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Abstract

Influenza A viruses are single-stranded RNA viruses capable of evolving rapidly to adapt to environmental conditions.
Examples include the establishment of a virus in a novel host or an adaptation to increasing immunity within the host
population due to prior infection or vaccination against a circulating strain. Knowledge of the viral protein regions under
positive selection is therefore crucial for surveillance. We have developed a method for detecting positively selected
patches of sites on the surface of viral proteins, which we assume to be relevant for adaptive evolution. We measure
positive selection based on dN/dS ratios of genetic changes inferred by considering the phylogenetic structure of the data
and suggest a graph-cut algorithm to identify such regions. Our algorithm searches for dense and spatially distinct clusters
of sites under positive selection on the protein surface. For the hemagglutinin protein of human influenza A viruses of the
subtypes H3N2 and H1N1, our predicted sites significantly overlap with known antigenic and receptor-binding sites. From
the structure and sequence data of the 2009 swine-origin influenza A/H1N1 hemagglutinin and PB2 protein, we identified
regions that provide evidence of evolution under positive selection since introduction of the virus into the human
population. The changes in PB2 overlap with sites reported to be associated with mammalian adaptation of the influenza
A virus. Application of our technique to the protein structures of viruses of yet unknown adaptive behavior could identify

further candidate regions that are important for host-virus interaction.
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Introduction

Influenza A viruses are single-stranded negative-sense RNA
viruses typically causing short-term respiratory infections
with considerable morbidity and mortality (WHO 2009).
High mutation rates, swift spreading among individuals,
and short replication times allow influenza A viruses to
evolve and adapt rapidly to environmental conditions (Pybus
and Rambaut 2009). Examples include the establishment of
a virus in a novel host or an adaptation to escape increasing
immunity of the host population to a circulating or a vaccine
influenza strain (Dormitzer et al. 2011).

Past influenza pandemics resulted from the introduction
into the human population of a transmissible virus with
significantly different antigenicity from recent and cur-
rently circulating influenza strains. In all four pandemics
that occurred within the last century, the respective influ-
enza viruses carried hemagglutinin (HA) and several other
genome segments of influenza A viruses from other host
species, such as birds or swine (Webster et al. 1992;
McHardy and Adams 2009). Configurational changes of
multiple proteins of animal influenza A viruses are thought
to be necessary to enable efficient replication and transmis-
sion in human hosts (Kuiken et al. 2006; Neumann and
Kawaoka 2006). A region of particular importance for this

process is the receptor-binding site of the viral hemaggluti-
nin. It enables attachment to different types of host-specific
glycosydic bonds on surface epithelial cells in the host respi-
ratory and gastrointestinal tracts (Glaser et al. 2005;
Neumann and Kawaoka 2006). Furthermore, certain areas
of the viral polymerase complex determine host range
(Neumann and Kawaoka 2006; Yamada et al. 2010). Follow-
ing establishment of a virus within a novel host, additional
adaptive changes are thought to optimize replication and
dispersal rapidly within the population (Deem and Pan
2009; Hensley et al. 2009; Neumann et al. 2009; Smith
et al. 2009).

Human influenza A viruses continuously change anti-
genically by accumulating changes in the antibody-binding
sites of the viral surface proteins HA and neuraminidase
(NA), (Bush et al. 1999; Smith et al. 2004; McHardy and
Adams 2009; Weinstock and Zuccotti 2009). These changes
allow reinfection of previously infected or vaccinated indi-
viduals. This requires the composition of the seasonal
influenza A virus vaccine to be updated almost annually
to ensure its continued effectiveness (Russell et al. 2008).
Knowledge of the viral protein regions that are relevant
for adaptation to a novel host or an increasingly immune
population is therefore a crucial factor for the surveillance
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and prevention of seasonal and pandemic influenza A virus
infections.

Multiple methods allow identification of functional
regions of proteins, for example, on the basis of evolution-
ary conservation ratios (Pupko et al. 2002; Glaser et al. 2003;
Nimrod et al. 2005, 2008; Shazman et al. 2007; Ashkenazy
et al. 2010). Regions under positive selection do not follow
the assumption of strong conservation and can therefore
not be detected by these methods. Other techniques
predict the location of antibody-binding (epitope) sites
based on structural and sequence information (Blythe
and Flower 2005; El-Manzalawy et al. 2008; Rubinstein
et al. 2008, 2009; Lacerda et al. 2010). However, besides
epitope regions, receptor avidity—changing sites or host-
specificity determinants can be subject to positive selection
and might play a similarly important role for the adaptive
evolution of influenza A viruses (Hensley et al. 2009).
Furthermore, a part of the epitope regions is invariable
due to functional and structural constraints.

Sites under positive selection indicate the relevance of a
region within a protein for adaptation. Such sites can be
identified based on the ratio of nonsynonymous to synon-
ymous mutations (dN/dS ratio) (Bush et al. 1999). This has,
for instance, identified regions of B- and T-cell epitopes
which are under positive selection (Suzuki 2006). However,
this measure is difficult to interpret directly when studying
evolution within a population and lacks sensitivity when ap-
plied to individual sequence sites (Kryazhimskiy and Plotkin
2008). Other methods compare within-species with be-
tween-species substitution statistics or substitution rates
at specific branches (Nei 2005; Nozawa et al. 2009). We have
recently proposed how to identify individual alleles, or sets of
mutations, instead of sites or genes, that might be under se-
lection using a time series of sequence samples from human
influenza A (H3N2) viruses (Steinbriick and McHardy 2011).
Furthermore, maximum likelihood estimates of codon-based
Markov models are used to detect sites under positive or
directional selection (Yang 2000; Kosakovsky Pond et al.
2005, 2008) and can also consider the physiochemical prop-
erties of residues (Sainudiin et al. 2005). All these methods
return statistics of positive selection for independent codons
but do not consider protein structure and spatial informa-
tion for sites. Other methods take the effects of solvent
accessibility and pairwise interactions between amino acids
into account in their evolutionary models (Robinson et al.
2003). In the method we describe here, we follow a similar
approach but use a less complex evolutionary model and
consider the spatial distribution of residues in a consecutive
phase of our algorithm.

In contrast to this type of methods, we assume that not
only mutations at individual sites but also of multiple sites
within a certain region of a gene can cause adaptive protein
conformation changes. Shape and charge modifications
within larger patches of residues on the protein surface
are important for viral adaptation to structural changes
in the interacting proteins of the host (see e.g, Yamada
et al. 2010). We therefore devised a method to detect dense
patches showing a high average positive selection, using
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dN/dS estimates of positive selection for individual sites
and information on the spatial distances between them.
With this approach, we also included sites with a large,
but not exceptionally large, dN/dS ratio. Such residues
would be discarded by methods that rank sites based on
a measure of selection and then cut the list below a certain
threshold. With our method, such residues were included if
their spatial position supported the continuity of a patch.
By searching for clusters of sites that are close to each other
in the protein structure and consistently exhibit elevated
dN/dS values, one might have greater statistical power to
detect adaptive evolution in genes compared to methods
that test for elevated dN/dS ratios at individual sites.

As mentioned above, more advanced techniques can be
used for estimating positive selection. We here rely on the
dN/dS statistic to allow an easy understanding of the
principles of our method. The dN/dS statistic used for clus-
tering can easily be exchanged with other measures.

There are similar methods that search for clusters of pos-
itively selected sites (Suzuki 2004; Berglund et al. 2005;
Zhou et al. 2008). These differ from ours in that they
use a sliding window-based search for sphere-shaped clus-
ters on the surface of the tertiary structure. Our approach
does not require specification of a cluster radius nor does it
restrict the geometrical form of the inferred clusters. We
evaluated our method by applying it to HA data for human
influenza A viruses of the subtypes H3N2 and H1N1. These
are particularly suited for evaluation as large numbers of
sequences are available and their interaction with the hu-
man host is very well studied. Additionally, we applied the
method to HA and polymerase basic protein 2 (PB2) of
swine-origin influenza virus (S-OIV) A/HIN1 to study
the more recent development of the virus.

Materials and Methods

We implemented a graph-cut algorithm to cluster protein
residues based on structural and evolutionary protein
information. Our goal was to identify dense patches of
spatially close residues on the protein surface that show
significant signs of positive selection. Generally speaking,
our algorithm includes residues in a patch if they show
evidence for positive selection and are close to other patch
residues. A patch is rated both by its average P value and
the density of sites under selection. Individual sites can
compensate for a weaker signal of positive selection by
being close to neighbors with a strong signal. Structural
protein models were used to identify the spatial coordi-
nates of individual residues. To measure positive selection
for individual sites, ancestral character states were inferred
from phylogenetic trees constructed from available genetic
sequences for a particular protein. Subsequently, dN/dS
statistics for each site were calculated, according to the ra-
tio of the number of synonymous and nonsynonymous
changes mapping to the tree edges (Bush et al. 1999; Suzuki
2006). After clustering, the identified patches were visual-
ized on the protein structure. The complete process is
shown in figure 1.
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Fic. 1. Workflow for predicting patches under positive selection.

Structural Models

HA structures of the human influenza A/H3N2 virus, the
human influenza A/H1N1, and S-OIV A/H1N1 were down-
loaded from the RSCB Protein Data Bank (PDB) (http://
www.rcsb.org/) (for identifier codes of structures, sequen-
ces, and templates, see table 1). The analysis process was
restricted to residues annotated in the PDB structure file
and to sites found to be on the protein surface using the
NetSurf software (Petersen et al. 2009). Structural models
were generated for PB2 of the S-OIV isolate A/California/
14/2009 (H1N1) based on the PB2 structures of PDB. To
this end, the S-OIV PB2 sequence was compared with se-
quences of PB2 proteins with experimentally determined
structure using Blast (Altschul et al. 1990). For PB2, there
was no single structural template that covered all protein
domains. Therefore, two models were generated from two
templates, one for the PB2cap and one for the PB2c do-
main. The highest sequence identity, the largest coverage
of the S-OIV protein, and the quality according to resolu-
tion and free R-factor values were used as criteria to select
the best matching structural templates for the PB2cap and
PB2c domains. The S-OIV sequences were aligned to the
templates with MODELLER (version 9v6) (Sali and Blundell
1993). The alignments are expected to be reliable, given
a sequence identity of 94% and a lack of insertions and de-

Table 1. Sequence Codes and PDB Codes of Selected Templates.

letions. Subsequently, the structural models were gener-
ated with MODELLER.

Sequence Data, Alignments, and Phylogenetic

Tree Construction

Available HA sequences of the seasonal influenza A virus,
subtypes H1N1 and H3N2, were downloaded from the
GISAID EpiFlu database (http://platform.gisaid.org). Only
sequences longer than 1,500 bp were selected, resulting
in 1,734 and 3,221 sequences for H1 and H3, respectively
(supplementary table S2, Supplementary Material online).
Alignments of DNA and protein sequences were computed
with MUSCLE (Edgar 2004), and manually curated. Phylo-
genetic trees were inferred with PhyML v3.0 (Guindon and
Gascuel 2003) under the general time reversible (GTR) +
| + I'4 model, with the frequency of each substitution type,
the proportion of invariant sites (1), and the gamma distri-
bution of among-site rate variation with four rate catego-
ries (I'4) estimated from the data. Subsequently, the tree
topology and branch lengths of the maximum likelihood
tree inferred with PhyML were optimized for 200,000 gen-
erations with Garli v0.96b8 (Zwickl 2006). Substitution
events were inferred for the genome segment tree topol-
ogies from intermediates reconstructed with accelerated
transformation (AccTran; Felsenstein 2004). The total
number of substitutions occurring on all reconstructed in-
ternal branches was then calculated for each site indepen-
dently. These numbers were used to compute the dN/dS
ratio for each codon site (Bush et al. 1999; Suzuki 2006). The
ratios were transformed to P values by a one-sided Fisher
test for independence of the dN and dS values at an
individual site and the mean values of the protein. P values
were corrected for the ranking comparison with the false
discovery rate (Benjamini and Yekutieli 2001) and used as
a measure of selection for individual sites. Furthermore,
3,419 sequences of the PB2 protein and 7,373 sequences
of the HA protein of the 2009 S-OIV A/H1N1 strains were
downloaded from the GISAID EpiFlu database (supplemen-
tary table S2, Supplementary Material online). Phylogenetic
trees were inferred using neighbor joining with PAUP
(Swofford 2003) under the GTR model. Sequence
alignment and residue statistics were inferred as described
above.

Structural Clustering
Before clustering, all spatial coordinates were normalized to
fit the protein structure into a hypercube of size 1. For

Template PDB

Template Query/Template

Protein Query S-OIV Sequence Code and Chain PDB Sequence Sequence ldentity (%)
H1 (seas) — 2wrgH,| A/Brevig Mission/1/1918" —

H3 (seas) - 3hmgA,B A/Aichi/2/1968> —

H1 (swl) — 3al4A,B A/California/04/2009° —

PB2cap A/California/14/2009° 2vqzA A/Victoria/3/1975> 94.00

PB2c A/California/14/2009° 2vy6A A/Victoria/3/1975> 94.00

NoTte.—Strains are of the subtypes 'HIN1, >H3N2, and *H1N1swl.
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positive selection node

negative selection node

Fic. 2. Schematic drawing of the graph-cut approach. The minimum
cut minimizes the sum of weights of all edges cut by the line
separating the positive and negative selection nodes. For a single
node n, these are the lines shown in blue: the scaled distances to the
nonselected neighbors in Ns(n) and the connection to the other
side (i.e, the negative) selection node with the weight P(n).

clustering with a graph-cut algorithm (Boykov et al. 2002),
we constructed a graph in which each node represents
aresidue in the protein. Edges were added between all pairs
of residues m and n for which the Euclidean distance
dist(m, n) was below a threshold J, and these edges were
weighted according to their spatial distance (fig. 2).
Weights were set to be in inverse exponential proportion
to the Euclidean distance dist(m, n), that is, the closer the
residues were located relative to each other on the protein
structure, the larger the weight of the corresponding edge.
Therefore, nodes that are close to each other have a strong
connection to each other. We then augmented the graph
with two additional nodes, which we call the “positive
selection node” and the “negative selection node,”
corresponding to “source” and “sink” nodes in a standard
graph-cut formulation. These two special nodes are
connected to each residue node, with the weights equal
to the P value P(n) of the residue n in the case of the negative
selection node or 1 — P(n) in the case of the positive
selection node. Thus, residues that have high dN/dS ratios
(large 1 — P(n)) have a strong connection with the positive
selection node, whereas nodes with low dN/dS values (large
P(n)) have a strong connection with the negative selection
node. The two types of edges and edge weights were added
to the graph to represent the spatial information for each
residue (by adding distances to close neighbors) and the
evolutionary evidence for selection (by encoding the P value
of the dN/dS ratios).

A “graph cut” will divide this graph in two halves, one
containing the positive selection node and the other con-
taining the negative one (fig. 2). A “minimum graph cut” is
a graph cut that minimizes the sum E of the weights of the
edges connecting these two halves:

E= S0P +a S Pm) + Y 3D e,

nePos neNeg nePos meNeg,
MEN;(n)

where P(n)=1 — P(n), pos represents all nodes assigned to
the positive selection half, Neg represents all nodes

2066

assigned to the negative one, and Ns(n) represents all
neighbors of residue n within a distance less than J. This
means that the minimum cut will select residues to be in
Pos if they show strong signs of positive selection (i.e., a low
P value) and if they separate well spatially from the residues
in Neg. The distance ¢ defines how many sites of a single
residue are considered to be neighbors. We set d such that
a residue has, on average, ten close neighbors. The factor
B weighs this distance statistic. The smaller the f3, the more
likely the method is to balance the residue evenly between
the positive and the negative selection set halves according
to the ratio 1:x (we set « = 1). The larger the f, the more
expensive an even distribution becomes, and the more
stringently the method searches for a small exclusive set
of residues that spatially separate well from the rest. Since
the total distance statistic is dependent on the number of
residues in the protein, f§ has to be set manually (see sup-
plemental text S1, Supplementary Material online). Finally,
the selected residues were grouped into patches by merg-
ing all residues within a spatial distance d of each other into
a set. The parameter d was set to represent the first quartile
of all pairwise distances in the protein. Finally, we excluded
outliers by filtering out all patches that contained two or
less residues. Patches were identified for the H1 and H3 pro-
teins of human influenza A viruses of the subtypes HIN1
and H3N2, respectively, and for the HA and PB2 proteins
of the 2009 S-OIV of subtype HIN1. Subsequently, we
analyzed their enrichment with known epitope sites
(Caton et al. 1982; Wiley and Skehel 1987) and receptor
avidity—changing sites (Hensley et al. 2009).

Evaluation and Visualization

For evaluation, we calculated the precision (ratio of
selected epitope sites to all selected residues) and recall
(ratio of selected epitope sites to all epitope sites) of
the inferred patches based on the epitope regions defined
for subtypes H1 (Caton et al. 1982) and H3 (Wiley et al.
1981; Wiley and Skehel 1987; Suzuki 2006). For a list of
epitope sites used as a reference for evaluation, see supple-
mentary table S1 (Supplementary Material online). The
identified patches of all proteins were visualized with
PyMOL software (Schrodinger 2012).

Results

We analyzed the merits of a clustering technique based on
a graph-cut formalization for identification of patches of
sites under selection on the surface of the HA and PB2
proteins of several influenza A viruses. Our goal was to
rediscover regions known to play an important role in
the interaction of the virus with the host’s immune system
and that comprise many important sites for adaptation.
We therefore first considered known antigenic site regions
on the HA of the human influenza A virus (Caton et al.
1982; Wiley and Skehel 1987) as our approximate reference
for evaluation. The clustering algorithm identified dense
patches of residues, which mostly consisted of sites with
substantial deviation from the expected value of the
protein-wide dN/dS. In comparison, a site ranking based
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Table 2. Precision and Recall of Different Settings and Approaches
When Put to the Task of Detecting Influenza Epitope Sites.

Setting Recall (H1) Precision (H1) Recall (H3) Precision (H3)
Graph cut 0.53 0.49 0.25 0.94
PV 0.05 0.19 0.4 0.15 0.86
PV 0.1 0.19 0.4 0.17 0.81

on P value alone resulted only in a low sensitivity for
discovering relevant sites, with only 6 of 32 (H1) or 19
of 131 (H3) known antigenic or receptor avidity—changing
sites exhibiting a significant (P < 0.05) signal. To compare
this approach with our method, we calculated the precision
and recall for sites selected by setting a P value ranking at
0 = 0.05 (PV 0.05) or § = 0.1 (PV 0.1) as a threshold as well
as calculating these characteristics for the sites in patches
identified with our graph-cut approach. Our evaluation
(table 2) showed that including information on the spatial
proximity of residues under selection and applying our
clustering algorithm resulted in a significant improvement
in recall (i.e, a larger number of epitope sites being
identified) while maintaining similar or better precision
(meaning that a similar or lower number of nonepitope
sites were inferred). In the light of a recently proposed
hypothesis on the relevance of receptor avidity—changing
sites (Hensley et al. 2009), as opposed to the epitope sites of
hemagglutinin in subtype H1 antigenic evolution, we also
tested the value of these sites as a reference and compared
these with the inferred patches of sites. The currently avail-
able data do not allow discrimination between these two
hypotheses, as the reference sites of known receptor
avidity—changing sites and antigenic sites overlap greatly
(fig. 3). Still, residues 156 and 158, found to play the most
significant role in receptor avidity, are included in the
second patch identified for subtype H1.

selected antigenic sites

(LN

avidity changing sites

Fic. 3. Overlap between selected epitope and avidity-changing sites.
Venn diagram showing the overlap between subtype H1 residues in
patches selected by the dN/dS graph-cut approach (red), the
influenza A H1 epitope sites according to Caton et al. (1982) (blue),
and avidity-changing sites according to Hensley et al. (2009) (green).

FiG. 4. Patches under positive selection on HA. Patches on the HA
protein structure of subtype H1 and H3 selected by the graph-cut
algorithm. Patches are numbered according to tables 3 and 4.

Of the detected patches on the HA protein surface (fig. 4
and tables 3 and 4), several include known epitope or
receptor avidity—changing sites up to a fraction of 100%.
The patches contain many sites that are relevant for anti-
genic evolution (Matrosovich et al. 1997; Hay et al. 2003; Lin
et al. 2004; Yamada et al. 2010), including position 145,
which has been shown experimentally to have a high an-
tigenic impact (Smith et al. 2004).

We also compared our results with similar techniques
for predicting the properties of sites under positive selec-
tion or relevant for adaptive evolution. Our predictions
match 7 of 13 sites inferred to be under positive selection
by a maximum likelihood approach (Yang 2000). However,
10 of these 13 sites are at least direct neighbors of those
listed by our method, confirming its ability to find
positively selected regions on the tertiary structure. Similar
observations can be made for sites identified in Fitch et al.
(1997), where five of six are matches or direct neighbors
and the sites discussed in Bush et al. (1999) and Yang
(2000) (10 of 13). Furthermore, several techniques combine
biochemical and phylogenetic information to gain insights
into the adaptive evolution of influenza A. It has recently
been suggested that HA evolves by increasing the number
of charged amino acids in regions recognized by the
immune system, particularly in the dominant epitope
(i.e., the one with the highest proportion of amino acid
mutations, see Pan et al. 2011). We therefore compared
the number of charged and uncharged amino acids in

Table 3. Patches and Residues Selected for the Influenza A
Hemagglutinin Protein, Subtype H1.

Patch Residues

1 187, 188, 189, 190, 192, 193, 196, 197, 198
2 131, 132, 133, 158, 156, 129

3 163, 165, 166, 244, 248

4 274, 275, 276

5 227, 225, 219

6 82, 81, 56

7 240,169, 173

8 142, 144, 145

Note.—Underlined numbers refer to known epitope sites according to Caton
et al. (1982) and supplementary table S1 (Supplementary Material online). All
positions are given in H3 numbering (Aoyama et al. 1991).
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Table 4. Patches and Residues Selected for the Influenza A
Hemagglutinin Protein, Subtype H3.

Patch Residues

156, 157, 158, 159
188, 189, 192, 193
171, 172, 173, 174, 175
186, 220, 229
62,91,92, 9

53, 275, 276

196, 197, 198, 199

47, 48, 50

O 00NV WN=

Note.—Underlined numbers refer to known epitope sites (Wiley et al. 1981; Wiley
and Skehel 1987; Suzuki 2006; see supplementary table S1, Supplementary
Material online). All positions are given in H3 numbering.

the H1 and H3 consensus sequences for selected sites in the
patches and sites lying outside the patches. Indeed, we
found that the percentage of charged amino acids is much
higher within patches (H1: 67%, H3: 67%) than outside
patches (H1: 27%, H3: 28%). Finally, other authors suggest
statistics based on rates of substitutions toward specific
residues (Kosakovsky Pond et al. 2008; Kryazhimskiy and
Plotkin 2008) or based on epistatic effects between pairs
of sites (Kryazhimskiy et al. 2011). The overlap between
the predictions by both methods and ours is not large, pos-
sibly due to the different nature of the measured quantities
and statistics, and because, as Kryazhimskiy et al. 2011 dis-
cuss, hitchhiking changes without selective impact might
comprise a fraction of identified epistatic pairs, particularly
among the trailing change of a pair. However, our simple
criterion for positive selection can easily be exchanged for
more advanced estimates for adaptive evolution, allowing
a search for clusters of residues that show significantly
elevated statistics of such properties.

Additionally, we identified one patch in H1 without
known epitope sites, but with similar evidence for positive
selection as the other patches, which indicates its potential
importance for antigenic evolution (table 3 and fig. 4,
patch 4). For both subtypes, one patch in HA overlaps with
the receptor-binding site of the protein. This could be due
to the overlap of the antigenic and receptor-binding re-
gions. However, the receptor-binding site, particularly po-
sition 189, is also known to be relevant for adaptation to
avian and human hosts (Matrosovich et al. 1997; Sorrell
et al. 2009). Both the H1 and H3 of human influenza A vi-
ruses show evidence of selection acting upon the receptor-
binding region when grown in eggs, due to the effects of egg
adaptation (Robertson et al. 1987; Gambaryan et al. 1999).
Therefore, part of the signal in the receptor-binding sites
could also be due to the effects of egg cultivation.

Table 5. Patches and Residues Selected for the PB2 Protein of the
2009 Swine-Origin Influenza A/H1N1 Virus.

H1 (swl) PB2c

FiG. 5. Patches under positive selection on the HA and PB2 proteins of
2009 S-OIV. Patches on the 2009 swine-origin influenza A protein
structures of HA and the c-terminal region of PB2, selected by the
graph-cut algorithm. Patches are numbered according to tables 5 and 6.

As a second application, we analyzed data of 2009 S-OIV
A/HIN1. The molecular basis of the successful establish-
ment of the triple reassortant swine virus, which contains
several recently acquired avian segments (Smith et al.
2009), in the human host is not fully understood. It has,
in particular, been argued that lysine at position 627 of
the PB2 protein of the viral polymerase complex, instead
of the avian-like glutamic acid, is required for successful
transmission and replication within mammals (Gabriel
et al. 2005). However, the 2009 H1N1 virus still has lysine
at position 627 in PB2, which it has maintained since its
descent from an originally avian lineage. A change at res-
idue 591 has been proposed to compensate for the lack of
lysine in 627, allowing its efficient replication in mammals
(Yamada et al. 2010). We searched for regions with
evidence for positive selection and relevance for adaptation
of PB2 since the introduction of the 2009 S-OIV into the
human population. The virus might have acquired changes
in PB2 to further optimize replication and transmission in
the novel host. We identified five patches. The first (fig. 5
and table 5) is localized in a region around residue 591,
which lends support to its relevance for mammalian
and, in particular, human adaptation. To gain more insight,
we allowed the method to also report patches containing
only two residues. The resulting second patch surrounds
residue 714, which is known to increase polymerase activity
in mammals (Gabriel et al. 2005).

We furthermore analyzed the genetic sequences and
protein structure of the HA protein of 2009 S-OIV
A/H1IN1. We identified five patches of sites under positive

Table 6. Patches and Residues Selected for the HA Protein of the
2009 Swine-Origin Influenza A/HIN1 Virus.

Patch Residues
586, 588, 590
714, 715
660, 661

709, 711

575, 578

ViU & W N =

Patch Residues

135, 137, 140, 141, 142, 144, 145
53, 54, 56, 57, 276

63, 91, 92, 93, 94

186, 188, 189, 218

197, 198, 199, 200

VU A WN =
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FiG. 6. Epitope sites not under positive selection. The histogram displays the ratio of residues within the corresponding P value intervals and
demonstrates that many epitope sites feature insignificant P values resulting from an average dN/dS ratio. Epitopic sites are marked in red. The
lower plot shows the distribution of the P values versus the dN/dS ratios for all residues of the H1 subtype.

selection. The first one (fig. 5 and table 6) overlaps with the
Ca2 epitope site of seasonal H1 (Caton et al. 1982). The
remaining ones cluster densely at the head of the protein,
indicating emerging areas of relevance for adaptation and
antigenic evolution of the 2009 HIN1 virus.

Our software, AdaPatch, is available online (http://
www.cs.uni-duesseldorf.de/AG/AlgBio) and can also be
applied to analyze other viral proteins.

Discussion

We have developed a technique for identification of
candidate regions under positive selection in viral proteins.
Our method utilizes a common measure of selection, and
state-of-the-art techniques for phylogenetic tree inference,
ancestral state reconstruction, and clustering or separation
techniques. It requires only sequence information and
a PDB structure file as input. We identified clusters of sites
under positive selection based on information on the
spatial proximity of sites. Although other methods search
for functional importance, that is, conserved regions, or
focus specifically on the detection of epitope sites, we
aim to provide a fast and easy solution for identification
of patches of arbitrary shape and size whose combined

evolutionary signature indicates their importance for viral
adaptive evolution. In addition to dN/dS statistics, other
methods for evaluating positive selective pressure (e.g,
Kosakovsky Pond et al. 2005) can easily be included.

Focusing on the HA of two subtypes of the seasonal
influenza A virus and the HA and PB2 proteins of 2009
S-OIV A/H1N1, we searched for patches of sites under pos-
itive selection on their protein structures. The patches we
identified for the HA of the seasonal influenza A viruses
largely map to known epitope sites and sites associated with
receptor binding. Among the patch sites, we identified for the
PB2 protein of the 2009 S-OIV are sites with known relevance
for successful replication in mammalian hosts. Our analysis
showed that our approach increases the predictive accuracy
relative to the commonly used approach of searching for in-
dividual sites with significantly deviating dN/dS statistics. This
indicates that focusing on evolutionary change in larger
regions, instead of individual sites, is helpful for revealing
patches of residues that are important for adaptation, which
together show a stronger signal of positive selection.

The precision and recall values for detecting known epi-
tope sites based on patches under positive selection are
rather low overall, mostly at or below 50%, indicating that
not all sites in the epitope regions are under positive
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selection and contributing to adaptation of the viral HA.
Influenza A epitopes seem to be variable only in part
(fig. 6) and probably change over time, thus diluting the
overall signal of positive selection. Furthermore, receptor
avidity—changing sites or host-specificity determinants
may play a similarly important role in adaptive evolution,
which lowers precision if one considers only the epitope sites
that are predicted to be evolving under positive selection.
We evaluated our method using the influenza A viruses as
they are very well studied and much is already known about
the relevant sites for adaptive evolution. Still, our inferred
patches might be more informative than individual sites
for monitoring circulating viral strains for adaptive changes
with relevance for transmission and spread in the human
population. Our analyses of HA and PB2 identified many
sites known to be relevant for antigenic drift or for the ad-
aptation of influenza A to its host, improving its ability for
infection, replication, and immune evasion. We therefore
suggest analysis of the new patches identified in this study
to determine the underlying causes of their consistent
variability. We also suggest applying the method to other
protein structures of rapidly evolving viruses with as yet
unknown adaptive behavior in order to identify candidate
regions that are important for virus—host interaction.

Supplementary Material

Supplementary text S1 and tables S1 and S2 are available
at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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