear ctDNA after
standard adjuvant chemotherapy in high-risk stage II or stage III colon cancer.

Table 2. Select prospective and interventional clinical trials of ctDNA in resected, localized CRC.

Study

Setting, Planned n Design Primary Endpoint

IMPROVE-IT (NCT03748680)

Randomization (1:1) of ctDNA+ pts
without standard ACT indication to
intensified CT chest/abdomen
surveillance or 6 mos of FOLFOX or
CAPOX + intensified surveillance

Phase I, stage I-1I,

"= 64 3-yr DFS

NRG-GI005 (COBRA,
NCT04068103)

Randomization to Arm I: Routine
surveillance or Arm II: IC of FOLFOX or
CAPOX 6 mos (ctDNA+) or routine
surveillance (ctDNA-)

Phase II /111, stage

1A, 1 = 1408 ctDNA clearance, RFS

DYNAMIC

Randomization (2:1) to Arm A: IC of
FOLFOX or CAPOX 3-6 mos (ctDNA+)

or routine surveillance (ctDNA—) or Arm Number of pts treated with

Stage II, n = 450

(ACTRINI12615000381582) B: Clinician discretion (ctDNA results ACT, RFS
provided at 6 mos)
CIRCULATE-PRODIGE70  Phase II, stage II, Randin‘llzgtl(;))nt(ﬁzl())gflz gl)?lglt:: Ptsr (T4b -
(NCTO04120701) 7 = 1980 excluded) to 0s 0 y

observation
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Table 2. Cont.

Study

Setting, Planned n

Design

Primary Endpoint

ctDNA —: randomization (1:4) to study
surveillance or routine surveillance

CIRCU(II\JIACFI:F% ;A(JIS(S_;;?)K-OH7 Phas;} Ilezigslltgge I, ctDNA+ and no MSI-H: randomization DFS
(2:1) to ACT (IC of capecitabine 6 mos or
CAPOX 3 or 6 mos) or observation
ctDNA+ without standard ACT
MEDOCC-CrEATE Phase III, stage II, indication: randomization (1:1) to % of pts accepting ACT when
(NL6281/NTR6455) n =1320 CAPOX 6 mos or routine surveillance ctDNA+
ctDNA—: Routine surveillance
ctDNA+ postoperatively, enrolled to
NCT04589468 Ph?IS_(iIIIaib_’ itoage increased durations of exercise 3—6 times =~ Recommended phase II dose
! weekly up to 18 mos
ctDNA analysis every 4 mos
Sgell TSy il mndnLAton 0 o oflapse s
IMPROVE-IT2 (NCT04084249)  high-risk/stage III, . . receiving intended curative
=054 and colonoscopy at time of first ctDNA+ resection or local treatment
then PET/CT every 3 mos or standard
surveillance
Phase III, stage 1T ctDNA+ within 4 wks preoperati\./ely and
VEGA (RCT1031200006)  high-risk/stage Ill, ~ CLONA— at4 wks postoperatively, DFS
1 = 1240 randomized (1:1) to observation or
CAPOX 3 mos (no MSI-H)
Enrolled into molecular adjuvant therapy:
CAPOX 3 mos (ctDNA+) or capecitabine
6 mos (ctDNA —, switched to CAPOX if
ctDNA+ 1 mo later); then enrolled into
Phase IT, stage I molecular metastatic therapy: FOLFIRI6 ~ Number of post-surgery and
PEGASUS (NCT04259944) high—risk’/s tage IIT mos if ctDNA+/+, CAPOX 6 mos if post-adjuvant false negative
1 = 140 ’ ctDNA—/+ (switched to FOLFIRI if cases after a double
ctDNA+ after 3 mos), or de-escalation to ctDNA-negative detection
capecitabine 3 mos if ctDNA+/—
(switched to FOLFIRI if ctDNA+ after 3
mos) or surveillance if ctDNA—/—
(switched to CAPOX if ctDNA+)
Phase II, stage I ctDNA+ prior to ACT and after SOC
NCT04486378 high-risk/stage IlI, ~ACT, randomized to RO7198457 up to 12 DEFS
n =201 mos or routine surveillance
Phase II, stage I ctDNA+ after 3 mos of standard ACT,
NCT04920032 high-risk/stage III, randomized to TASIRI or continuation of % ctDNA+ at 6 mos of ACT
n=22 FOLFOX or CAPOX up to 6 mos

DYNAMIC-Rectal
(ACTRN12617001560381)

Stage II-1II rectal,
n = 408

After neoadjuvant chemoradiation and
surgery, randomization to
ctDNA-informed arm: Decision on 4 mos
fluoropyrimidine + oxaliplatin based on
ctDNA+ or ctDNA— or SOC arm: 4 mos
fluoropyrimidine + oxaliplatin based on
standard pathology risk assessment

Number of pts treated with
ACT
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Table 2. Cont.

Study

Setting, Planned n Design Primary Endpoint

DYNAMIC-III
(ACTRN12617001566325)

Randomization (1:1) to Arm A: SOC or
Arm B: ctDNA-informed de-escalation or
escalation based on IC SOC choice

- SOC no chemo: no ACT (ctDNA—)
or 3 mos fluoropyrimidine alone
(ctDNA+)

- SOC 6 mos fluoropyrimidine alone:
no ACT or 3 mos fluoropyrimidine
alone (ctDNA—) or 6 mos

fluoropyrimidine + oxaliplatin Non-inferiority in 3-yr RFS of

Phase II/11I, stage (ctDNA+) L de-escalation to SOC (ctDNA-)
III, n = 1000 B SOC 3 mos fluoropyrimidine + and superiority in 2-yr RFS of

oxaliplatin: fluoropyrimidine alone ¢ -12tion to SOC (CtDNA+)
(ctDNA—) or 6 mos

fluoropyrimidine + oxaliplatin or 6
cycles FOLFOXIRI followed by
further treatment per IC (ctDNA+)
- SOC 6 mos fluoropyrimidine +
oxaliplatin: fluoropyrimidine alone
or 3 mos fluoropyrimidine +
oxaliplatin (ctDNA—) or 6 cycles
FOLFOXIRI followed by further
treatment per IC (ctDNA+)

SU2C (NCT03803553)

After standard ACT, randomization to
FOLFIRI 6 mos (ctDNA+), active
surveillance with imaging every 3 mos
for 3 yr then every 6 mos after (ctDNA+), DEFS, ctDNA clearance
active surveillance with imaging every 3
mos for 3 yr then every 6 mos after
(ctDNA-)

Phase I1I, stage III,
n =500

ALTAIR (NCT04457297)

After standard ACT and ctDNA+ within
previous 3 mos at any time
postoperatively up to 2 yr after surgery, DFS
randomization (1:1) to 6 mos TAS-102 or
placebo

Phase I1I, stage III,
n =240

CRC, colorectal cancer; ctDNA, circulating tumor DNA; ACT, adjuvant chemotherapy; CT, computed tomography; FOLFOX, 5-FU and
oxaliplatin; CAPOX, capecitabine and oxaliplatin; DFS, disease-free survival; IC, investigator’s choice; RFS, recurrence-free survival; MSI-H,
microsatellite instability-high; PET/CT, positron emission tomography; FOLFIRI, 5-FU and irinotecan; SOC, standard-of-care; TASIRI,
TAS-102, and irinotecan; FOLFOXIRI, 5-FU, oxaliplatin, and irinotecan.

Lastly several groups are investigating the benefit of intensified surveillance with more
frequent imaging or positron emission tomography/computed tomography (PET/CT)
imaging (IMPROVE-IT, IMPROVE-IT2) in those with postoperative, ctDNA-positive stage
I-II colon cancers. In short, prospective, randomized trials are rapidly growing in number
seeking to elucidate the clinical benefit of ctDNA-informed management approaches
across a multitude of treatment settings in resected, stage I-III colon cancer. However,
several questions remain on the role of ctDNA assessments in this population (see Future
Considerations), and there is hope that many will be answered with results that are
anticipated from these prospective studies.

3. Prediction of Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer

Historically, the treatment of stage II-III rectal cancer has involved a paradigm of
neoadjuvant chemoradiation followed by total mesorectal excision (TME) and 4 months of
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adjuvant fluoropyrimidine-based chemotherapy [9,13]. However, recent strategies have
employed a total neoadjuvant approach, known as total neoadjuvant therapy (TNT), which
shift the adjuvant chemotherapy following TME to the neoadjuvant phase (either before or
after chemoradiation or short-course radiotherapy), ensuring that all systemic therapies
are completed prior to surgery. This approach is a standard option by national guidelines
and is the preferred approach for high-risk LARC [9]. In either neoadjuvant approach,
watchful waiting (WW) or organ preservation strategies in LARC are increasingly being
investigated given that complete response (CR) rates approach 30% following neoadjuvant
therapy [49,50]. While data in the WW setting require further maturation, TNT is generally
the preferred approach if organ preservation is desired [7-10]. Not surprisingly, several
groups have explored the role of ctDNA in predicting responses to neoadjuvant and
surgical therapy in LARC to potentially assist in personalization of LARC treatments
(Table 3).

Table 3. Studies of ctDNA prediction of treatment responses to neoadjuvant therapy in locally advanced rectal cancer.

Treatment Type, n

Tumor-Informed or -Agnostic

Key Findings Ref.

Long-course CRT,
n=159

Informed (1 tumor-derived somatic
mutation with highest MAF)

Conversion from pre-CRT ctDNA+ to ctDNA 4-6 wks
post-CRT not associated with pCR (pCR vs. non-pCR,
95% vs. 88%, p = 0.46); no difference in RFS between
pre-CRT ctDNA+ vs. c¢tDNA— (HR 1.1, 95% CI [51]
0.42-3.0, p = 0.823); 3-yr RFS for post-CRT ctDNA+
(50%) vs. ctDNA— (85%, HR 6.6 95% CI 2.6-17,
p <0.001)

Long-course CRT,
n=236

3-yr OS 91.2% (ctDNA—) vs. and 71.4% (ctDNA+)

Informed (6-gene panel selected from
frequent somatic oncogenes in rectal
cancer)

pre-CRT; during first wk of CRT, ctDNA eliminated or
reduced from circulation in all pts; no association
between change in ctDNA levels (before and during
CRT) and TRG or TNM staging

[52]

Long-course CRT,
n=47

Informed (up to 3 tumor-derived
somatic mutations with highest MAF)

Poor responders (MRI TRG 3-5) were more likely to
have post-CRT ctDNA+ (9/27, 33%) than good
responders (MRI TRG 1-2, 1/20, 5%, p = 0.03); no
difference in MRI TRG response between ctDNA+ vs.
ctDNA- at any other timepoint of CRT

[53]

Long-course CRT,
n =146

Agnostic (NPY DNA methylation)

Baseline ctDNA+ not associated with clinical T or N
stage or TRG but associated with worse 5-yr OS (47%
vs. 69%, p = 0.02) mainly driven in rate of distant
metastases at 5 yrs (55% vs. 72%, p = 0.01)

[54]

Long-course CRT,
n=29

Informed (using >1 tumor-derived
somatic mutation)

Based on preoperative ctDNA status, RO-NN resection
rate 88% (ctDNA—, n = 17) vs. 44% (ctDNA+,n=9,
p = 0.028); favorable NAR-low or -intermediate scores
88% (ctDNA—) vs. 50% (ctDNA+, p = 0.059); pCR rate
11% (ctDNA+) vs. 24% (ctDNA—, p = 0.63) not
significantly different

[55]

Long-course CRT,
n =103

Informed (using >1 tumor-derived
somatic mutation)

Baseline ctDNA+ rate 75%, which decreased to 15.6%
2-3 wks after initiation of CRT, and decreased to 10.5%
and 6.7% before and after surgery, respectively;
preoperative ctDNA+ rate significantly lower in pts
with favorable TRG 0-1 (p < 0.001), pCR (p = 0.02),
pathologic T stage 0-2 (p = 0.002), and post-CRT
MRI-defined clinical extramural vascular invasion
negativity (p < 0.002)

[56]
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Table 3. Cont.

Treatment Type, n

Tumor-Informed or -Agnostic Key Findings Ref.

Long-course CRT
only or TNT, n = 85
(n =39 TNT)

Agnostic (14-gene panel of commonly
altered somatic mutations)

No significant association was observed between
baseline, post-treatment, and postoperative ctDNA
status and the rate of responders (pCR and cCR);
significant association between response and change [57]
in ctDNA by MAF before and after preoperative
treatment (>80% vs. <80%, OR 8.5, 95% CI 1.4-163,
p =0.015)

TNT, n =60

Agnostic (aberrant DNA methylation +
targeted NGS of standard CRC

No association between baseline ctDNA detection and
PCR (p = 0.134); presurgery ctDNA detection not
associated with pathologic ypT or ypN status
(p = 0.8969 and p = 0.586, respectively; neither baseline
nor presurgery ctDNA status associated with NAR
score (p = 0.6 and p = 0.9, respectively)

[58]
genomic alterations)

ctDNA, circulating tumor DNA; CRT, chemoradiation; MAF, mutant allele fraction; pCR, pathologic complete response; RFS, recurrence-
free survival; HR, hazard ratio; CI, confidence interval; OS, overall survival; TRG, tumor regression grade; RO-NN, margin-negative,
node-negative resection rates; NAR, neoadjuvant rectal score; TNT, total neoadjuvant therapy; cCR, clinical complete response; OR,
odds ratio. CRC, colorectal cancer; ACT, adjuvant chemotherapy; DFS, disease-free survival; NGS, next-generation sequencing; CEA,

carcinoembryonic antigen.

3.1. Neoadjuvant Long-Course Chemoradiation

Among early studies, elevated baseline cfDNA has demonstrated feasibility (albeit
total cfDNA and not ctDNA) to predict for tumor response or recurrence risk following
neoadjuvant long-course chemoradiation in LARC [59,60]. Several other groups have
shown an association between pre-chemoradiation ctDNA status and recurrence risk in
LARC as well [52,61].

Using a tumor-informed ctDNA assay with blood samples collected prior to neoadju-
vant long-course chemoradiation and following completion of neoadjuvant chemoradia-
tion and surgery for LARC, no significant association was observed between pretreatment
or post-chemoradiation ctDNA status and any clinicopathological factors or pathologic
complete response (pCR) [51]. However, postoperative ctDNA-positivity was strongly
predictive of recurrence irrespective of adjuvant chemotherapy, pathologic low risk (pCR,
ypT0-2, ypNO), or pathologic high-risk (ypT3-4, ypN+) disease. Interestingly, 5 cases
with an elevated postoperative CEA also had detectable postoperative ctDNA, but only
5/11 (45%) with postoperative ctDNA-positivity had an elevated CEA postoperatively
suggesting that postoperative ctDNA assessment adds significant prognostic value to
LARC patients with a non-elevated postoperative CEA.

In a smaller series, preoperative ctDNA assessments in patients treated with stan-
dard neoadjuvant long-course chemoradiation followed by TME did not demonstrate a
significant relationship between preoperative ctDNA and pCR, although the correlation
was demonstrated between preoperative ctDNA and composite end point markers of
surgical outcomes [55]. Those with postoperative ctDNA-positivity had significantly worse
progression-free survival (PFS) than those with negative ctDNA postoperatively (hazard
ratio or HR 11.56, p = 0.007) although none with postoperative ctDNA MRD received
adjuvant chemotherapy in this cohort.

Several groups have shown that postoperative or post-chemoradiation ctDNA status
appears to be most predictive of treatment outcomes in LARC, as neither baseline nor dur-
ing chemoradiation ctDNA detection showed significant correlation with any parameters
that conventionally reflect tumor response [53,56,57]. One group, however, showed that
patients who had persistently detectable ctDNA during the neoadjuvant period were found
to have a significantly shorter metastasis-free survival [53]. In this study, 15 patients were
managed on WW after neoadjuvant therapy and 10 developed local regrowth at a median
of 11 months from neoadjuvant chemoradiation. Of these 10 patients, plasma was available
a median of 4.5 days from local regrowth, and ctDNA was only detectable in 1 case of
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regrowth. Notably, variants originally tracked in plasma persisted in the regrowth tissue at
a sufficiently high MAF in all these patients. When pre-neoadjuvant ctDNA-positivity is
prognostic of worse overall survival (OS), it appears to be driven by a higher rate of distant
metastases when compared to ctDNA-negative cases [54].

3.2. Total Neoadjuvant Therapy

In a cohort of 85 LARC patients (many of whom were treated with TNT) undergoing
serial plasma ctDNA assessments, TNT showed a trend towards an increased tumor
response (odds ratio or OR 2.9, 95% CI 0.8-12.3, p = 0.1178), but there was no association
between pre-neoadjuvant therapy and post-neoadjuvant therapy ctDNA status and tumor
response [57]. Instead, postoperative ctDNA status and change in ctDNA MAF before
and after preoperative therapy remained independent prognostic factors for postoperative
recurrence (Table 3).

As part of the GEMCAD 1402 phase II randomized trial enrolling high-risk LARC
patients to receive TNT, 23 subjects with paired baseline and post-TNT/pre-surgery sam-
ples using a tumor-uninformed, plasma ctDNA assay showed ctDNA clearance following
neoadjuvant treatment (66%) [58]. Although this was a preplanned analysis limited by
small sample size, ctDNA detection was not a predictive biomarker of treatment response
on the primary tumor as measured by pCR or neoadjuvant rectal score (NAR, Table 3).
However, post-TNT/pre-surgery (but not baseline) ctDNA-positivity was associated with
worse DFS and OS. Post-TNT/pre-surgery ctDNA was detected in 3/4 patients (75%) who
developed liver metastasis compared with 4/41 patients (9.8%) who did not (p = 0.009),
while post-TNT/pre-surgery ctDNA was undetectable in all patients that recurred to the
lung only or peritoneum only. In a case series of patients with LARC treated with TNT and
followed on WW due to clinical CR, detectable ctDNA levels following TNT afforded a
lead time of 10 months prior to biopsy-confirmed local recurrence [62].

4. Prediction of Response to Systemic and Surgical Therapies in Metastatic Colorectal
Cancer

The use of blood-based ctDNA assays to characterize alterations in KRAS, BRAF, EGFR,
HER?2, and gene fusions as resistance mechanisms to anti-epidermal growth factor receptor
(EGFR) therapy and prognosticate in mCRC, particularly in colorectal liver metastases, has
been well-described [63-96]. More recent ctDNA assays have been investigated in mCRC
with evidence to suggest varied potential clinical applications in this space.

4.1. Resectable Colorectal Liver Metastases

In patients with resectable colorectal liver metastases (CRLMSs), ctDNA was detectable
in 46/54 (85%) patients prior to any treatment. In this group a median 40.93-fold decrease
in ctDNA MAF with neoadjuvant chemotherapy was observed, although ctDNA clearance
during neoadjuvant chemotherapy was not associated with a better RFS [97]. Notably,
those with postoperative ctDNA-positivity had a significantly lower RFS (HR 6.3, 95%
confidence interval or CI 2.58-15.2, p < 0.001) and OS (HR 4.2, 95% CI 1.5-11.8, p < 0.001)
compared to patients with undetectable postoperative ctDNA, suggesting a role in guiding
adjuvant therapy decisions in this arena. Ultimately, ctDNA-positivity following surgery
+ adjuvant chemotherapy in this mCRC population was associated with a 5-year RFS of
0% vs. 75.6% for those with an undetectable end-of-treatment ctDNA (HR 14.9, 95% CI
4.94-44.7,p < 0.001).

Preoperative ctDNA status has been shown to be predictive of recurrence risk in
those undergoing surgical resection for CRLMs [98-101]. Several groups have similarly
shown an association between plasma ctDNA levels and tumor burden, ctDNA decrease
during preoperative chemotherapy and improved tumor response, and postoperative
and post-adjuvant chemotherapy ctDNA-positivity with shorter RFS after resection of
CRLMs [102-104]. Others have similarly demonstrated the feasibility of plasma ctDNA
assays to detect MRD in those with mCRC treated with neoadjuvant chemotherapy and
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surgically for curative intent with a potential correlation between undetectable ctDNA
MRD and pCR to neoadjuvant chemotherapy [105,106].

4.2. Cytoreductive Surgery and Other Local Therapies

Beyond CRLMs, plasma ctDNA analyses have predicted for systemic relapse in those
with mCRC undergoing cytoreductive surgery (CRS) and hyperthermic intraperitoneal
chemotherapy (HIPEC) for peritoneal carcinomatosis, particularly in those with positive
vs. negative ctDNAs post-HIPEC [107]. Preoperative ctDNA-positivity has shown the
potential to predict for recurrence in mCRC patients undergoing CRS with or without
HIPEC as well [108,109].

In mCRC patients treated with other local therapies including stereotactic ablative
radiation therapy, detection of plasma ctDNA pre- and post-local therapy to oligometastatic
sites was correlated with recurrence risk [110,111]

4.3. Response to Systemic Therapy

Early investigations in unresectable mCRC, whereby combination cytotoxic chemother-
apy is standard, demonstrated feasibility in serial plasma ctDNA assessments with correla-
tions in changes in ctDNA level with tumor response (by CEA and imaging) to various
systemic therapy regimens [112-115]. Longitudinal sampling of ctDNA in this population
was more sensitive than CEA for radiographic progression events where rises in ctDNA
occurred significantly earlier than CEA [116]. Many groups have shown ctDNA-based
genotyping of KRAS to have value for prognosticating survival to combination chemother-
apy and predicting early emergence of resistance during chemotherapy with lead times as
early as 51 days before radiographic progression [117-124].

An emerging interest in plasma ctDNA assays lies in their ability to be used as an
early marker of response to systemic therapy in mCRC. Here, several groups have shown
that reductions in ctDNA following initiation of chemotherapy (as early as after 1 cycle)
was prognostic for improved survival and predictive of tumor response when correlated
to CT responses as early as 8-10 weeks after chemotherapy initiation [125-131]. These
findings have been concordant in the prospective PLACOL study where mCRC patients
treated after cycle 1 of chemotherapy having low (<0.1 ng/mL) plasma concentrations of
methylated ctDNA experienced improved OS and higher objective response rates [132].
Interestingly, ctDNA assayed within the first 48 h of FOLFOX infusion in mCRC patients
saw rapid decreases in MAFs within the first 24 h of chemotherapy. ctDNA MAFs that
remained low at the time the of last blood collection (hour 52 from chemotherapy) were
associated with response (stable disease or partial response) [133].

In induction strategies where mCRC patients are treated with triplet chemotherapy or
alternating oxaliplatin- and irinotecan-based chemotherapy followed by maintenance fluo-
ropyrimidine, lower ctDNA MAFs post-induction (collected <60 days after the 4-6-month
induction) were associated with longer median PFS [134].

Plasma ctDNA has shown potential to correlate with radiographic response in mCRC
patients treated with multikinase inhibitors and targeted therapies as well [135-142].
Lastly, ctDNA has been found to be prognostic of survival and predictive of tumor re-
sponse to treatment with immunotherapy in mCRC including immune checkpoint in-
hibitors [143-146].

5. Future Considerations
5.1. Scenarios for ctDNA to Potentially Change Practice

With an expanding research effort on blood-based ctDNA assays in CRC, evidence thus
far supports several key scenarios with greatest potential to have immediate impact based
on stage of disease. In resected, stage I-1III colon cancer or following neoadjuvant therapy
and while on WW in LARC, plasma ctDNA offers superior sensitivity to CEA and median
lead times of up to 11 months for radiographic detection of recurrence [23,28,62]. Naturally,
an enhanced ability to predict for early recurrences in this population could trigger an
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intensified diagnostic work-up with imaging or endoscopy justified by the potential to
salvage recurrences with curative intent surgery, when possible, or to maximize systemic
therapy options in the setting of recurrent, metastatic disease [2]. Several randomized
controlled trials, however, have failed to demonstrate a significant reduction in OS or
CRC-specific mortality with intensified surveillance inclusive of more frequent imaging
and CEA testing when compared to less frequent surveillance [147,148].

Whether postoperative ctDNA-guided intensified surveillance with more frequent
imaging or PET/CT imaging can affect DFS or the fraction of relapsed CRC patients
receiving curative intent surgeries or local therapies will be the focus of the ongoing
IMPROVE-IT and IMPROVE-IT?2 trials (Table 2). Others will be conducting prospective
studies in mCRC to compare the performance of ctDNA with conventional CT scans and
CEA in this advanced setting (NCT01983098). Perhaps more intriguing than the ability for
ctDNA-positivity to trigger early diagnostic work-up for CRC recurrence, postoperatively,
is the promising performance of postoperative ctDNA-negativity as a “rule-out” test. For
example, results from prospective large-scale patient-screening registries have shown
postoperative 6-month DFS in ctDNA-negative pathologic stage I-1III cases of >99% [25,33].
In this seemingly reassuring scenario, further investigation should be done to compare the
long-term outcomes between a less frequent surveillance program and routine surveillance.

Beyond the possibility of ctDNA to guide postoperative surveillance intensity in
resected, stage I-III colon cancer, an area gaining increased interest is the ability to escalate
or de-escalate adjuvant therapy dependent on the presence or absence of ctDNA MRD.
In a post-hoc analysis of the IDEA trial, ctDNA-positive cases treated with 6 months of
adjuvant chemotherapy approximated that of ctDNA-negative cases treated with 3 months
of adjuvant therapy with ctDNA being most prognostic for DFS in those with high-risk
stage III CRC (T4 and/or N2 tumors) treated with 3 months of adjuvant chemotherapy
only [29]. Various strategies to intensify adjuvant chemotherapy are now being prospec-
tively evaluated in ongoing clinical trials (Table 2) underscored by the concept that longer
periods of adjuvant therapy or intensified combination chemotherapy are likely needed in
those with ctDNA-positivity to clear MRD and decrease the risk of relapse. The majority of
these ctDNA trials in resected, stage I-III colon cancer incorporate DFS as their primary
endpoint with OS as secondary endpoints, which will be pivotal in answering the major
looming question of whether such escalation of adjuvant therapy will ultimately impact OS.
It has been debated that the limitations of ctDNA-guided management including the earlier
treatment for recurrent, metastatic disease ultimately lies in the lack of data supporting its
ability to modify the overall disease trajectory in CRC [149].

Barring a significant compromise in survival outcomes, one could argue that de-
escalation adjuvant strategies in resected, localized CRC offers an equally promising
scenario to change routine practice. With grade >3 toxicity rates approaching 60% to
6-month adjuvant oxaliplatin-based chemotherapies [3,5,6], the ability to de-escalate ad-
juvant therapy to 3 months or even to no adjuvant therapy in instances of postoperative
ctDNA-negativity could be clinically meaningful and improve the quality of life for many
patients by sparing them from debilitating toxicities such as peripheral neuropathy. An
ongoing, large prospective registry will be seeking to evaluate survival in stage II-III CRC
patients treated with adjuvant versus no adjuvant chemotherapy in patients with ctDNA
negative test results to provide further evidence for such approaches (NCT04264702).
Importantly, several prospective, randomized trials are ongoing to investigate the non-
inferiority of de-escalation of adjuvant chemotherapy in ctDNA-negative cases compared
to SOC (Table 2).

In the neoadjuvant treatment of LARC, ctDNA may play a role in prognosticating
survival prior to neoadjuvant chemoradiation with mixed findings regarding its ability to
predict for treatment response including pCR following completion of neoadjuvant therapy
(Table 3). It should be noted that evidence is still building in this population with many
studies limited by small sample sizes with only one recent study including a true TNT
LARC cohort. However, one common theme appears to be that post-chemoradiation ctDNA
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status is a critical ctDNA assessment timepoint and most strongly predictive of RFS and
various tumor response parameters including tumor regression grade and pCR (Table 3).
Several groups have noted that ctDNA following neoadjuvant therapy in LARC cannot
differentiate between minimal and no residual disease, and instead ctDNA more specifically
reflects the presence of systemic disease rather than local minimal disease [51,58]. In
this regard, future investigations into the role of ctDNA in the treatment paradigm of
LARC may focus on identifying those who may be adequately treated with neoadjuvant
chemoradiation and TME alone vs. those who would benefit from intensified TNT upfront
based on baseline or pretreatment ctDNA positivity [55]. Additionally, in those undergoing
TNT with chemoradiation first, a post-chemoradiation ctDNA assessment could help guide
who should receive chemotherapy rather than move straight to surgery. c¢tDNA could
also help inform who may be able to proceed to surgery altogether in LARC, while in the
postoperative space, longitudinal ctDNA assessments could help identify those at risk
of recurrence and needing intensification of adjuvant therapy (similar to the scenario of
resected, stage I-III colon cancer). Given the limited data in LARC thus far, larger and
ideally prospective studies incorporating TNT strategies are needed to tease out the utility
for ctDNA in predicting tumor response, assisting the selection of candidates for WW, and
identifying patients on WW with tumor regrowth.

In metastatic settings for CRC, growing evidence suggests that ctDNA positivity
pre- and post-surgery (e.g., metastasectomy for CRLMs or CRS) predicts for high-risk
of recurrence. ctDNA could thus inform selection of ideal candidates for surgery as
well those who could benefit from further systemic therapy either in the neoadjuvant or
adjuvant setting. Postoperative ctDNA positivity could also warrant intensification of
adjuvant therapy or treatment with novel systemic agents, while triggering more frequent
surveillance. In those with unresectable mCRC, ctDNA assessments could guide early
sequencing to more effective systemic therapies. Indeed, this is the direction where several
prospective clinical trials are going in further evaluating the role of ctDNA in mCRC
(Table 4). For example, the Rapid 1 Trial (NCT04786600) will evaluate the impact of
sequencing of FDA-approved systemic therapies after first-line therapy based on ctDNA
results with a primary endpoint of OS.

5.2. Tumor-Informed vs. Tumor-Uninformed ctDNA Assays

Invariably, with increasing clinical usage of plasma ctDNA assays the debate on
whether tumor-informed or tumor-uninformed ctDNA assays represent the optimal ctDNA
testing approach will likely continue. Several tumor-informed ctDNA assays have been
developed with limits of detection that are below 0.1% MAF [150]. Accordingly, the
longitudinal sensitivity and specificity for recurrence approach 88% and 98%, respectively,
for tumor-informed ctDNA assays. These are well above those for CEA (69% and 64%,
respectively) in the same cohort [24]. The longitudinal sensitivity and specificity for
recurrence approach 69% and 91%, respectively, for a recent tumor-uninformed plasma
ctDNA panel [30]. The differences in analytical sensitivity between these assays are
likely due to differences inherent to the tumor-informed NGS detection of top-ranked
hits that are then deployed for plasma ctDNA detection. However, one can argue that
the invasiveness and healthcare costs of biopsies to ascertain tumor tissue or the need for
sufficient tumor tissue to be available to tailor tumor-informed ctDNA assays is countered
by the noninvasiveness and convenience of tumor-agnostic plasma ctDNA assays, which
do not require existing tumor tissues. Additionally, the tumor-informed assays tend to
require longer and more labor-intensive processing, whereas tumor-agnostic assays offer a
rapid turnaround time and are less costly, given their independence from tumor-to-plasma
processing. Tumor-agnostic methylation ctDNA assays have been shown to be 83-92%
concordant with NGS-based ctDNA assays, although the performance of methylation
assays is likely to be improved with the development of larger panels of methylation
markers [27,29]. For now, decisions on which ctDNA platform to use is likely to be
supported by level of evidence from ongoing randomized clinical trials and quality of
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prospective, validation studies using either approach, provider preference, ease of access

and familiarity of healthcare teams in requesting a specific assay, cost effectiveness as well
as financial assistance to patients, and availability of tumor tissue, among other things.

Table 4. Select prospective and interventional clinical trials of ctDNA in advanced or metastatic CRC.

Study Setting, Planned n Design Primary Endpoint
P?SS&IS’I{II?IHS_ZI?dge 4 months after SOC therapy (surgery,
NCT03832569 chemotherapy, radiation as appropriate), ctDNA clearance at 12 mos
tumors, n = 10 adjuvant pembrolizumab for ctDNA+
including CRC J p
Stage III-IV CRC Randomization to Arm I: regorafenib or Early change in ctDNA as
TACT-D (NCT03844620) pretreated >2lines,  TAS-102 with ctDNA testing or Arm II: predictor of radiographic
n =100 regorafenib or TAS-102 as per SOC progression, TRAEs
6-12 mos after radical surgery for CRC,
randomized to diagnostic laparoscopy if Peritoneal metastasis free
NCT04752930 Stage IV, n = 138 2 consecutive ctDNA+ tests within 1 mo survival
of enrollment with CRS + HIPEC for PCI
< 20 or SOC surveillance
Cohort D (ctDNA+) after resection of all
Phase Ib/II, stage known liver metastases, single-arm
NCT03436563 IV,n=74 M7824 immunotherapy for 6 doses (no CtDNA clearance
MSI-H)
After radical treatment for metastatic
spread (resection, radiofrequency
ablation, stereotactic body radiation
therapy, or other experimental local
Phase II, stage IV, treatment options), randomized (1:1) to
OPTIMISE (NCT04680260) 1 = 350 ACT per SOC or ctDNA-informed 2-year recurrence free rate
approach with escalation to FOLFOXIRI
4 mos then 5-FU 2 mos (ctDNA+) or
de-escalation per clinical discretion
(ctDNA-)
After first-line systemic therapy,
randomized to ctDNA-informed arm
where sequencing of FDA-approved
Rapid 1 Trial (NCT04786600) PhasenII_, s7t§ gelV, drugs based on ctDNA results and /or oS

imaging or SOC arm where sequencing
of FDA-approved drugs based on
standard imaging

CRC, colorectal cancer; ctDNA, circulating tumor DNA; MSI-H, microsatellite instability-high; SOC, standard-of-care; TRAEs, treatment-
related adverse events; CRS, cytoreductive surgery; HIPEC, hyperthermic intraperitoneal chemotherapy; PCI, peritoneal cancer index; ACT,
adjuvant chemotherapy; FOLFOXIRI, 5-FU, oxaliplatin, and irinotecan; OS, overall survival; FDA, U.S. Food and Drug Administration.

5.3. Improving Risk Stratification through ctDNA

CEA represents the only conventional and recognized blood-based test for monitoring
recurrence and response to systemic therapy in CRC. The superiority of plasma ctDNA
assays over CEA are quite evident, with even more applicability in the up to 34% of CEA
non-producers in patients with CRC [151]. Furthermore, several groups have shown that
the prognostic potential of ctDNA is independent of known clinicopathologic risk factors.
ctDNA also has a greater impact on RFS than any individual clinicopathological risk factor
or any combination of factors known to predict for recurrence in CRC [20,21,24,51]. The
addition of postoperative ctDNA to conventional variables including tumor differentiation,
T stage, N stage, lymphovascular invasion, and post-surgery CEA has been shown to
significantly improve the accuracy of recurrence prediction in resected, non-metastatic
CRC [150]. Therefore, it could be proposed that ctDNA status represents an independent



Cancers 2021, 13, 4547

16 of 25

risk factor for recurrence from TNM staging that could be readily implemented with
standard clinical covariates to improve CRC risk stratification.

There may be complementarity between methylation and NGS-based ctDNA assays
to further improve upon the sensitivity of ctDNA assays as well. This was recently demon-
strated in a prospective CRC cohort whereby incorporating methylation or epigenomic
signatures increased the sensitivity of the ctDNA assay by 25-36% over targeted genomic
alterations alone [30]. Specifically, across all ctDNA-positive samples, 28% and 25% of
samples were individually positive by methylation and NGS-based testing, respectively,
while 47% were positive by both epigenomic and genomic measures.

5.4. Timing, Clinical Scenarios That Could Impact ctDNA Shedding, and Other Considerations

Although it has been well described that ctDNA analysis in plasma samples mini-
mizes the dilution of tumor-derived DNA and optimizes the sensitivity of ctDNA analysis
over serum, a question remains as to the optimal timing of the blood collection for ctDNA
assessment [152,153]. It has been shown that preoperative ctDNA positivity is predictive
of recurrence risk compared to preoperative ctDNA negativity in CRC patients with both
localized and metastatic disease [26,154,155]. However, most localized CRC cases are
preoperative ctDNA positive (up to 90%) [27], and the constellation of evidence supports
that postoperative ctDNA in resected, stage I-III CRC is most predictive of RFS (Table 1).
Therefore, the most likely critical timepoint of ctDNA assessment in this setting would
be the postoperative collection. In mCRC, ctDNA status following metastasectomy or
radical surgery is also recognized as a pivotal timepoint of ctDNA assessment and is the
focus of ongoing clinical trials exploring intensified systemic therapies (Table 4). In the
neoadjuvant treatment of LARC, chemoradiation induces a strong reduction and even
complete elimination of ctDNA by the end of the first week, while ctDNA levels were
reduced regardless of eventual outcome [52]. A better understanding of the temporal dy-
namics of ctDNA release and clearance may be essential for the long-awaited applicability
of ctDNA to predict for treatment response in the neoadjuvant treatment of LARC. Here,
limited but growing evidence suggests that post-neoadjuvant therapy (including TNT)
and postoperative ctDNA status remains the best predictor of clinical outcomes in LARC
(Table 3).

Surgical trauma can induce an elevation in ctDNA levels that can persist up to
4 weeks [156]. Therefore, a postoperative blood draw for ctDNA about 4 weeks after
surgery has been recommended along with a second repeat collection shortly after to
mitigate the impact of trauma-induced ¢cfDNA on ctDNA detection, especially for patients
initially ctDNA negative preoperatively. Indeed, week 4 postoperative appears to be the
recognized ideal timepoint of blood collection for stage I-III CRC, with several ongoing
randomized clinical trials designed to collect blood for ctDNA status at weeks 4-6 postoper-
atively (Table 2). Stent placements, for example in those with malignant bowel obstructions,
have also shown to increase plasma levels of ctDNA and would also need to be considered
in the CRC population when performing ctDNA assessments [157]. In short, one can
envision that preoperative ctDNA would be important to confirm the ctDNA status, but
the postoperative ctDNA assessment would be most informative for assessment of MRD,
prediction of recurrence risk, and tailoring of postoperative interventions in non-metastatic
CRC.

Lastly, in advanced-stage tumors (including CRC), the amount of ctDNA is dependent
on tumor type and dynamics of tumor size, but variables including physical exercise, time
of the day, and recent meal do not significantly influence ctDNA content [158]. In mCRC
patients on systemic therapy, it should be noted that ctDNA dynamics can be rapid with
rapid decreases in MAFs as early as the first 48 h of FOLFOX infusion with potential
correlation between ctDNA MAFs that remain low and tumor response (stable disease
or partial response) [133]. ctDNA shedding and therefore detection in plasma has also
been shown to be affected by site of metastases in mCRC, with the liver being among
the sites of highest ctDNA shedding, while higher ctDNA content increases with CRC
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tumor stage [18,159]. These are clinical variables that would need to be considered in our
interpretation of ctDNA results during this period of rapid clinical development.

6. Conclusions

Investigations into the clinical applicability of plasma ctDNA assays are rapidly
underway in nearly all stages of CRC. In resected, stage I-IIl CRC, ctDNA assessments
afford the ability to guide surveillance while identifying potential candidates for escalated
or de-escalated adjuvant therapy strategies. In LARC, ctDNA assessments may predict for
treatment responses to neoadjuvant therapy with growing interest into post-TNT tumor
responses. In advanced disease, prediction of response to systemic and surgical therapies
remains an active area of study for incorporation of ctDNA assays into the mCRC treatment
paradigm. However, before plasma ctDNA assays can be implemented into routine clinical
practice, a critical evaluation of their potential to meaningfully impact clinical outcomes in
patients with CRC is warranted. Other clinical considerations including timing of ctDNA
assessments, performance of tumor-informed vs. tumor-uninformed assays, and benefits
beyond survival including quality of life and the opportunity to de-escalate chemotherapy
will all need to be taken into context when integrating ctDNA into the clinic. Lastly, results
from ongoing, prospective, and randomized controlled trials of ctDNA in CRC are eagerly
anticipated and will hopefully shed light on these important unanswered questions.
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