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Brain-machine interfaces (BMIs) seek to connect brains with machines or computers

directly, for application in areas such as prosthesis control. For this application, the

accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy

by designing a better encoding model of primary motor cortical activity during hand

movements and combining this with decoder engineering refinements, resulting in a

new unscented Kalman filter based decoder, UKF2, which improves upon our previous

unscented Kalman filter decoder, UKF1. The new encoding model includes novel

accelerationmagnitude, position-velocity interaction, and target-cursor-distance features

(the decoder does not require target position as input, it is decoded). We add a novel

probabilistic velocity threshold to better determine the user’s intent to move. We combine

these improvements with several other refinements suggested by others in the field. Data

from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of

hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833)

and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2

could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic

variables and past spiking, better than the encoding models of these two decoders

(UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey

controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task

completion (mean 1.56 s vs. 2.05 s) and higher Fitts’s Law bit rate (mean 0.738 bit/s

vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder

engineering refinements of the UKF2 improve decoding performance. We believe they

can be used to enhance other decoders as well.

Keywords: brain-machine interface, neural decoding, encoding model, unscented Kalman filter, brain-computer

interface, neuroprosthetic

INTRODUCTION

Brain-machine interfaces (BMIs) have the potential to improve the well-being of people with
paralysis, locked-in syndrome, and other ailments, as well as change how humans interact
with machines and each other. While there has been substantial progress (Baranauskas, 2014;
Nuyujukian et al., 2015) in the accuracy or communication bandwidth of BMI, there is still
room for improvement. In our previous work with the unscented Kalman filter based decoder
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(Li et al., 2009), which we refer to as UKF1, we proposed a non-
linear model of neural tuning which modeled the relationship
between spike counts and the position and velocity of a
cursor. Since that study, much progress has been made in
decoder engineering and motor cortical encoding models. We
have collected several novel modeling and decoder engineering
refinements, as well as incorporated work from others, to form
an improved unscented Kalman filter based decoder, which we
call UKF2.

The refinements to the encoding model can be summarized
as adding neural tuning to hand acceleration, hand position
and velocity in an interactive term, and target position and
modeling neuron autocorrelation and cross-neuron correlation
using spiking history. We include target position as a decoded
variable, i.e., the UKF2 does not require knowledge of the
true target position to operate. The refinements to decoder
engineering are the use of a combination of position and velocity
estimates to control the cursor, probabilistically thresholding
velocity to determine when the user wishes to remain still,
and using estimates of future intended movement to drive the
cursor. We do not modify the unscented Kalman filter algorithm
itself; rather, our improvements are in the design of the filter’s
observation model and post-processing of filter outputs.

Using data from two Rhesus monkeys, we compare UKF2
to UKF1, as well as the popular position-velocity Kalman filter
in terms of offline reconstructions of hand-controlled cursor
movement, encoding model predictive power, and closed-loop
neural control of cursor. We also examine the contributions
of each modeling refinement. Our results show that the UKF2
reconstructs hand-controlled cursor movement more accurately
than the position-velocity Kalman filter and the UKF1. Our
analysis suggest that the encoding model of the UKF2 encodes
neural activity better, as evidenced by better predictions of firing
rate given kinematic and past spiking information. Our analysis
of the modeling refinements indicates that spiking history
contributed themost to encoding accuracy, but hand acceleration
and target position contributed most to decoding accuracy.
Finally, experiments in which monkeys used the decoders in
closed-loop neural control of the cursor showed that, using the
UKF2, monkeys could complete a center-out task significantly
faster and with higher Fitts’s Law bit rate than using the UKF1,
and UKF2 performance was comparable to the FIT Kalman filter
(Fan et al., 2014).

Our results indicate that the enhancements of the UKF2
improved the functionality of the decoder. Some of the
enhancements, such as modeling of hand acceleration, target
position, as well as the probabilistic thresholding of velocity,
can be readily used by the Kalman filter and similar decoding
algorithms.

MATERIALS AND METHODS

Surgical Procedures
All surgical procedures were in compliance with the U.S.
National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the Institutional
Animal Care and Use Committee of Beijing Normal University.

Two adult male (6 years, 11 kg; 4 years, 8 kg) Rhesus monkeys
(Macaca mulatta) were implanted with silicon-based electrode
arrays (Utah array, Blackrock Microsystems) in the left primary
motor cortex under sterile conditions. We followed standard
Utah array implantation procedures. In each animal, a Utah
array was implanted approximately 4mm anterior to the
central sulcus, at approximately 15mm lateral from the midline
(Figure 1A), targeting arm and hand areas. Photos from the
implantation surgeries for monkey B and monkey M are shown
in Figures 1B,C, respectively.

Electrode Array
We used 96-channel Utah arrays (Blackrock Microsystems) with
1.0mm long electrode shanks (monkey B) or 1.5mm shanks
(monkey M). The arrays were arranged in a 10 × 10 grid
pattern with inter-electrode separation of 400 um. The shank
material was silicon with platinum coating on the electrode tip
and polyimide insulation (Jones et al., 1992). Electrode diameter
tapered from 80 um to a fine point (Jones et al., 1992).

Signal Acquisition and Processing
Signals were recorded from the Utah array using a Plexon
Omniplex recording system in an experiment room shielded
from electromagnetic interference. Signals were amplified (up
to 8000x), digitized (at 16 bit, 40 kHz), and processed in the
Omniplex system. A desktop personal computer (Dell Precision
T3500 with an Intel Xeon W3565 3.2GHz processor and 8 GB
RAM) received the processed signals and executed the Plexon
PlexControl software, as well as our experimental control and
decoding software.

Spikes were detected and sorted in real time using the
Omniplex hardware. The spike detection threshold and sorting
parameters were set by visual inspection by the experimenter
using Plexon’s software. Both well-isolated single units and
multiunits were used for decoding and analysis, and subsequently
referred to as units without distinction.

We aggressively spike sorted, that is, we preferred to
differentiate waveforms into a larger number of units when
the choice was not obvious. We often sorted several multiunits
per channel. Our reasoning was that if we mistakenly split the
waveforms from one neuron into two units, the model fitting
should not be biased (though noise due to variance would
increase during decoding). If we put two neurons in the same
unit, barring a specially designed decoding algorithm such as
the switching Kalman filter (Wu et al., 2004), we would lose
information. We illustrate the sorted spike waveforms from
all channels of monkey B and monkey M in Figures 1D,E,
respectively.

After spike sorting, spikes were counted in 50 ms duration,
non-overlapping bins to estimate the instantaneous firing rate
of each unit. All decoders and parameter fitting used this spike
count for input.

Experiment Control and Kinematics
Measurement
A custom brain-machine interface software suite (BMI3,
Nicolelis Lab, Duke University) performed experiment control,
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FIGURE 1 | Array implant locations and example recorded signals.

(A) Implant location. (B,C) Photos taken during surgeries. (D,E) Sample

waveforms. Each sub-panel shows waveforms from one channel, drawn as

mean ± one standard deviation.

model fitting, and real time decoding. This software suite
communicated with the Plexon software via Plexon’s C language
application program interface.

An analog 3-axis potentiometer joystick (CH-400R-P3,
Hangzhou Chuang Hong Electric Co.) was used to capture hand
motion data. Only the x and y axes were used, and the rotation

FIGURE 2 | Experimental setup and behavioral tasks. (A) The monkey sat

in a primate chair 55 cm before a computer screen and grasped a 6.5 cm tall

joystick with 4 cm maximum deflection in its right hand. (B) Center-out task.

The monkey alternatively moved the cursor to center targets and peripheral

targets, located at random angles and fixed distance from center. (C) Pursuit

task with Lissajous curve: the monkey kept the cursor within a target which

moved continuously following a Lissajous curve. (D) Pursuit task with

point-to-point trajectory: the monkey kept the cursor within a target which

moved continuously between randomly selected points on the screen.

axis was ignored in these experiments. The length of the joystick,
including handle, was 6.5 cm, and the maximum deflection of the
joystick was approximately 4 cm (Figure 2A). The joystick was
self-centered by a weak spring. This joystick was smaller than that
used in our previous work (Li et al., 2009); we observed that the
monkey primarily moved its elbow and shoulder joints to control
the joystick.

The joystick was connected to a PCI-DAS1002 analog-to-
digital recording card (Measurement Computing) mounted in
a separate desktop personal computer (Dell Precision T3500).
Custom software read the joystick measurements and sent them
to BMI3 using a gigabit Ethernet local area network.
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The position of the joystick was mapped to the position of the
cursor on the screen in a one-to-one, piecewise-linear manner,
with forward (anterior) joystick positions mapped to upper
screen locations and backward (posterior) joystick positions
mapped to lower screen locations. Joystick movements and on-
screen cursor movements had a scaling ratio of approximately
1:4. Joystick measurements were recorded at 100 Hz. To match
the 50 ms bin size of spike counts, the average of the five joystick
position measurements within each bin was used.

Behavioral Tasks
During experiments, the monkey sat in a primate chair and
a flat panel computer monitor was placed 55 cm in front of
it (Figure 2A). Prior to experiments, all monkeys were trained
on two behavioral tasks: center-out and pursuit. In the center-
out task (Figure 2B), monkeys had to move a circular cursor
(logically 0 cm diameter) into a circular target (5 cm diameter)
which alternatively appeared in the screen center and the
periphery. The peripheral locations were equidistant (8–10 cm)
from the screen center at a random angle. Hold time was set
to 500ms. In the pursuit task, monkeys had to keep the cursor
within a continuously moving target (6 cm diameter). The target
moved according to a Lissajous curve (Figure 2C) or a smoothed
point-to-point trajectory (Figure 2D). The center-out task was
used for offline and closed-loop decoding. The pursuit task was
only used for offline decoding. Details of the tasks can be found
in the Supplementary Materials.

Algorithmic Overview
Our decoding method is based on the n-th order unscented
Kalman filter decoder (Li et al., 2009), but with numerous
enhancements, some novel and some based on prior work. The
enhancements fall into two broad categories: those that modify
the neural encoding model and those that modify the control
mechanism during closed-loop neural control. Encoding model
refinements help both offline reconstructions and closed-loop
neural control, while control mechanism refinements are only
applicable to closed-loop neural control.

In the neural encoding model category are four
enhancements. (1) We use the Cartesian coordinates of
hand acceleration and a novel acceleration magnitude. (2) We
include a novel multiplicative hand position and hand velocity
interaction term in the encoding model. (3) We include the
target position and a novel target-cursor distance term in the
encoding model. (4) We include the recent spiking history (i.e.,
spike count in the previous time bin) of the entire recorded
population in the encoding model.

For the control mechanism, we have added three ideas: (1) we
use a mixture of decoded position and decoded velocity to derive
the new cursor position (Homer M. et al., 2013). (2) We use a
novel probabilistic threshold for velocity, which detects when the
user is trying to move in a more principled way than a simple
threshold on velocity. (3) We use predicted future kinematics to
drive the cursor, which is intended to improve the responsiveness
of the decoder.

These refinements are specified below and discussed in the
discussion section. Table S1 in the Supplementary Materials

provides an overview of which refinements are used during
offline reconstructions and closed-loop decoding.

State Variables and Neural Tuning Model
The filter’s state variables are the variables to be decoded, but
can also include other variables which may improve the accuracy
of the neural encoding model. In the standard position-velocity
Kalman filter, the desired position and velocity in the x and y
axis are the state variables (for a 2D task). In the UKF1, the
state has multiple taps of position and velocity. That is, at time
t (discrete index which counts bins), the UKF1’s state variables
are the position and velocity at time t, t + 1, t + 2, t + 3, t +
4, t + 5, t − 1, t − 2, t − 3, and t − 4, for a total of 10 taps.
These taps include estimates of “future” values of the kinematics
as well as “past” values, relative to the current time t. By including
future taps and past taps, the UKF1 is able to model neural tuning
at multiple time offsets simultaneously. Since the task is two-
dimensional, the number of state variables is 2 (dimensions) ×
2 (position, velocity)× 10 (taps)= 40.

In the UKF2 decoder, hand acceleration and target position
are added to the state variables. The target position is a decoded
variable and not required as input to the decoder. The number
of taps is reduced to five. The number of state variables is thus 2
(dimensions) × 4 (cursor position, velocity, acceleration; target
position)× 5 (taps)= 40.

The neural encodingmodel or tuningmodel is the observation
model of the (unscented) Kalman filter when it is used as a
decoder. It is a generative model that predicts the binned spike
count (instantaneous firing rate) given the state variables’ values.
The neural encoding model works in one direction, while the
decoder, which wraps around it, works in the other direction by
“inverting” the encoding model. To decode a variable, it must be
present as a feature in the encoding model and as a state variable
in the Kalman filter; however, not all encoding model features are
decoded by the decoder (e.g., spiking history), and not all state
variables are output by the decoder to control the cursor. The
encoding model of the position-velocity Kalman filter is:

frPVKalman
i,t ≈ c · pxt + c · pyt + c · vxt + c · vyt , (1)

where fri,t is the (mean subtracted) firing rate of unit i at time t,
every instance of c is a different coefficient fitted from training
data, pxt and pyt are the x-axis and y-axis positions at time t,
respectively, and vxt and vyt are the x-axis and y-axis velocities
at time t, respectively.

In the UKF1, the encoding model is:

frUKF1i,t ≈ position (t + 5) + velocity (t + 5) + position (t + 4)

+velocity (t + 4) + · · · + position (t − 4)

+velocity (t − 4) . (2)

For clarity, we have broken down the model to contributions
from different kinematic features:

position
(

k
)

= c · pxk + c · pyk + c
√

px2
k
+ py2

k
, (3)

velocity
(

k
)

= c · vxk + c · vyk + c
√

vx2
k
+ vy2

k
. (4)
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Again, to reduce notational clutter, every instance of c is a
different coefficient (total 60).

Combining the model of UKF1 and the above outlined
encoding model enhancements, and reducing the number of taps
to five, we obtain the encoding model of the UKF2:

frUKF2i,t ≈ position (t + 2) + velocity (t + 2) + acceleration (t + 2)

+ interaction (t + 2) + target (t + 2) + . . .

+ position (t−2) + velocity (t−2) + acceleration (t − 2)

+ interaction (t − 2) + target (t − 2) + spiking (t − 1) ,

(5)

acceleration
(

k
)

= c · axk + c · ayk + c
√

ax2
k
+ ay2

k
, (6)

interaction
(

k
)

= c ·
(

pxk · vxk
)

+ c · (pyk · vyk), (7)

target
(

k
)

= c · txk + c · tyk

+ c

√

(

txk − pxk
)2

+
(

tyk − pyk
)2
, (8)

spiking
(

k
)

= c · fractual1,k + c · fractual2,k +. . .+ c · fractualn,k ,(9)

where axt and ayt are the x-axis and y-axis hand accelerations
at time t, respectively, txt and tyt are the x-axis and y-axis
target positions at time t, respectively, n is the number of units,
and as before every instance of c is a different coefficient (total
70 + n). Note that our use of target position in the encoding
model includes a target-to-cursor distance term. The five taps
of kinematic features are followed by spiking history terms for
the entire population of n units [in spiking(t − 1)]. This spiking
history is the spike count in the previous bin for the entire
population.

Mixing Position and Velocity Outputs
Now we describe the first of the control mechanism refinements.
These refinements operate on the output of the unscented
Kalman filter. The outputs, or “decoded” variables, are the means
of the state variables of the unscented Kalman filter after it has
performed its filtering operations. These decoded variables are
processed further by the methods described below to get the final
on-screen cursor position.

Instead of using only the decoded position to control the
cursor as in UKF1, for the UKF2, both the decoded velocity and
the decoded position are used to update the cursor during closed-
loop operation. The two inputs aremixed together using amixing
coefficient (Homer M. et al., 2013):

xt = xt − 1 + cm · dt · vt + (1− cm) dt
‖vt‖

‖et‖
et , (10)

et = pt − xt−1, (11)

where xt is the vector of on-screen cursor position at time t, cm
is the mixing coefficient (0.5), dt is the delta time between time
steps (50ms), vt is the decoded velocity vector at time t [i.e.,
vt = (vxt + 2, vyt + 2), the +2 is due to use of future predictions,
described below], et is an intermediate variable representing the

difference between the decoded position and previous on-screen
cursor location, and pt is the decoded position vector at time t
[i.e., pt = (pxt + 2, pyt + 2)]. One way to interpret these equations
is that the decoded velocity magnitude acts as a gate or limit for
the amount that the decoded position can affect the cursor. We
did not use this feature in offline reconstructions and analysis.
Note this control mechanism refinement is orthogonal to the
position-velocity interaction refinement in the encoding model.

Movement Thresholding
We add a probability-based mechanism to help the user stop
the cursor during closed-loop control (only) which applies a
threshold on the decoded velocity. Since the Kalman filter
provides a covariance estimate for the velocity state variable, we
can perform a check using the decoded mean and covariance
values that allows us to place a threshold in terms of false positive
rate. Since the distribution of the state variables is assumed to be
multivariate normal, the x-axis and y-axis velocity values together
form a vector that has a two-dimensional multivariate normal
distribution. Given the mean vector (v) and covariance matrix
(Cv) of this distribution, we can compute the statistic:

X = vTC−1
v v, X ∼ X

2 (2) (12)

X has a chi-squared distribution with 2 degrees of freedom.
We can consult the cumulative distribution function of the chi-
squared distribution to test if the velocity is significantly different
from zero with a given α-value.

During decoding, the decoded velocity outputted by the UKF2
is tested using this method. If the null hypothesis is rejected,
i.e., the user is deemed to want to move the cursor, unscented
Kalman filtering proceeds as normal and the decoded position
and velocity are mixed as described in the previous section.
Otherwise, the cursor is not moved (skipping mixing of position
and velocity) and in the next iteration, instead of adding the
velocity to the position in the execution of the transition model,
we do not modify the position. Note that this procedure does
not set the velocity variable in the state to zero. If we were
to do that, accelerating from zero velocity might be difficult: if
the velocity increases from zero to a small value, but does not
pass the threshold, it is then set to zero again. By not editing
the velocity in the state, we allow it to build up over time to
exceed the probabilistic threshold. In our experience, a p-value
of around 0.3 worked well, and we used values in the range
0.1–0.5 in closed-loop experiments, varying with session. We
did not use this enhancement in offline reconstructions and
analysis.

Use of Future Predictions
During closed-loop neural control, we used filter predictions
of future intentions to drive the cursor for the UKF2. The
UKF1 included multiple taps in its state. This allowed the
filter’s observationmodel to capture tuning relationships between
kinematic variables and neural firing rates at multiple time offsets
simultaneously. A concrete example is that the x-axis velocity at
time bins t − 4, t − 3... t + 5 are all included in the function
that models the spike count at time bin t. However, for the UKF1,
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the position in the filter state corresponding to time t is used to
control the cursor when the filter is processing neural activity at
time t, i.e., there is no temporal offset.

We keep five taps of kinematic variables in the state of the
UKF2, t − 2, t − 1, t, t + 1, t + 2, where t is the time of the
bin of neural activity the filter is currently processing. We use
the estimated kinematics at the t + 2 tap to control the cursor
during closed-loop neural control of the cursor. With our bin
size of 50ms, this amounts to a temporal offset of 100ms. This
offset is in the causal direction, i.e., compatible with the notion
that neural activity encodes formovement occurring 100ms later.
For offline reconstructions and analysis, the UKF2 used the zero
offset temporal tap (t), otherwise we would introduce error due
to temporal misalignment.

Decoder Comparison
We compared the improved unscented Kalman filter based
decoder (UKF2) with the previously published unscented
Kalman filter based decoder (UKF1). The settings for UKF1 differ
from Li et al. (2009) in several ways. First, the bin size was 50ms
instead of 100ms, so as to be easily comparable to UKF2 using the
same training data. Second, in offline reconstructions the UKF1
transition model used one time tap of kinematics to estimate the
future-most tap of kinematics, whereas, in our previous work, the
UKF1 estimate was based on all (10) taps in the state. This change
improved filter stability: when all 10 taps are used, forming a
10th order autoregressive model, the fitted transition model was
more likely to cause filter instability. In closed-loop experiments,
the transition model was pre-designed around physical laws of
motion, as described in the Model Fitting section. This contrasts
to our previous work, where the transition model was always fit
to data. We made this change so that all three decoders would
use transition models based on physical laws of motion, since
transition model design is not the focus of this study.

We also compare with a Kalman filter which includes
position and velocity in its state space (position-velocity Kalman
filter). During closed-loop decoding, this Kalman filter used two
refinements developed by other researchers: modeling position as
a feedback signal (Gilja et al., 2012) and using intention estimates
to fit observation model parameters (Gilja et al., 2012; Fan et al.,
2014), which makes it equivalent to the FIT Kalman filter (Fan
et al., 2014). We do not use the re-training paradigm of the
ReFIT Kalman filter (Gilja et al., 2012), because we needed to
keep the training data for all of the tested decoders the same
to achieve a fair comparison. Moreover, adding a re-training
phase to the experiment protocol would allow more time to
practice using the Kalman filter decoder, and inject additional
variation in animal behavior. Since Fan et al. (2014) reported
that intention estimation applied to initial training data had
comparable benefits as retraining with intention estimation, we
opted to use intention estimation on initial training data in our
experimental protocol. See the Supplementary Materials for the
implementation of the two refinements.

A brief description of the Kalman and unscented Kalman
filters and a table summarizing the compared decoders can be
found in the Supplementary Materials.

Model Fitting
We fitted the encoding models of all decoders using the
same training portion of each session. This data consisted of
population binned spike counts and simultaneously recorded
cursor positions (equivalent to transformed hand positions),
velocities, accelerations, and target positions, if applicable. The
encoding models included terms which were non-linear in the
state variables, but the coefficients for them can be fitted in a
linear regression since the non-linear terms can be pre-calculated
as features. We used Tikhonov regularized linear regression
(ridge regression) to fit the coefficients of the models, with
automatic finding of the best ridge parameter. The parameter
fitting procedure is very similar to the one in Li et al. (2009),
except for the details of the ridge parameter selection scheme
(see Supplementary Materials). We used this parameter fitting
procedure to fit the coefficients of the encoding models for all
analysis.

In offline reconstructions, the transition model of all three
decoders were fitted to training data in the same way as Li
et al. (2009), except that we used the newer scheme described
in the Supplementary Materials for choosing the ridge regression
parameter. Note that this means the target position is decoded,
but otherwise does not directly affect the other variables.

In closed-loop neural control, the transition models of all
three decoders were set to be similar to the equations describing
physical laws. For the Kalman filter:

pt + 1 = pt + vt · dt, (13)

vt + 1 = cv · vt + ǫv, (14)

where pt and vt are the position and velocity vectors at time t,
respectively, cv is the coefficient representing friction (0.85), dt is
delta time between filter iterations, i.e., the bin width (50ms), and
ǫv is the random noise on the velocity (details below for fitting
procedure). The position lacks a noise term since we used the
position-as-feedback scheme. The friction term gives the cursor
a virtual mass, which makes it easier to control.

The transition model for the UKF1 is slightly different since it
has multiple taps in the state space. We set the leading tap similar
to above:

pt + 6 = pt + 5 + vt + 5 · dt+ ǫp, (15)

vt + 6 = cv · vt + 5 + ǫv. (16)

Note that position also has a random noise term. For the other
taps, values are propagated through time without change.

The UKF2 model includes acceleration, thus we change our
equation for velocity and include an equation for acceleration.
Acceleration is constant except for a decay coefficient and
random noise. Furthermore, target position is included as a
constant valuemodified by randomnoise. Target position attracts
the cursor by affecting acceleration during closed loop control.
The UKF2 transition model for the leading tap is:

pt + 3 = pt + 2 + vt + 2 · dt+ ǫp, (17)
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vt + 3 = cv · vt + 2 + at + 2 · dt+ ǫv, (18)

at + 3 = ca·at + 2 + cg(gt + 2 − pt + 2)/dt
2
+ ǫa, (19)

gt + 3 = gt + 2 + ǫg, (20)

where at and gt are the vectors of acceleration and target
position at time t, respectively, ca is the coefficient representing
acceleration decay (0.75), and cg is the gain on the attraction
effect of the target position (0.01). We add acceleration decay to
prevent an error in acceleration decoding from affecting decoded
output for an unlimited duration. For the other taps, values
are propagated through time without change. The values of the
constants were picked to be similar to typical values seen when
fitting transition models to training data in our preliminary
analysis. We did this so that the values would be similar to fitted
values, but do not change per closed-loop recording session.

The transition model noise covariance matrices, which
describe the joint distribution of the noise terms (ǫp, ǫv, ǫa, and
ǫg) were fitted under the above specified models. That is, the
above physics-based models were used to predict the variables
(using one time step as the input and having the next time step
be the desired output), and the sample covariance matrix of
the prediction residuals was used as the transition model noise
covariance matrix. Note that, for the FIT Kalman filter, we set
the positional noise’s variance and covariance entries to zero
to achieve the position-as-feedback enhancement of Gilja et al.
(2012).

Experiment Procedure
We first compared the performance of decoders in making offline
reconstructions. For this, we used portions of sessions where the
monkey controlled the cursor with its hand. We reconstructed
the cursor movements with each decoder and measured the
accuracy of the reconstructions vs. the actual cursor movements.
The data was divided into training and testing portions. We
ignored the first 30 s of data to avoid transient problems, used
the subsequent 10min for the training portion, and set aside
the remainder as the testing portion. If the session had less than
12.5min of hand control data, we used 5min of data for training
(the shortest session had 8min).

We measured accuracy of reconstructions by computing the
correlation coefficient (CC) and signal to noise ratio (SNR,
see below for equation). CC or SNR for each Cartesian axis’
position and velocity were computed separately and combined
by averaging. For SNR, the arithmetic mean in decibels was
calculated. We did not use mixing of position and velocity
(Homer M. et al., 2013) or the position-as-feedback scheme
(Gilja et al., 2012) in reconstructions, as those are designed for
closed-loop control.

We compared the encoding accuracy of the UKF2 encoding
model with the encoding model of the UKF1 and the position-
velocity linear model of the Kalman filter decoder. To do this,
we again used portions of sessions where the monkey controlled
the cursor with its hand. Since the number of parameters differs
substantially between models, a comparison of model fit may be
biased toward the more complex model. Therefore, we compared

the ability of the models to predict binned spike counts on
testing data that was not used to fit model parameters. Model
predictions on separate testing data are unbiased toward more
complexmodels, since prediction accuracy reflects generalization
accuracy.

We split the data into training and testing portions using
a two-fold cross-validation procedure. We used the training
portions to fit the parameters of the encoding models. Then
we tested the encoding models by providing kinematics data
(and past spike counts, if applicable) and then predicting spike
counts. We compared the predicted spike counts with the actual
spike counts in the testing portion and calculated accuracy using
the correlation coefficient or the signal-to-noise ratio (SNR).
We repeated this procedure, switching training and testing data,
and averaged results between the two repetitions. For model
predictions, we only used one tap of kinematics for all models,
since our previous work has already shown the advantage of using
multiple taps (Li et al., 2009) and that is not the focus of this
study.

Finally, we compared the ability of monkeys to use the
decoders, in turn, to control a cursor in closed-loop neural
control. All the decoders’ parameters were fitted on the same
initial training data (10min.), collected at the beginning of each
session when the monkey used its hand to control the cursor.
The order of use of the decoders was shuffled across sessions to
average out order effects. In each session (day), each decoder was
used for 10 min, with the first 5 min for familiarization and the
last 5 min used for accuracy calculation. During neural control
of cursor, the monkey continued to manipulate the joystick,
even though it was disconnected (i.e., brain control with hand
movements).

When analyzing the closed-loop performance data, we
calculated fraction of targets acquired, movement time, and Fitts’s
Law bit rate (Gilja et al., 2012). Shorter movement durations
meant the monkey could move and hold the cursor in the target
faster, which reflects better controllability. Since we kept target
sizes and reach distances constant, the Fitts’s Law bit rate was
monotonic with the movement time. For fraction of targets
acquired, we included acquisition of the center target as well
as peripheral targets. We only considered movements from the
center to the periphery for movement time and Fitts’s Law bit
rate. Since the monkey sometimes paused during performance of
the task due to lack of motivation or distraction, failure in the task
may occur due to inactivity. We observed that, when the monkey
was actively participating, the percentage of successful trials was
high (>90%). Thus, to eliminate failures due to inactivity from
the time and rate calculations, which are confounds not related to
decoder performance, we only analyzed the movement time and
Fitts’s Law bit rate of successful center to peripheral trials which
followed successful acquisition of the center target.

The SNR, in decibels, was calculated by:

SNRdB = 10 · log10

(

Vars

MSE

)

, (21)

where Vars is the variance of the desired signal, e.g., recorded
position during reconstructions or measured spike counts during
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encoding model analysis, and MSE is the mean squared error
between the desired signal and decoded value, e.g., reconstructed
kinematics or predicted spike counts. The SNR can be seen as a
normalized, inverted, and log-transformed mean squared error.
Unlike the CC, SNR does not saturate. It also detects scale and
offset errors which CC cannot. We believe it is better than the
mean squared error because it is normalized and thus more
comparable across experimental setups, does not saturate, and
naturally increases with quality.

For statistical analysis, we used two-factor analysis of variance
(decoder× session, or model× unit) with single replication, and
we focus on the decoder and model differences. Post-hocmultiple
comparison testing was conducted with two-tailed paired t-tests
with p-values corrected by the Holm-Bonferroni method. All
testing used a significance level of α = 0.05.

RESULTS

Offline Reconstructions
We compared the ability of the decoders to reconstruct hand-
controlled cursor trajectories. We analyzed 16 sessions from
monkey B, recorded 24–97 days post-implant, and 16 sessions
from monkey M, recorded 17–162 days post-implant. Hand-
controlled portions of these sessions ranged from 8 to 73min
in length, with mean 27.2min. For each session, reconstructions
were performed by using up to 10min to fit parameters of models
and then reconstructing the remainder of the hand-controlled
portion of the session (see Experiment Procedure). The results
are summarized in Table 1 and graphed in Figure 3.

We calculated the SNR of the trajectory reconstructions for
each decoder (Figure 3A). ANOVA found a main effect of
decoder [monkey B: F(2, 15) = 27.03, p = 1.94 × 10−7, monkey
M: F(2, 15) = 42, p = 2.01 × 10−9] and post-hoc testing showed
that all three decoders were significantly different from each other
(monkey B: all corrected p < 0.0024, monkey M: all corrected p
< 0.00007). We also quantified accuracy in terms of correlation
coefficient (CC) (Figure 3B). ANOVA found a main effect of
decoder [monkey B: F(2, 15) = 15.59, p= 2.28× 10−5, monkeyM:
F(2, 15) = 53.86, p = 1.18 × 10−10] and post-hoc testing showed
that all three decoders were significantly different from each other
(monkey B: all corrected p < 0.015, monkey M: all corrected p

< 0.00002). The UKF2 reconstructed most accurately among the
three decoders.

We pooled data from both monkeys and analyzed the
contributions of each of the different encoding model
enhancements used in the UKF2 decoder, in terms of CC
(Figure 3C, white bars). To do this, we added to the UKF1
model each of the model enhancements in turn: acceleration
(+A), position-velocity interactions (+PVI), target position
(+T), which includes the target-to-cursor distance term, and
spiking history of the population (+SH). For the pooled data,
ANOVA found a main effect of decoder [F(6, 31) = 29.32, p
< 10−10] and post-hoc comparisons showed that UKF2 was
significantly more accurate than KF (corrected p < 10−6) and
UKF1 (corrected p = 6 × 10−6) and UKF1 was significantly
more accurate than KF (corrected p = 0.000014). In terms
of feature contributions, UKF1+A was significantly more
accurate than UKF1 alone (corrected p = 0.00006). UKF1+PVI
was significantly less accurate than UKF1 alone (corrected
p = 0.0035). UKF1+T was significantly more accurate than
UKF1 alone (corrected p = 0.00092). UKF1+SH was not
significantly different from UKF1 (corrected p = 0.39). UKF2
was significantly more accurate than UKF1 augmented with PVI
(corrected p = 3 × 10−6) and SH (corrected p = 0.000014).
Significance testing results when using SNR values were similar
[main effect of decoder, F(6, 31) = 33.49, p < 10−10], except that
UKF2 was also significantly better than UKF1+A (corrected p
= 0.0019) and UKF1+T (corrected p = 0.00081). Comparing
the contribution of individual features in terms of CC, UKF1+A
was better than UKF1+PVI (corrected p = 0.000013) and
UKF1+SH (corrected p = 0.0011), and UKF1+T was better
than UKF1+PVI (corrected p = 0.00023) and UKF1+SH
(corrected p = 0.0017). These comparisons indicate acceleration
and target tuning contributed the most to reconstruction
accuracy.

It was concerning that the UKF1+PVI reconstructed less
accurately than UKF1 alone.When we examined behavioral tasks
separately, we found that for the pursuit task (both variants
combined), UKF1+PVI (0.831 ± 0.026, mean CC±SEM) was
nominally higher than UKF1 alone (0.829 ± 0.025), though
the difference was not significant (two-tailed paired t-test,
uncorrected, n = 6, p = 0.103). We think this is due to the more

TABLE 1 | Offline reconstruction accuracy.

Mean ± SEM CC, monkey B CC, monkey M CC, pooled CC, pooled, SNR (dB), SNR (dB), SNR (dB), SNR (dB), pooled,

merged units monkey B monkey M pooled merged units

UKF2 0.873 ± 0.013 0.829 ± 0.013 0.851 ± 0.010 0.836 ± 0.011 6.484 ± 0.409 5.113 ± 0.349 5.799 ± 0.292 5.295 ± 0.266

Kalman 0.850 ± 0.011 0.775 ± 0.009 0.812 ± 0.010 0.786 ± 0.010 5.423 ± 0.320 3.917 ± 0.233 4.670 ± 0.237 4.008 ± 0.200

UKF1 0.859 ± 0.011 0.806 ± 0.012 0.833 ± 0.009 0.806 ± 0.010 5.824 ± 0.349 4.568 ± 0.292 5.196 ± 0.251 4.488 ± 0.226

UKF1+A 0.868 ± 0.010 0.828 ± 0.016 0.848 ± 0.010 0.828 ± 0.010 6.019 ± 0.370 5.009 ± 0.389 5.514 ± 0.279 4.854 ± 0.249

UKF1+PVI 0.852 ± 0.012 0.799 ± 0.012 0.826 ± 0.010 0.798 ± 0.011 5.663 ± 0.352 4.437 ± 0.295 5.050 ± 0.251 4.349 ± 0.230

UKF1+T 0.871 ± 0.010 0.819 ± 0.015 0.845 ± 0.010 0.824 ± 0.011 6.193 ± 0.361 4.839 ± 0.364 5.516 ± 0.280 4.847 ± 0.253

UKF1+SH 0.865 ± 0.013 0.794 ± 0.010 0.830 ± 0.010 0.808 ± 0.010 6.160 ± 0.379 4.422 ± 0.231 5.291 ± 0.268 4.712 ± 0.228

A, acceleration; PVI, position-velocity interaction; T, target; SH, spiking history of population; Pooled, combining data from two monkeys; Merged units, undoing spike sorting by merging

units in each channel.
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FIGURE 3 | Offline reconstruction accuracy. (A) Mean ± SEM of signal-to-noise ratios. (B) Mean±SEM of correlation coefficients. (C) Reconstruction accuracy

when pooling data from two monkeys. White bars show accuracy when using spike sorting. Gray bars show accuracy when using unsorted spikes derived by

merging all sorted units on each channel. Right side bars show UKF1 augmented with each of: +A, acceleration; +PVI, position-velocity interaction; +T, target; +SH,

spiking history of population. (D) Example reconstruction of x-axis velocity from one session of monkey M.

thorough sampling of the space of possible position/velocity
combinations seen in the pursuit task data.

Accuracy for monkey M was generally poorer, and upon
examining fittedmodel parameters, we suspected that the spiking
history features were not fitted as well for monkey M. Thus, we
examined the contribution of spiking history per monkey. For
monkey B, in terms of CC, UKF1+SH was significantly more
accurate than UKF1 alone (two-tailed paired t-test, uncorrected,
n = 16, p = 0.04995), but for monkey M, UKF1+SH was
significantly less accurate than UKF1 alone (two-tailed paired t-
test, uncorrected, n = 16, p = 0.0001). The significance testing
results were the same for SNR.

As described in the methods, we spike sorted aggressively,
which resulted in a large number of multiunits. We wondered
if our aggressive spike sorting affected the observed trends.
Thus, we tried performing reconstructions using unsorted
spiking data. We merged all units on each channel, undoing
the process of spike sorting. Note that this is different from
using all threshold crossings, since waveforms which crossed
the threshold but did not match any unit’s template are

excluded. The reconstruction results from merged units are
shown by the gray bars in Figure 3C. The mean accuracy when
using merged units was significantly and substantially worse
than the mean accuracy when using sorted units under every
decoder variant (two-tailed paired t-tests, all corrected p <

0.000035). ANOVA (merged decoders x session) found a main
effect of decoder [F(6, 31) = 34,31, p < 10−10]. The trends in
accuracy among UKF2, KF, UKF1 and when enhancements are
individually added to UKF1 for merged units were similar to
the trends from sorted units (except that UKF2 was significantly
better than UKF1+T, corrected p = 0.0028), confirming that
our aggressive spike sorting did not influence the trends we
observed.

We illustrate sample reconstructions of the UKF2, position-
velocity Kalman filter, and UKF1 in Figure 3D. In this panel,
we show the 30 s of reconstructed x-axis velocity vs. time from
one center-out session of monkey M. We can see that the
UKF2 reconstruction follows the cursor velocity better at several
peaks and valleys, though there are also instances where UKF2’s
reconstruction is farthest from the true value.
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Encoding Model Predictions
We next compared the encoding model of the UKF2 with that
of UKF1 and the position-velocity Kalman filter. The purpose of
this is to better understand what motor cortical neurons encode
and to explain the improvements in decoding accuracy—it would
be unsatisfying if the source of decoding improvements were
unknown—and not as evidence for better decoding accuracy.
We analyzed the same 16 sessions from monkey B and 16
sessions from monkey M, which together had a total of 8582
single units and multiunits. These units represent a far smaller
number of distinct neurons, since electrodes usually record the
same neurons between sessions. Due to this, we also conducted
analysis on a single session from each monkey, so as to obtain
unique units for significance testing. The results are summarized
in Table 2 and graphed in Figure 4.

We first plotted the distribution of encoding model prediction
accuracy (in CC), among all units in all sessions, as a histogram
in Figure 4A. In this figure, the dashed vertical lines represent
the mean correlation values for each model. We see that
the UKF2 model predicted spike counts more accurately for
many unit instances (which include repeated observations
of the same units over different sessions), with substantially
higher mean prediction accuracy (UKF2: 0.210, p-v Kalman:
0.098, UKF1: 0.138). These values are substantially lower than
decoding accuracy values, which is not surprising given our
limited understanding of what individual neurons are doing
and the intrinsic noise in spiking. The fact that we can achieve
higher decoding accuracies despite this is because the decoding
algorithm is aggregating information from hundreds of units.

We wanted to know how each new enhancement of the UKF2
model contributed to the improvement in encoding accuracy.
In addition to the four improvements, we also tested intention

estimation (Gilja et al., 2012; Fan et al., 2014), applying it to
both training and testing data, to see if this improves encoding
accuracy for the Kalman filter’s position-velocity linear model.
We plot the resulting mean correlation coefficient and SNR in
Figure 4B. We see that adding spiking history to the UKF1
model resulted in the largest increase in accuracy. Adding the
other features resulted in smaller increases in accuracy. Intention
estimation did not improve the mean encoding accuracy of the
position-velocity linear model.

We wanted to know if these improvements were significant.
However, the prediction accuracy of different units is not
independent in this analysis since units from different sessions
may be the same neuron. Thus, we chose one session from each
monkey to perform significance testing. We chose a relatively
long center-out session for each monkey with a large number
of units sorted. We show the mean prediction accuracy for
one session from each monkey in Figure 4C. As measured by
correlation, ANOVA found a main effect on decoding method
[monkey B: F(10, 410) = 716.58, p< 10−10, monkeyM: F(10, 218) =
96.68, p < 10−10]. Post-hoc comparisons showed that the mean
prediction accuracy of the UKF2 model was significantly higher
than that of the position-velocity Kalman and UKF1 models
for both monkeys (all corrected p < 10−6). The differences in
mean prediction accuracies were all significant (all corrected
p < 10−6) between UKF1 and UKF1 augmented with each
enhancement, as well as between UKF2 and UKF1 augmented
with each enhancement. The UKF1 model also had significantly
higher (corrected p < 10−6) mean prediction accuracy than
the position-velocity linear model of the Kalman filter decoder.
Comparing the contribution of different enhancements when
added to UKF1, all pair-wise tests were significant (all corrected
p < 10−6), except UKF1+A vs. UKF1+PVI for monkey M

TABLE 2 | Encoding model prediction accuracy.

Mean ± SEM CC, pooled CC,

monkey B,

one session

CC,

monkey M,

one session

CC, monkey B,

one session,

top 10

percentile

units

CC, monkey M,

one session,

top 10

percentile

units

SNR(dB),

pooled

SNR(dB),

monkey B,

one session

SNR(dB),

monkey M,

one session

UKF2 0.210 ± 0.002 0.239 ± 0.006 0.137 ± 0.006 0.294 ± 0.024 0.245 ± 0.039 0.216 ± 0.005 0.285 ± 0.019 0.075 ± 0.017

Kalman 0.098 ± 0.001 0.101 ± 0.003 0.091 ± 0.005 0.137 ± 0.013 0.189 ± 0.031 0.020 ± 0.002 0.050 ± 0.004 0.033 ± 0.010

Kalman intention

estimation

0.087 ± 0.001 0.099 ± 0.003 0.084 ± 0.005 0.133 ± 0.013 0.169 ± 0.028 0.008 ± 0.002 0.047 ± 0.004 0.023 ± 0.008

UKF1 0.138 ± 0.001 0.148 ± 0.004 0.099 ± 0.005 0.163 ± 0.014 0.196 ± 0.032 0.070 ± 0.003 0.109 ± 0.007 0.041 ± 0.010

UKF1+A 0.145 ± 0.001 0.163 ± 0.004 0.103 ± 0.005 0.184 ± 0.015 0.198 ± 0.032 0.082 ± 0.003 0.133 ± 0.007 0.043 ± 0.010

UKF1+PVI 0.145 ± 0.001 0.157 ± 0.004 0.102 ± 0.005 0.181 ± 0.016 0.201 ± 0.033 0.081 ± 0.003 0.125 ± 0.007 0.044 ± 0.011

UKF1+T 0.156 ± 0.001 0.179 ± 0.004 0.107 ± 0.005 0.189 ± 0.015 0.199 ± 0.032 0.101 ± 0.003 0.160 ± 0.008 0.046 ± 0.010

UKF1+SH 0.206 ± 0.001 0.234 ± 0.006 0.134 ± 0.006 0.286 ± 0.023 0.241 ± 0.039 0.208 ± 0.005 0.272 ± 0.018 0.071 ± 0.016

Self history – 0.130 ± 0.005 0.063 ± 0.005 0.224 ± 0.022 0.160 ± 0.037 – 0.104 ± 0.010 0.024 ± 0.011

Others history – 0.218 ± 0.006 0.114 ± 0.005 0.232 ± 0.021 0.177 ± 0.030 – 0.225 ± 0.016 0.034 ± 0.011

Population history – 0.229 ± 0.006 0.121 ± 0.006 0.277 ± 0.023 0.214 ± 0.037 – 0.259 ± 0.018 0.054 ± 0.015

Kalman, linear encoding model of the position-velocity Kalman filter decoder; Kalman intention estimation, training and testing hand velocity data were modified using the intention

estimation scheme; A, acceleration; PVI, position-velocity interaction; T, target; SH, spiking history of population; Self history, using past spiking of neuron to predict its future spiking;

Others history, using past spiking of other neurons in population to predict future spiking; Population history, using past spiking of all neurons in population to predict future spiking. For

details, see text. Pooled: combining data from two monkeys. Top 10 percentile units: using only units with mean spike height (peak to trough) in the top 10 percentile of all units in the

session.
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FIGURE 4 | Encoding model prediction accuracy. (A) Histogram of spike count prediction accuracies measured by correlation coefficient. Dashed vertical lines

indicate means for each encoding model. (B) Mean CC and SNR of each encoding model, including UKF1 augmented with each of: +A, acceleration; +PVI,

position-velocity interaction; +T, target; +SH, spiking history of population. SEM was not calculated since data likely includes repeated observations of neurons. (C)

Mean±SEM of CC from one session of each monkey when using all sorted units. (D) Mean ± SEM of CC from one session of each monkey when using units with

mean spike height (peak to trough) in the top 10 percentile of all units in the session.

(corrected p = 0.25). For both monkeys, the linear position-
velocity model with intention estimation had lower mean
correlation than without intention estimation (corrected p ≤ 1.7
× 10−5).

We wondered whether the trends in encoding model
prediction accuracies would be the same when we only consider
units which are more likely to be single units. Thus, we looked
at units whose spike height (peak to trough) was in the top
10 percentile of units in their respective sessions. These are
the units most likely to be well-isolated single units, and the
encoding model prediction accuracies for them were higher
under all models. We plot the mean prediction accuracy for top
10 percentile spike height units in Figure 4D. ANOVA found a
main effect on decoding method [monkey B: F(10, 40) = 53.96,
p < 10−10, monkey M: F(10, 20) = 4.96, p < 10−10]. Some post-
hoc comparisons between features were no longer significant,
particularly for monkey M, since the amount of data was less

(monkey B: n= 41, monkey M: n= 21), but the trends remained
the same.

We were curious how much spiking history alone could
predict firing rates. Thus, we compared three simple encoding
models that did not use any kinematics or target position, only
firing rate history. The self history model uses one bin of firing
rate history of neuron i to predict neuron i’s instantaneous firing
rate:

fr
self history
i, t ≈ c · fractuali, t − 1, (22)

where c is a fitted coefficient. The others history model uses one
bin of the firing rate history of the entire population, except the
neuron we are trying to model:

fr
others history
i, t ≈ c · fractual1, t − 1 + · · · + c · fractuali− 1, t− 1 + c · fractuali+ 1, t− 1

+ · · · + c · fractualn, t − 1, (23)
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where cs are n-1 different fitted coefficients, and n is the size of
the population. The population historymodel uses one bin of the
entire population, including the neuron we are trying to model:

fr
population history
i, t ≈ c · fractual1, t − 1+· · ·+c · fractuali, t − 1+· · ·+c · fractualn, t − 1,

(24)
where cs are n different fitted coefficients. The mean model
prediction correlations are shown in Figures 4C,D in the right-
most bars.

When considering all units (Figure 4C), self history had the
lowest accuracy. Others history was substantially higher, and
population history was only a small amount higher than others
history. Pair-wise differences between the three models were all
significant (all corrected p ≤ 2.0 × 10−6). Notably, for monkey
B, all three models were significantly more accurate than the
position-velocity model with and without intention estimation
(all corrected p < 10−6), and the others history and population
history models were significantly more accurate than the UKF1
model (all corrected p< 10−6). For monkeyM, the others history
and population history models were significantly more accurate
than the position-velocity model with and without intention
estimation (all corrected p< 10−6) and UKF1 (p< 0.00076). The
UKF2 and UKF1+SH models were significantly more accurate
than all three history models for both monkeys (all corrected p <

10−6), which is expected since they include the history models.
When considering top 10 percentile spike height units

(Figure 4D), the trends are similar, but fewer comparisons were
significant due to less data. Population history was significantly
more accurate than the self history model for both monkeys (all
corrected p ≤ 0.0033). For monkey B, all three history models
were significantlymore accurate than the position-velocitymodel
with and without intention estimation and the UKF1 model (all
corrected p ≤ 0.0013). For monkey M, differences between the
three history models vs. the position-velocity model (with and
without intention estimation) and vs. the UKF1 model were not
significant. The UKF2 and UKF1+SH models were significantly
more accurate than all three history models for both monkeys (all
corrected p ≤ 0.00086), as expected.

To illustrate tuning to position-velocity interactions, we
depict an example single unit from monkey B with relatively
strong position-velocity interaction in Figure 5. Figure 5B shows
representative spike shapes from this single-unit. Figure 5A

consists of nine panels, where each panel shows tuning in a
different portion of the work space. For example, the lower right
panel shows velocity tuning when the cursor is near the lower
right (hand is near the right and posterior) portion of the work
space. Within each panel, the axes represent cursor velocity, with
the center of the panel representing zero velocity. Firing rate is
indicated by the shading. For example, the shading in the lower
right of a panel is the firing rate of the single unit when the hand
is moving toward the right and posterior. The visualization was
created by performing Gaussian kernel smoothing on a 7 by 7
grid (per panel). All kinematic variables were normalized to be
unit-variance and the smoothing kernel width was 3.

We can see differences in the velocity tuning at different
positions in the work space. For example, the firing rate was
higher for lower-right velocities in the lower-right position (4.26

FIGURE 5 | Position-velocity interaction in the encoding of a motor

cortical single unit. (A) Illustration of position-velocity interaction tuning.

Shading indicates firing rate. Each sub-panel depicts velocity tuning when the

cursor was in a portion of the position work space, with the sub-panel’s

position corresponding to the cursor position. Location within each sub-panel

corresponds to the 2D cursor velocity, with zero velocity in the center. See text

for details. (B) Example spike waveforms from this single unit.

Hz at the red dot) than in the upper-left position (2.55 Hz at
the red dot).This suggests a multiplicative interaction between
position and velocity. This figure illustrates why, for 349 out
of 411 (monkey B) and 153 out of 219 (monkey M) units,
UKF1+PVI predicted spiking rates better than UKF1, and why
PVI is a tuning phenomenon which next-generation neural
encoding models should probably take into account.

Closed-Loop Neural Control Experiments
We compared the ability of monkeys to complete a center-
out task using the decoders in closed-loop neural control. We
recorded 7 sessions with monkey B, 153–184 days post-implant,
and 30 sessions with monkey M, 15–70 days post-implant. Each
session was recorded on a separate day and contains one 10-
min block of each condition (UKF2, KF, UKF1), and the last 5
min of each 10-min block were analyzed for performance. We
recorded fewer sessions with monkey B because the difference
between decoders was larger, and monkey B was tasked with
other experiments. The results of closed-loop comparisons are
summarized in Table 3 and graphed in Figure 6.

We calculated the mean (across sessions) of the fraction of
targets acquired (Figure 6A), time to move to a peripheral target
(Figure 6B), and Fitts’s Law bit rate (Figure 6C) for each decoder,
as well as hand control of the cursor via joystick.

The fractions of targets acquired were not significantly
different between conditions for monkey B [ANOVA F(3, 6)
= 1.13, p = 0.36]. For monkey M, ANOVA found a main
effect on mode of control [F(3, 29) = 5.4474, p = 0.0018], and
post-hoc tests showed that fractions of targets acquired for the
decoders were not significantly different, but all decoders had
significantly lower fractions than hand control (all corrected
p < 0.034). The high variance in fraction of targets acquired
by monkey B (session MS = 0.02718, compared to control
condition MS = 0.02309, while other closed-loop control
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TABLE 3 | Comparison of decoders during closed-loop neural control of cursor.

Mean ± SEM Fraction of

targets

acquired,

monkey B

Fraction of

targets

acquired,

monkey M

Movement

time (s),

monkey B

Movement

time (s),

monkey M

Movement

time (s),

pooled

Fitts’s Law

bit rate

(bits/s),

monkey B

Fitts’s Law

bit rate

(bits/s),

monkey M

Fitts’s Law

bit rate

(bits/s),

pooled

UKF2 0.961 ± 0.016 0.906 ± 0.025 1.201 ± 0.150 1.640 ± 0.065 1.557 ± 0.065 0.980 ± 0.122 0.682 ± 0.026 0.738 ± 0.036

FIT Kalman filter 0.980 ± 0.014 0.847 ± 0.037 1.766 ± 0.217 1.722 ± 0.092 1.730 ± 0.083 0.666 ± 0.084 0.668 ± 0.032 0.668 ± 0.030

UKF1 0.850 ± 0.091 0.909 ± 0.026 2.456 ± 0.489 1.959 ± 0.103 2.053 ± 0.124 0.545 ± 0.100 0.593 ± 0.032 0.584 ± 0.031

Hand control 0.934 ± 0.062 0.987 ± 0.008 0.689 ± 0.065 1.182 ± 0.050 1.089 ± 0.053 2.248 ± 0.186 1.178 ± 0.050 1.381 ± 0.087

Pooled, combining data from two monkeys.

FIGURE 6 | Comparison of decoders during closed-loop neural control of cursor. (A) Mean ± SEM of fraction of targets acquired. “Hand” indicates

performance when monkey controlled the cursor using its hand via the joystick. (B) Mean ± SEM of movement time per peripheral target. (C) Mean ± SEM of Fitts’s

Law bit rate. (D) Example movement trajectories generated under UKF2 control. Peripheral targets and paths have been rotated so that all peripheral targets align. (E)

Trajectories under Kalman control. (F) Trajectories under UKF1 control.

metrics had control condition MS which were 4–20 times
larger than session MS) was due to poor parameter fits in
some experimental sessions leading to relatively poorer control,
which led to monkey non-participation during the evaluation

period, as the monkey had grown used to very good neural
control.

In terms of time to move to a peripheral target, for monkey B,
ANOVA found amain effect onmode of control [F(3, 6) = 9.9, p=
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0.0004]. Post-hoc tests showed that UKF2 times were significantly
shorter than UKF1 times (corrected p = 0.049), other decoder
comparisons were not significant. Hand control had significantly
shorter times than every decoder (all corrected p < 0.040). For
monkey M, ANOVA found a main effect on mode of control
[F(3, 29) = 36.8127, p = 1.87× 10−15], and post-hoc tests showed
that UKF2 and FIT Kalman filter times were significantly shorter
than UKF1 times (corrected p= 0.0012, p= 0.020, respectively),
the UKF2 and FIT Kalman comparison was not significant. Hand
control had significantly shorter times than every decoder (all
corrected p <2× 10−6).

In terms of Fitts’s Law bit rates, for monkey B, ANOVA found
amain effect onmode of control [F(3, 6) = 90.09, p< 10−10]. Post-
hoc tests showed that UKF2 bit rates were significantly higher
than UKF1 bit rates (corrected p = 0.00061), and other decoder
comparisons were not significant. Hand control had significantly
higher bit rate than every decoder (all corrected p < 0.00057).
For monkey M, ANOVA found a main effect on mode of control
[F(3, 29) = 155.2043, p = 8.2 × 10−35]. Post-hoc tests showed
that UKF2 and FIT Kalman filter bit rates were significantly
higher than UKF1 bit rates (corrected p = 0.0030, p = 0.012,
respectively). UKF2 bit rates and FIT Kalman bit rates were not
significantly different, and hand control had significantly higher
bit rate than every decoder (all corrected p < 10−6).

When we pooled the data between the twomonkeys, the mean
movement times were significantly different among the three
decoders and hand control [ANOVA F(3, 36) = 34.94, p = 7.3 ×

10−16, post-hocUKF2 < FIT Kalman, corrected p= 0.045; UKF2
< UKF1, corrected p= 0.00024; FIT Kalman < UKF1, corrected
p = 0.013]. Mean Fitts’s law bit rates were also significantly
different among the three decoders and hand control [ANOVA
F(3, 36) = 80.19, p = 2.3 × 10−27, post-hoc UKF2 > FIT Kalman
corrected p = 0.046; UKF2 > UKF1 corrected p = 0.00006; FIT
Kalman > UKF1 corrected p = 0.0039]. The hand movement
times (all corrected p < 10−6), and bit rates (all corrected p <

10−6) were significantly better than that for every decoder. For
fraction of targets acquired, there was a main effect on mode of
control [ANOVA F(3, 36) = 3.81, p = 0.012], but post-hoc testing
did not find significant differences among the decoders. The hand
control fraction correct was better than that for the FIT Kalman
(corrected p= 0.036) and UKF1 (corrected p= 0.040).

Figures 6D–F show all center to peripheral movement
trajectories generated during UKF2 control, FIT Kalman filter
control, and UKF1 control, respectively, for one session from
monkey B. For clarity of visualization, the trajectories have been
rotated so that the peripheral target locations are aligned at the
top. Thus, all trajectories start from the lower, red circle and
end in the upper, green circle. We can see that the trajectories
generated during UKF2 control start movement in the wrong
direction and overshoot the target the least among the three
decoders. From the movement time and bit rate comparisons
and the trajectory illustrations, we can see that UKF2 allows the
monkey to perform center-out movements more quickly and
accurately than the UKF1 and comparably to the FIT Kalman
filter.

Onemay ask why the plot of trajectories for UKF1 (Figure 6F)
looks darker within the targets. This is because the decoded

cursor positions are more “jumpy” during the hold period. This
is due to the use of position as the signal to control the cursor,
and noisy neural activity causes the estimated position to jump.
We conjecture that the position-velocity mixing scheme (Homer
M. et al., 2013) and our probabilistic velocity thresholding
refinement solve this problem for the UKF2.

DISCUSSION

The UKF2 reconstructed kinematics offline more accurately than
the position-velocity Kalman filter and UKF1. Examining why
theUKF2 performed better, analysis of the encodingmodel found
that the UKF2’s encoding model made more accurate predictions
of neural activity. In closed-loop neural control experiments,
the UKF2 allowed better task performance than the UKF1, but
comparisons with the FIT Kalman filter were not significant on a
per-monkey basis, though they were significant when data from
two monkeys were combined.

The differences between monkeys were quite large. Monkey
B was more proficient at the center-out task under hand
control, with lower movement times and higher bit rate. Offline
reconstructions were generally more accurate with monkey
B. The differences between decoders in closed-loop control
were larger for monkey B. A particularly pronounced area
of disparity was encoding model predictions. Monkey B and
monkey M had similar encoding model prediction accuracy for
the Kalman filter, but quite different accuracy for the UKF1
and UKF2. For monkey B, adding spiking history to UKF1
resulted in the largest improvement, with target tuning also large.
For monkey M, improvements from these two features were
substantially smaller. The trends suggest that spiking history is
less beneficial for modeling the activity of monkey M’s units,
and even harmful for decoding accuracy, which hints at some
qualitative differences in the populations recorded from these
two monkeys. Overall, the differences between monkeys may
be due to: electrode length (B: 1.0 mm, M: 1.5 mm), age (B:
6, M: 4), amount of practice with the center-out task (B: 4
months, M: 2 months), and spike sorting performed by different
experimenters.

During the design of the UKF2 algorithm, we used pursuit
task data from another monkey, which we cannot publish here.
We froze the design of our algorithm, as much as possible,
before starting closed-loop experiments and data collection for
reconstructions. Thus, we included refinements such as PVI and
SH which were not universally beneficial.

Our results with CC and SNR are, in some cases, quite
different in absolute terms. This is understandable since they are
very different measures, with SNR including a logarithm to avoid
saturation.

All decoders we tested, including the FIT Kalman filter, had
significantly worse performance, in terms of movement time and
Fitts’s Law bit rate, than hand control via the joystick. These
differences were large, for example, hand control had 1.9 times
the bit rate of UKF2 and 2.1 times the bit rate of the FIT Kalman
filter. This indicates there is still much room for improvement in
decoding and signal acquisition methodology.
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In terms of the contributions of the different refinements, our
closed-loop results are limited in granularity; future work may
investigate the individual contributions in closed-loop, which
would greatly assist practitioners in optimizing their decoder
design.

Acceleration
Acceleration of the hand has been decoded in past studies (Ashe
and Georgopoulos, 1994; Gao et al., 2003), and force has long
been known to contribute to encoding (Evarts, 1968 and many
others). In our previous work, we considered using acceleration
as a feature in the encodingmodel, but did not detect a substantial
benefit. After UKF1’s publication, we continued to look for ways
to improve the neural encoding model using new kinematic
features. Our recent analysis included temporal smoothing
(sliding windowmoving average) of kinematics before parameter
fitting for the encoding model (see Supplementary Materials).
Doing this, the quickly-changing acceleration signal is smoothed
out, and neural encoding strength for acceleration is increased,
resulting in worthwhile decoding accuracy increases. Similar
to position and velocity, upon visualization of acceleration
tuning, we found spatial patterns consistent with the existence
of a relationship between the acceleration magnitude (in any
direction) and the firing rate of many neurons. Thus, we have
also included the magnitude of the acceleration vector as a novel
feature of the UKF2 encoding model. Even though we do not use
the acceleration in the filter state to directly control the cursor, the
acceleration interacts with the other variables in the state space
via the state transition model (movement model).

Position-Velocity Interaction
In our quest for a better encoding model, we visualized neural
tuning patterns in various ways (for example, Figure 5A). We
found that the encoding of velocity changes with the position
of the hand in a systematic way. Thus, we surmised that there is
an interaction between position and velocity tuning. Differences
in preferred directions at different limb postures have previously
been found (Caminiti et al., 1990; Sergio and Kalaska, 2003),
and gain-field encoding has been suggested for limb position
and velocity (Hwang et al., 2003). To capture this interaction,
we added a multiplicative feature to our encoding model which
is a simple multiplication of the position and velocity for each
dimension separately. This encoding model refinement was used
both in offline and closed-loop decoding. We found that by
adding this novel encoding feature, significantly more accurate
predictions of firing rate could be achieved (Figure 4C).

However, in terms of offline reconstructions, using position-
velocity interaction was actually detrimental when considering
both center-out and pursuit tasks, and slightly helpful (though
not significant, since n = 6) when considering the pursuit
task only. In the center-out task, position (with respect to
center of workspace) and velocity are either very correlated
(outward movement), very anti-correlated (inward movement),
or independent (hold), with few instances of other relationships.
This is not true for the pursuit task, which samples the possible
space of position and velocity values much more thoroughly.
We believe this difference accounts for the results we found.

For neural control of a prosthetic, where movements throughout
the space of possible position and velocity values need to be
supported, the position-velocity interaction term will likely help.

Target
Inspired by studies which included the target of reaches in the
trajectory decoding process (Shanechi et al., 2012; Shanechi M.
et al., 2013; Shanechi M. M. et al., 2013; Shanechi and Carmena,
2013), we investigated adding information about the target into
the encoding model. In preliminary analysis we found that some
neurons show significant encoding of target position, which has
been found in the past (Fu et al., 1995). Though using the
neurons we recorded to decode target position alone provides
very noisy results, the rough information that can be decoded
is still valuable. We set the target position to weakly attract
the cursor during closed-loop control. This, in effect, gives a
small assistance to the cursor decoding by using the rough
estimate of the target location. This is somewhat similar to the
mechanism that Shanechi and Carmena (2013) used, where the
target position is used in an optimal feedback controller, which
can be understood as biasing decoded movement toward the
target.

In addition to target position in Cartesian coordinates, our
preliminary analysis showed that there was significant encoding
of the distance between target position and cursor position, which
is similar to the reach distance found by Fu et al. (1995). Thus, we
included this novel feature in our encoding model as well.

Spiking History
In multiple previous studies (Paninski et al., 2004b; Truccolo
et al., 2005; Lawhern et al., 2010; Saleh et al., 2010, 2012; Truccolo
et al., 2010; Park et al., 2014; Xu et al., 2014) the past spiking
of a neuron as well as the past spiking of other neurons in the
population have been used to better model the probability of
spiking in a point process framework, sometimes leading to very
accurate models (Truccolo et al., 2010). The past neural activity
of all neurons in the population may capture correlations in
firing due to functional connectivity or common inputs. Another
advantage of this modeling approach is the ability to indirectly
capture tuning to latent neural states. One disadvantage of this
approach is the large number of additional parameters that must
be fitted, with the accompanying increase in over-fitting risk.

We wanted to include spiking history in our encoding model
to capture these benefits. However, instead of using complex
temporal features as in the point process studies, we use a
comparatively simple idea: we include only the spike counts in
the previous bin for the entire population. In preliminary analysis
we investigated using more than one previous bin and found the
benefit to be small in comparison to the additional cost in number
of parameters that needed to be fit.

During closed-loop decoding, the spike count of the previous
time bin is available, and is directly provided to the neural
encoding model as point values without uncertainty. In other
words, unlike the filter state variables in the encoding model, the
previous spike counts are not decoded; their benefit comes from
improving the fit of the encoding model. This is similar to the
role of the position state variables in the ReFIT Kalman filter.
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By including spiking history, we aim to remove more systematic
variation (e.g., from autocorrelation) from the encoding model’s
residual, making the remaining residual closer to white noise,
which better fits the theoretical assumptions of the Kalman filter
framework. However, it is still beneficial to include improved
kinematic features in the encoding model: these provide the
“conduits” through which information flows from neural activity
to kinematic variables during the operation of the unscented
Kalman filter.

Our results show that adding spiking history improved
encoding model predictions substantially. However, offline
reconstruction accuracy only improved when adding spiking
history for monkey B, with possible reasons discussed above.

Mixing Position and Velocity Outputs
In our previous work with the unscented Kalman filter, we used
the decoder’s position output to directly drive the cursor. As the
position is decoded from noisy firing rates, we observed that
the decoded position jumped around in a small area at high
frequency. One benefit of the position-as-feedback enhancement
of the ReFIT Kalman filter is that by controlling position only
through decoded velocity, this “jumpy” cursor phenomenon is
avoided.

We believe that while some neurons in the motor cortex
do encode for the current position of the limb in a feedback
or mental representation sense, there also exist neurons which
encode for the desired position in the immediate future (as
opposed a distant future time, i.e., the ultimate target of a
reach). If we do not make use of encoded desired position, we
may be losing information potentially helpful for controlling
a neuroprosthetic, particularly because UKF2’s encoding model
includes position-velocity interaction terms.

Thus, we chose to retain position as a directly decoded variable
in the state space. However, in an effort to avoid the “jumpy”
cursor of the UKF1, we adopted the method for mixing position
and velocity proposed by Homer M. et al. (2013). In this scheme,
if the decoded velocity is zero, the position decode cannot change
the cursor. This mechanism assists the user in stopping the
cursor, as well as reduces the jumpiness of the cursor. By partially
controlling the cursor using the position output, we also stabilize
the cursor, preventing velocity decode errors from accumulating,
which was a problem we discovered in preliminary experiments
when combining the position-velocity interaction enhancement
and the position-as-feedback refinement of the ReFIT Kalman
filter.

Movement Thresholding
The ability to stop and hold the cursor (or prosthetic limb) is
important for various tasks. Several studies have examined how
to stop the cursor more accurately. Golub et al. (2014) used
a refinement of the transition model which allows the user to
perform a “hockey stop,” that is, the user changes the movement
direction quickly to slow the cursor to a stop. Another approach
(Velliste et al., 2014) decoded a speed term, separately from the
Cartesian velocity coordinates. This speed term is used to scale
the position and velocity uncertainties in the transition model,
effectively acting as a gate for movements. In the mixture method

of Homer M. et al. (2013), decoded velocity also acted like a gate
for the influence of decoded position on the cursor. Another
related decoding engineering feature is the detection of idle
states—when the user is not actively using the neuroprosthetic.
Aggarwal et al. (2013) and Velliste et al. (2014) detected states
using a linear discriminant analysis classifier, separate from the
movement decoder. When an idle or hold state was detected,
the decoder output is ignored and movement was set to zero.
Recently, Sachs et al. (2016) detected posture vs. movement states
using linear discriminant analysis and used Wiener filters with
different coefficients during each.

To improve the user’s ability to stop the cursor within the
target during closed-loop control, we added our own mechanism
to detect movement intention, a probabilistic threshold for
movement which is computed using the uncertainty output of the
unscented Kalman filter. Using a probabilistic threshold means
we can set the threshold in terms of a false positive rate. This
probabilistic threshold is similar to a significance test; the null
hypothesis is that the user wants to remain still. We check if
there is enough evidence to reject the null hypothesis under
the specified false positive rate. This framework, while more
complex than a simple threshold on the decoded velocity, allows
one threshold to work under different amounts of uncertainty
in the decoded output, e.g., for both fast and imprecise (more
uncertain) movements and slower and more precise (more
certain) movements.

In this study, we set the desired false positive rate by hand.
Larger false positive rates mean the cursor is rarely stopped
through thismechanism, and holding inside a targetmay bemore
difficult if control is poor. Smaller false positive rates may make
the cursor too difficult to move. Future decoders with multiple
modes of operation may find it advantageous to use a lower false
positive rate for certain modes where unwanted movements are
dangerous or highly undesirable, e.g., when the user is asleep.
While the position and velocity mixing method (Homer M. et al.,
2013) also helps stop the cursor, it is dependent on accurate
decoding of velocity. Our probabilistic threshold complements
this method by verifying that the velocity is not non-zero due to
mere noise.

Use of Future Predictions
Motor cortex neurons encode for movements that occur up to
a few hundreds of milliseconds later (Ashe and Georgopoulos,
1994; Schwartz et al., 2004; Paninski et al., 2004a; Wu et al.,
2006; Wang et al., 2007; Wang and Principe, 2010), making
decoding of intentions at t + 100ms to t + 300 ms possible
given neural activity at time t. These “future predictions” are
merely a reflection of the built-in delays in the natural motor
system. Most previous work used the decoded kinematics for
time t as the output at time t, in effect mimicking the delay
of the natural motor system. In the UKF1, even though future
intended movements are decoded, we did not choose to use
future predictions to control the cursor.

Cunningham et al. (2011) found that reducing the bin
width during closed-loop neural control with feedback improves
performance, and Willett et al. (2013) found that using
predictions of future intentions can compensate for delays in the
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BMI system. Inspired by these studies, we wondered whether
using future predictions could improve neural control. Our
temporal offset was 100 ms in size, i.e., we use the decoded
kinematics for t + 100 at time t, which is reasonable considering
the 75–100ms average offset found in prior work (Ashe and
Georgopoulos, 1994; Paninski et al., 2004a; Schwartz et al., 2004).

One may ask why include the other taps in the filter state,
if they are not used to control the cursor. The answer is that
they help model the firing rate of neurons, which may encode
for movements in a temporally persistent manner or specifically
encode for movements in the past. Similar to adding spiking
history to the encoding model or the position-as-feedback
enhancement, the other taps do not directly affect the decoder
output, butmay improve decoder accuracy by explicitlymodeling
what would otherwise be thrown in to the catch-all error term.

Related Work
Reviews of research in decoding for BMIs can be found elsewhere
(Homer M. L. et al., 2013; Andersen et al., 2014; Baranauskas,
2014; Bensmaia and Miller, 2014; Kao et al., 2014; Li, 2014). Here
we discuss the decoders compared in the present study.

The improved unscented Kalman filter decoder proposed in
this study is a development of our previous unscented Kalman
filter decoder (Li et al., 2009). That filter, which we refer to here
as UKF1, used an encoding model with non-linear dependence
on kinematic variables which modeled tuning to the speed or
velocity magnitude of movements. The UKF1 modeled tuning
at multiple temporal offsets, using an n-th order hidden Markov
model framework where n taps of kinematics (n = 10 was
tested) are held in the state space. Encoding studies by Paninski
et al. (2004a,b), Hatsopoulos et al. (2007), Hatsopoulos and Amit
(2012) and Saleh et al. (2010) found tuning to position and
velocity trajectories, called movement fragments or pathlets. The
n-th order framework makes the encoding model of the UKF1
flexible enough to capture such tuning. Even though including
taps of position also indirectly includes velocity, explicitly
including taps of velocity reduces the amount of non-linearity
needed in the neural encoding model, which helps improve the
approximation accuracy of the UKF. On the basis of UKF1, we
expand the neural encoding model and add decoder engineering
improvements developed by ourselves and other groups to make
the UKF2.

The ReFIT Kalman filter (Gilja et al., 2012) has demonstrated
high communications bit rate by using two advances in decoder
engineering. In closed-loop experiments, we compared the UKF2
with the FIT Kalman filter (Fan et al., 2014), which is similar
to the ReFIT Kalman filter in using position-as-feedback and
intention estimation, but does not have the online re-training
component. The bin size in this study, 50 ms, was the same as
the Gilja et al. study. Our Fitts’s Law bit rate values for the FIT
Kalman filter are lower than those reported by Gilja et al. for the
ReFIT Kalman filter, likely due to a combination of factors. First,
online re-training separates the FIT and ReFIT Kalman filters. In
terms of experimental setup, Gilja et al. used video tracking of
natural reaching movements, whereas we used a joystick during
hand control of the cursor. The use of an unnatural joystick made
our task more difficult: the mean movement time during hand
control in our task was approximately double those reported

by Gilja et al. we used a joystick due to the limitations of our
experimental platform and to compare with our previous work
(Li et al., 2009). While using the same Fitts’s law bit rate measure,
our task used circular targets, which have a smaller acceptance
area for the same width compared to the square targets of Gilja
et al. We used circular targets because they are more natural
in terms of determining whether the cursor is within the target
by using a distance criterion. We also spike sorted and did not
include unsorted or “hash” threshold crossings, whereas Gilja
et al. used threshold crossing counts.

Latent Neural State
Models proposed by many previous studies have modeled latent
neural states explicitly (Brockwell et al., 2007; Kulkarni and
Paninski, 2007; Wu et al., 2009; Lawhern et al., 2010; Macke et al.,
2011; Petreska et al., 2011; Aghagolzadeh and Truccolo, 2014,
2016; Deng et al., 2015; Kao et al., 2015; Lakshmanan et al., 2015).
In Aghagolzadeh and Truccolo (2014) and Kao et al. (2015), the
latent neural state comprises the entirety of the Kalman filter
state, and kinematics are decoded from this latent neural state
after it is decoded from the spike counts. When modeling latent
states like this, some form of unsupervised learning is required
to fit the observation model of the filter. The typical approach is
Expectation-Maximization applied to linear dynamical systems
(Shumway and Stoffer, 1982).

An alternative approach is to implicitly model latent states
by adding spiking history to the observation model. By adding
spiking history, one may (partially) capture latent shared
variables if they have temporal autocorrelation. In other words,
if a unobserved common input of many neurons is changing
slowly, by using the past neural activity, which partially encodes
this hidden input, to predict the current neural activity, one is
including this hidden common input in the encoding model by
proxy.

Two engineering advantages of explicitly modeling the
latent variable using additional state variables are: (1) lower
dimensionality; (2) ability to impose prior assumptions on the
model structure, such as in the transition model or observation
model (Aghagolzadeh and Truccolo, 2016). Additionally,
investigating these latent states may yield neuroscientific
insights. However, it is not obvious this approach is always better
from a decoding point of view, since the unsupervised learning
of latent variables cannot be checked against a gold standard,
and, in practice, it is vulnerable to local optima. Some of the
autocorrelation or cross-correlation captured by spiking history
may not be due to low-dimensional latent variables, but are due
to biophysics and actual neuronal connectivity. The effect of
these phenomena may not be easily captured by low dimensional
latent states.

CONCLUSION

We have shown in offline analysis and closed-loop experiments
with two Rhesus monkeys that our encoding model features
and decoder engineering refinements improve encoding and
decoding accuracy. Some of the enhancements used in this
work, particularly the probabilistic velocity thresholding and the
inclusion of hand acceleration and target position (without the
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non-linear terms) are compatible with the standard Kalman filter,
are fairly easy to implement, and are likely to bring the largest
benefits. We hope that these enhancements will be utilized by
others, just as we have improved our decoder using innovations
published by others.
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