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ABSTRACT

Profiling molecular features associated with the mor-
phological landscape of tissue is crucial for investi-
gating the structural and spatial patterns that under-
lie the biological function of tissues. In this study,
we present a new method, spatial gene expression
patterns by deep learning of tissue images (SPADE),
to identify important genes associated with morpho-
logical contexts by combining spatial transcriptomic
data with coregistered images. SPADE incorporates
deep learning-derived image patterns with spatially
resolved gene expression data to extract morpho-
logical context markers. Morphological features that
correspond to spatial maps of the transcriptome
were extracted by image patches surrounding each
spot and were subsequently represented by image la-
tent features. The molecular profiles correlated with
the image latent features were identified. The ex-
tracted genes could be further analyzed to discover
functional terms and exploited to extract clusters
maintaining morphological contexts. We apply our
approach to spatial transcriptomic data from differ-
ent tissues, platforms and types of images to demon-
strate an unbiased method that is capable of obtain-
ing image-integrated gene expression trends.

INTRODUCTION

Until recently, numerous technologies have been developed
to analyze spatial gene expression patterns that provide
molecular profiling with spatial information in tissues (1).
In particular, recent progress in spatial gene expression tech-
nologies that apply next-generation sequencing with spa-

tial barcodes, fluorescence in situ hybridization (FISH), or
in situ sequencing (ISS) has innovated experimental ap-
proaches to decipher the spatial heterogeneity of biologi-
cal processes (2–7). A spatial context at a single-cell level of
resolution has enabled the analysis of the location of hetero-
geneous cells and their spatial interactions in tumor tissues,
as well as the brain, human heart, and inflammatory tissues
(5–14).

Although spatial gene expression analyses have been ac-
tively developed and applied to various tissues and diseases,
analytic methods that integrate transcriptome and imag-
ing data are lacking. Despite the feasibility of analysis that
combines gene expression, spatial interaction between dif-
ferent spots of spatial barcodes, and image patterns, most
methods have regarded gene expression from spots as in-
dependent samples and interpreted similarly to single-cell
RNA-sequencing (scRNA-seq) data (5,8–11,14). In partic-
ular, one of the advantages of spatial gene expression data
is the additional information of coregistered images, which
contain both morphological and functional patterns. In this
regard, important genes related to the image features can be
extracted and further utilized to interrogate molecular pro-
files underlying structural and morphological architectures.

In this study, we introduce a method for identifying
spatial gene expression patterns by deep learning of tissue
images (SPADE). SPADE extracts gene expression mark-
ers by incorporating morphological patterns of an image
patch surrounding each spot that contains transcriptomic
data. A convolutional neural network (CNN) was em-
ployed to define image latent features associated with gene
expression. We present molecular markers of various tis-
sues associated with the morphological landscape to dis-
cover not only a spatial trend of gene expression in tis-
sues but also biological processes related to histological
architecture.
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MATERIALS AND METHODS

Data

The slide images and count data of gene expression for the
spots from human breast cancer and adult mouse brain tis-
sues were obtained from a publicly available dataset pro-
vided by 10× Genomics (https://www.10xgenomics.com/
resources/datasets/). The distance between the center of
neighboring spots and the diameter of each spot was 100
and 55 micrometers, respectively in both datasets. For hu-
man breast cancer, ‘Block A section 1’ data, which contains
a total of 3813 spots and 33538 genes on a Hematoxylin
and Eosin (H&E) stained slide, were used for the analysis.
For mouse brain, ‘Adult Mouse Brain Section 2 (Coronal)’
data, which contains a total of 2807 spots and 32285 genes
on an immunofluorescence stained slide with three chan-
nels (DAPI, Anti-NeuN, and Anti-GFAP stains) was uti-
lized. For both tissues, high-resolution tissue images, scale
factors, and coordinates of spots were included in the study.

The H&E stained slide images and count data of
gene expression for the spots from mouse olfactory bulb
and human prostate cancer tissues were obtained from
a publicly available dataset provided by SciLife labora-
tory (https://www.spatialresearch.org/resources-published-
datasets/). The distance between the center of neighboring
spots and the diameter of each spot were 200 and 100 �m,
respectively in both datasets. Among the 12 section slides
of the olfactory bulb, ‘MOB Replicate 1’, which contains
267 spots and 16383 genes, was utilized for further analysis.
Among the 12 section slides of the prostate, ’P3.3’, which
contains 502 spots and 17355 genes and ‘P2.4’, which con-
tains 448 spots and 15697 genes were utilized for down-
stream analysis. Tissue slide images, spot coordinates, and
transformation matrix were downloaded. For prostate can-
cer data, a pathologic annotation for cancer tissue was ad-
ditionally included in the analysis (8).

Image feature extraction from tissue images

A high-resolution H&E-stained slide was cropped into mul-
tiple square patches. The patch size depends on the size of
the entire tissue image. The sizes of the images in breast can-
cer, olfactory bulb, prostate cancer (P3.3), prostate cancer
(P2.4), and brain tissues were 2000 × 2000, 9931 × 9272,
2867 × 3276, 2918 × 3277 and 2000 × 2000 pixels, respec-
tively, and the patch sizes were 48 × 48, 600 × 600, 200 ×
200, 190 × 190 and 48 × 48 pixels (approximately 218 × 218,
476 × 476, 562 × 562, 559 × 559 and 218 × 218 �m), re-
spectively. The center of the image patch was determined by
sampling spot coordinates from the spatial transcriptomic
data. Each image patch was provided as an input for a pre-
trained CNN (Figure 1A). As a pretrained CNN model, we
used VGG-16, which was trained by the classification task
of natural images of ImageNet data (15,16). The VGG-16
model was used as a feature extractor. Thus, the last layer,
which consists of 1000 nodes for classification labels for
ImageNet challenge, was removed. In addition, to apply a
patch-based approach that can have variable patch size ac-
cording to the size of the entire tissue image, convolutional-
only layers were included. The last convolutional layer pro-
duced 2D images instead of vectors, thus a global-average
pooling layer was added, considering the size-adaptive fea-

ture extractor (17). This feature extractor produced 512D
vectors.

Dimension reduction for image features

To visualize the image features of all patches or gene fea-
tures corresponding to spots, t-distributed stochastic neigh-
bor embedding (t-SNE) was employed (18). t-SNE is a non-
linear method of reducing the dimensions of data and vi-
sualizing high-dimensional data in low-dimensional space.
The perplexity was set at 30, and the initialization of embed-
ding was based on principal component analysis (PCA).

PCA was performed to reduce the dimensionality of 512
features obtained from the VGG-16 model and extract prin-
cipal components (PCs) (Figure 1A). These PCs were also
mapped to the tissue image according to the location of
patches to visualize spatial distribution patterns of image
features. The whole process was implemented in Python ver-
sion 3.7.0 with scikit-learn (ver. 0.21.3) and matplotlib (ver.
3.3.1).

SPADE genes

The spots with the number of unique genes less than 200
were excluded from the downstream analysis. A function
SCTransform in the R package Seurat (version 3.1.5) was
applied to normalize feature counts in each spot (19). To
discover SPADE genes, a linear model was generated to
fit scaled gene expression of all genes in each spatial tran-
scriptomic dataset to PCs of image latent features. The em-
pirical Bayes algorithm in the R package limma (version
3.44.3) was applied (20), and associated genes based on lin-
ear regression analysis for the value of PCs were ranked ac-
cording to regression coefficient (RC) or corrected P-value
with the Benjamini–Hochberg method (Figure 1A). The re-
sults for linear regression analysis for each PC were visu-
alized by the R package EnhancedVolcano (version 1.6.0)
(https://github.com/kevinblighe/EnhancedVolcano).

List of the genes presenting a false discovery rate (FDR)
less than 0.05 in PCs which explain >2% of the variance in
512D image features were gathered to select SPADE genes.
The number of utilized PCs were 5, 5, 9, 9 and 3 in the
breast, olfactory, prostate (P3.3), prostate (P2.4) and brain
tissues, respectively. SPADE genes were filtered by log2RC
over 0.58, 0.02, 0.009 and 0.26 for breast, olfactory, prostate
(P3.3), and brain tissue, respectively. The threshold was de-
termined according to the results of limma, limiting the
pooled number of SPADE genes from all selected PCs be-
tween 900 and 1100, except for the prostate tissue (P2.4)
which had a total of 313 significant genes and the log2RC
threshold was not applied. For spot clustering, SPADE
genes derived from each PC were pooled and utilized for
downstream analysis. The whole process was performed in
R version 4.0.2.

Gene ontology analysis

Gene ontology (GO) analysis was implemented and visual-
ized with the R package clusterProfiler (version 3.16.1) us-
ing the enrichGO function (21–23). The top enriched GO
terms in subcategories including biological process (BP),
cellular component (CC) and molecular function (MF)

https://www.10xgenomics.com/resources/datasets/
https://www.spatialresearch.org/resources-published-datasets/
https://github.com/kevinblighe/EnhancedVolcano
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Figure 1. Discovery of image-integrated spatially variable genes and functional terms in breast cancer data. (A) Multiple patches were extracted from a
tissue slide image based on the coordinates of sampling spots. Each image patch was provided as an input to the pretrained convolutional neural network
(CNN) model, VGG-16. A total of 512 image features extracted from the CNN were further processed with principal component analysis (PCA) to reduce
the dimensions. SPADE genes were constructed by a linear model to identify gene expression correlated with the PC image latent of each spot. (B) Spatial
mapping of the PC1, PC2 and PC3 image latent from breast cancer tissue. The PC values of each spot are visualized using colormaps. The maximum and
minimum values of the colormap represent two standard deviations above and below the mean value, respectively. (C) Volcano plots for highly associated
genes with PC1 image latent features. The cutoff for the log2 regression coefficient (RC) and adjusted P-value (Benjamini–Hochberg correction) is 0.55
and 10−15

, respectively. Spatial expression of the top four genes representing the greatest contrast in the (D) PC1 and (E) PC3 image latent space. The top
genes are presented in descending order of |log2RC| (FDR < 0.05). The normalized gene expression level of each spot is visualized with colormaps. The
maximum and minimum values of the colormap represent two standard deviations above and below the mean expression, respectively. Gene ontology (GO)
analysis for (F) PC1 and (G) PC3 SPADE genes showing positive or negative association with PC image latent in breast cancer data. The top 3 positive
or negative GO terms for each subcategory, biological process (BP), cellular component (CC) and molecular function (MF), are exhibited in the left and
right panel, respectively. The number of overlapping genes is expressed as the size of the dot, and the Benjamini-Hochberg adjusted P-value is exhibited
with a colormap.
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were extracted based on SPADE genes from each PC im-
age feature. The GO analysis was performed separately in
SPADE genes which show a positive or negative association
with PC image latent. For a given list of genes, a gene count
represents the number of overlapping genes with each GO
term, a gene ratio the ratio of the gene count to the num-
ber of genes in the list, and background ratio (BgRatio) the
ratio of the number of genes in each GO term to all of the
genes in annotation database. P-value was calculated based
on the hypergeometric model and multiple comparison cor-
rection was performed with the Benjamini–Hochberg false
discovery rate with the cutoff of 0.05.

Clusters based on expression data of selected genes

The sampling spots were conventionally clustered accord-
ing to the scRNA-seq analysis workflow in the R package
Seurat (24). The spatial information of each spot was not
included in this clustering process. The function SCTrans-
form was performed to identify the top 1000 highly vari-
able genes (HVGs), which show the variability of expres-
sion across spots. Dimension reduction with PCA followed
by shared nearest neighbor (SNN) graph-based spot clus-
tering using the Louvain algorithm was done (25,26). DEG
analysis for each highly variable gene (HVG)-based cluster
was performed by FindAllMarkers with both thresholds for
log fold change and a minimum fraction of detected spots in
each cluster as 0.25. The selected marker genes were visual-
ized by a heatmap. As another clustering approach, SPADE
genes were used to obtain an SNN graph of spots instead
of HVG. Other methods were the same as the HVG-based
clustering approach. Dimension reduction with PCA on
SPADE genes followed by SNN graph-based spot cluster-
ing using the Louvain algorithm was performed as HVGs.
The SPADE and HVG-based cluster numbers were rear-
ranged such that the nth SPADE-based cluster shared most
of the spots with the nth HVG-based cluster and the shared
number of spots is in descending order. Marker genes for
each SPADE-based cluster were also extracted by FindAll-
Markers with the thresholds identical to HVGs and visual-
ized by a heatmap.

The expression of SPADE genes and clusters was visual-
ized using ComplexHeatmap (version 2.4.3) (27). The clus-
ters generated from SPADE genes and HVGs were com-
pared. For prostate cancer data, the pathologic annota-
tion for each spot was compared with SPADE and HVG-
based clusters. The agreement between the pathologic an-
notation and the two spot clusters was evaluated by ad-
justed rand indices. The computation was performed with
R package mclust (version 5.4.6) (28). In addition, SPADE
and HVG-based clusters were spatially mapped to tissue
images. Mismatched spot clusters with different SPADE
and HVG-based cluster numbers were mapped to the tissue
images.

RESULTS

Markers and functional molecular features associated with
morphological landscape of breast cancer tissue

We discovered important gene markers correlated to im-
age features extracted by a CNN (Figure 1A). Five pub-

licly available datasets were analyzed to identify gene ex-
pression markers associated with the morphological land-
scape, as defined as SPADE genes. Image latent features
represented by 512D vectors were extracted by a pretrained
CNN model, VGG-16 (15), from image patches surround-
ing spots that correspond to transcriptome data. To define
highly variable image latent features, PCA was applied to
the output of the VGG-16 for all patches corresponding
to spots. SPADE genes were identified by linear regression
analysis with PCs of image features.

First, SPADE was applied to human breast cancer tissue
containing 3813 sampling spots. The dimensions of 512 im-
age features were reduced by PCA, and PC1, PC2 and PC3
values of each spot were mapped to an H&E slide (Figure
1B). PC1 to PC3 explained 68.83%, 13.81% and 5.49% of
the data variance in 512D image latent, respectively. Genes
associated with PC1, PC2 and PC3 were identified (Figure
1C, Supplementary Figure S1, S2 and Table S1). The top 30
genes with FDRs below 0.05 were selected and then repre-
sented as a heatmap according to the increase in PCs (Sup-
plementary Figure S3). The top 4 genes, MALAT1, RPL41,
C3 and RPL30, from PC1 image latent, were mapped to
the tissue (Figure 1D). The top 4 genes from PC2 and PC3
image latent also showed spatially variable expression ac-
cording to morphological patterns (Supplementary Figure
S4 and Figure 1E).

GO analysis (21,22) was performed with SPADE genes
derived from PCs. PC1 SPADE genes presenting positive
association with image feature were enriched with endo-
plasmic reticulum and ribosomal GO terms and negative
association with complement system and humoral immu-
nity (Figure 1F and Supplementary Table S2). Meanwhile,
PC2 SPADE genes overrepresented GO terms regarding
the metabolic process in a positive group (Supplementary
Figure S5). PC3 overrepresented similar terms to PC1 in a
positive group and extracellular matrix terms in a negative
group (Figure 1G).

Markers and functional terms related to morphological pat-
terns of olfactory bulb and prostate cancer tissues

SPADE was applied to olfactory bulb and prostate cancer
datasets which have sparser distances between the neighbor-
ing spots compared to the breast cancer data. The olfactory
bulb included 267 spots with spatial gene expression data.
PC1 to PC4 image latents which explain 64.23%, 10.23%,
5.36% and 3.39% of data variance were spatially mapped to
the tissue (Figure 2A). The top associated genes with each
PC value were presented as volcano plots, scatter plots and
heatmaps (Figure 2B, Supplementary Figure S6–S8 and Ta-
ble S1). Since none of the genes were significantly associated
with PC2 image latent, it was excluded from further analy-
sis (FDR < 0.05). The expression of the top genes gradually
changed according to the increase of the PC value. When
the top 5 genes were mapped to the tissue, it showed distinct
gene expression patterns in different layers of the olfactory
bulb (Figure 2C, D and Supplementary Figure S9). Among
the top 5 marker genes from PC1, NRGN and CAMK4 are
known markers for the granule cell layer (29).

Functional enrichment analysis was performed and re-
vealed the GO terms related to morphological patterns
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Figure 2. Investigation of morphological marker genes and functions in olfactory bulb data. (A) Spatial mapping of the PC1, PC2, PC3 and PC4 image
latents. The PC values of each spot are visualized using colormaps. The maximum and minimum values of the colormap represent two standard deviations
above and below the mean value, respectively. (B) Heatmap for the top 30 highly associated genes for log2RC in the PC1 image latent space from olfactory
bulb tissue. Hierarchical clustering was performed for the top 30 genes, and the PC1 value in each of the spots is shown at the top. Spatial expression of
the top 5 genes representing the greatest contrast in the (C) PC1 and (D) PC4 image latent space from olfactory bulb tissue. The top genes are presented in
descending order of |log2RC| (FDR < 0.05). The normalized gene expression level of each spot is visualized with colormaps. The maximum and minimum
values of the colormap represent two standard deviations above and below the mean expression, respectively. Gene ontology (GO) analysis for (E) PC1
and (F) PC4 SPADE genes showing positive or negative association with PC image latent in olfactory bulb data. The top 3 positive or negative GO terms
for each subcategory, biological process (BP), cellular component (CC) and molecular function (MF), are exhibited in the left and right panel, respectively.
The number of overlapping genes is expressed as the size of the dot, and the Benjamini-Hochberg adjusted P-value is exhibited with a colormap.
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of the tissue. SPADE genes from PC1 image latent were
enriched with ‘synapse organization’, ‘neuron to neuron
synapse’ and ‘cation channel activity’ in a positive group
and ‘epithelial cell proliferation’, ‘cell leading edge’ and ‘cell
adhesion molecule binding’ in a negative group (Figure 2E).
On the other hand, PC4 positive SPADE genes overrepre-
sented terms related to membrane potential while negative
SPADE genes regarding actin cytoskeleton (Figure 2F and
Supplementary Table S2).

The utility of SPADE was further validated in prostate
cancer tissue (P3.3) which was analyzed in a previous spa-
tial transcriptomics paper (8). PC1, PC3 and PC5 values
which explained 16.70%, 7.69% and 4.45% of data variance
were spatially mapped to the tissue (Figure 3A and Sup-
plementary Figure S10). There were no significantly associ-
ated genes with PC2 and only one associated gene (PXDN)
in PC4 image latents, thus results from the two PCs were
not visualized. The top associated genes with each PC were
identified and exhibited by heatmaps for gene expression
(Supplementary Figure S11–S13 and Table S1). The top
genes were differentially expressed in cancer and non-cancer
tissues as presented in Figure 3B, C and Supplementary Fig-
ure S14.

The GO analysis was implemented for PC1, PC3 and PC5
SPADE genes. The PC1 overrepresented functional terms
such as ‘RNA splicing’, ‘Golgi vesicle transport’, ‘focal ad-
hesion’ and ‘cell adhesion molecule binding’ in a positive
group while ‘muscle contraction’ and ‘collagen-containing
extracellular matrix’ in a negative group (Figure 3D). On
the other hand, PC3 genes were enriched with GO terms
regarding ‘negative T-cell selection’ in a positive group and
PC5 genes were enriched with ‘regulation of cell-substrate
adhesion’ in a positive group (Figure 3E, Supplementary
Figure S15 and Table S2).

Meanwhile, to assess the reproducibility of the SPADE in
the heterogeneous cancer tissues, the analysis was repeated
in another prostate cancer dataset (P2.4). PC1 to PC4 image
latent which explained 16.38%, 14.63%, 8.61% and 5.96%
of data variance were spatially mapped to the tissue (Figure
3F and Supplementary Figure S16A). Also, the top associ-
ated genes and GO terms in each PC were investigated (Fig-
ure 3G, H, Supplementary Figure S16B–D, S17 and Tables
S1, S2). Pairwise cosine distances between 512D eigenvec-
tors of PC image latent from P3.3 (data 1) and P2.4 (data
2) tissues were computed. It revealed that among all PC
pairs, PC1 image feature from data 1 and PC2 or PC4 from
data 2 extracted top 2 similar morphological patterns (Sup-
plementary Figure S18A). The GO terms for PC1 SPADE
genes from data 1 and PC2 genes from data 2 were com-
pared (Figure 3D, H). Among the 229 positive and negative
GO terms in data 1 and the 119 GO terms in data 2, 56
terms were overlapped. The top 10 shared GO terms with
the highest gene ratio were related to muscle contraction,
extracellular matrix and cell adhesion (Supplementary Fig-
ure S18B). Likewise, the 229 PC1 GO terms from data 1 and
382 PC4 GO terms from data 2 were compared and showed
47 overlapping genes (Figure 3D and Supplementary Figure
S17B). The top shared terms were similar to the PC1–PC2
pairs (Supplementary Figure S18C).

Clustering based on SPADE genes in H&E stained tissue

For the next step, spots from prostate cancer tissue were
clustered with SPADE genes. In addition, the SPADE-
based cluster was compared with the HVG-based cluster
to evaluate performance to distinguish cancer from non-
cancer tissue. A total of 910 SPADE genes were selected
and spots were clustered with SNN graphs (25,26). The
markers of clusters were identified (Supplementary Figure
S19A and Table S3). As conventional methods use HVGs
instead of image-related genes, the patterns of clusters are
similar but different. The differentially expressed genes be-
tween HVG-based clusters were extracted (Supplementary
Figure S19B and Table S3). A heatmap for the SPADE
genes revealed distinct gene expression patterns in each
SPADE-based cluster (Supplementary Figure S19C). The
number of HVGs, SPADE genes and marker genes of clus-
ters derived by HVG and SPADE are represented as a
Venn diagram (Supplementary Figure S19D). The clusters
based on SPADE genes and HVGs were visualized by two-
dimensional t-SNE (18) of transcriptomic data (Figure 4A)
and image latents (Figure 4B). Notably, both t-SNE maps
of transcriptomic data (Figure 4A) were based on SPADE
genes and exhibited overlapping, but different clustering re-
sults. In terms of histologic image features, SPADE-based
clusters showed relatively separated patterns compared with
HVG-based clusters (Figure 4B). The spatial mapping of
the SPADE and HVG-based clusters are presented and
compared with pathologic annotation for prostate cancer
tissue (Figure 4C). Besides, the number of spots shared
between the pathologic annotation and SPADE or HVG-
based cluster was exhibited as heatmaps (Figure 4D). The
adjusted rand index was 3.24 × 10−1 between pathologic
annotation and SPADE-based cluster while 7.36 × 10−2 be-
tween the annotation and HVG-based cluster. Also, when
considering spots in clusters 2 and 3 as cancer and 1 and
4 as non-cancer tissue, diagnostic accuracy was 90.51% in
SPADE while in 60.40% HVG-based clusters.

The spot clustering was also performed in breast cancer
and olfactory bulb tissues. A total of 1073 and 968 SPADE
genes were chosen from breast cancer and olfactory bulb
data, respectively. For both tissues, the number of shared
spots between SPADE and HVG-based clusters was visual-
ized with heatmaps and both clusters were mapped to tis-
sue slides (Supplementary Figure S20, 21). For breast can-
cer tissue, the highest number of mismatched spots was ob-
served in SPADE 6-HVG 10 cluster (n = 249). The greater
ratio of adjacent SPADE 6-HVG 10 mismatched spots to
matched spot number was observed in SPADE 6-HVG 6
than SPADE 10-HVG 10 clusters (Supplementary Figure
S22A). Meanwhile, in olfactory bulb tissue, the greatest
number of mismatched spots was found between SPADE
2-HVG 6 cluster (n = 32). SPADE-based cluster consid-
ered spots inside the granule cell layer as one cluster (cluster
2) while the HVG-based cluster divided the layer into two
clusters (clusters 2 and 6). The next greater number of mis-
matched spots was observed in the SPADE 3-HVG 5 cluster
(n = 6). All of the spots were located at the boundary of the
external plexiform layer (mainly cluster 3) and the mitral
cell layer (mainly cluster 5) (Supplementary Figure S22B).
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Figure 3. Identification of morphologic markers and functional terms in prostate cancer data (P3.3 and P2.4). (A) Spatial mapping of the PC1 and PC5
image latents in P3.3 tissue. The PC values in each spot are visualized using colormaps. The maximum and minimum values of the colormap represent
two standard deviations above and below the mean value, respectively. Spatial mapping of the top 4 genes showing the greatest contrast in (B) PC1 and
(C) PC5 image latent space. The top genes are presented in descending order of |log2RC| (FDR < 0.05). The normalized gene expression level in each
spot is visualized using colormaps. The maximum and minimum values of the colormap represent two standard deviations above and below the mean
expression, respectively. Gene ontology (GO) analysis was performed in P3.3 tissue for (D) PC1 and (E) PC5 SPADE genes showing positive or negative
association with PC image latent. The top 3 positive or negative GO terms for each subcategory, biological process (BP), cellular component (CC), and
molecular function (MF), are exhibited in the left and right panel, respectively. The number of overlapping genes is expressed as the size of the dot, and the
Benjamini–Hochberg adjusted P-value is exhibited with a colormap. (F) Spatial mapping of the PC2 image latent in P2.4 tissue. The PC values in each spot
are visualized using a colormap. The maximum and minimum values of the colormap represent two standard deviations above and below the mean value,
respectively. (G) Spatial mapping of the top 4 genes showing the greatest contrast in PC2 image latent space. The top genes are presented in descending
order of |log2RC| (FDR < 0.05) in the top and bottom rows. (H) The GO analysis was implemented in P2.4 tissue for PC2 SPADE genes presenting a
positive or negative association with PC2 image latent. The top 3 positive or negative GO terms for each subcategory, BP, CC and MF, are exhibited in
the left and right panel, respectively. The number of overlapping genes is expressed as the size of the dot, and the Benjamini-Hochberg adjusted P-value is
exhibited with a colormap.



e55 Nucleic Acids Research, 2021, Vol. 49, No. 10 PAGE 8 OF 12

Figure 4. Spot clustering based on SPADE genes in prostate cancer (P3.3) data. (A) t-SNE plots of transcriptomic data from prostate cancer tissue. Both of
the plots were generated based on transcriptomic profiles of SPADE genes. SPADE and HVG-based cluster identity is visualized in the left and right panel,
respectively. (B) t-SNE plots for deep learning-derived image features from prostate cancer data. SPADE and HVG-based cluster identity is visualized in
the left and right panel, respectively. (C) Spatial distribution of pathologic annotation and clusters based on SPADE genes or HVGs are mapped to the
tissue slide. For the pathologic annotation, spot 1 stands for cancer and spot 2 for non-cancer tissues. (D) Cross tables exhibiting the number of overlapping
spots between SPADE or HVG-based cluster and pathologic annotation are presented in the left and right panel, respectively. The top row in the cross
table shows the spot numbers corresponding to cancer tissue and the bottom row for non-cancer tissue.

SPADE using immunofluorescence image

The performance of SPADE was evaluated in a tissue
slide other than the H&E stain. The mouse brain tissue
with three-channel immunofluorescence staining contain-
ing 2807 spots was selected for the analysis. PC1, PC2 and
PC3 values which explain 79.64%, 7.73% and 3.57% of the
variance in each spot were mapped to the tissue (Figure
5A). The results for linear regression analysis are presented
as volcano plots (Supplementary Figure S23). Also, genes
showing the greatest regression coefficient in PCs were iden-
tified (Supplementary Figure S24). The top 30 genes for
PC1, PC2 and PC3 image latents exhibited contrasts in gene
expression as the PC values changed (Supplementary Fig-
ure S25 and Table S1). The top 5 genes for PC1, PC2 and
PC3 revealed distinguishable patterns of gene expression in

different cortical layers and the hippocampus (Figure 5B–
D).

Functional gene enrichment analysis showed that the top
overrepresented GO terms in PC1 are ‘myelin sheath’ in a
positive group and ‘ATP metabolic process’ in a negative
group (Figure 5E). For PC2 and PC3, ‘neuron to neuron
synapse and ‘postsynaptic density’ were discovered in a pos-
itive group and ‘myelin sheath’ and ‘axon terminus’ in a neg-
ative group (Figure 5F, Supplementary Figure S26 and Ta-
ble S2).

Spot clustering was performed based on 1026 SPADE
genes from PC1 to PC3 image latents, and marker genes
of each SPADE-based cluster were extracted (Supplemen-
tary Figure S27A and Table S3). Also, conventional spot
clustering with HVGs was done and marker discovery was
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Figure 5. Application of SPADE in immunofluorescence stain of mouse brain. (A) Spatial mapping of the PC1, PC2 and PC3 image latents. The PC values
in each spot are visualized using colormaps. The maximum and minimum values of the colormap represent two standard deviations above and below the
mean value, respectively. Spatial mapping of the top 5 genes showing the greatest contrast in (B) PC1, (C) PC2 and (D) PC3 image latent space. The top
genes are presented in descending order of |log2RC| (FDR < 0.05). The normalized gene expression level in each spot is visualized using a colormap. The
maximum and minimum values of the colormap represent two standard deviations above and below the mean expression, respectively. Gene ontology (GO)
analysis for (E) PC1 and (F) PC3 SPADE genes showing positive or negative association with PC image latent in mouse brain data. The top 3 positive or
negative GO terms for each subcategory, biological process (BP), cellular component (CC) and molecular function (MF), are exhibited in the left and right
panel, respectively. The number of overlapping genes is expressed as the size of the dot, and the Benjamini-Hochberg adjusted P-value is exhibited with
a colormap. (G) Spatial distribution of SPADE and HVG-based spot clusters mapped to the mouse brain tissue. The background immunofluorescence
image was removed such that the colors of each cluster are more clearly visualized. The cluster numbers for the SPADE or HVG-based cluster are exhibited
in the right panel. (H) Enlarged images showing the spatial distribution of SPADE and HVG-based clusters in cortical layers (left panel) and amygdala
(right panel). The images for the SPADE and HVG-based clusters are exhibited in the top and bottom panel, respectively.
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performed. (Supplementary Figure S27B and Table S3).
Heatmaps for SPADE genes showed distinct gene expres-
sion patterns across different SPADE-based and HVG-
based clusters (Supplementary Figure S27C). Clusters de-
fined by the two different genes were mapped to the tis-
sue slide and spatial distribution of the clusters was vi-
sually assessed (Figure 5G). SPADE-based cluster showed
a relatively homogeneous distribution of spots within the
same cortical layer and amygdala while the HVG-based
cluster presented heterogeneous distribution (Figure 5H).
The top 2 mismatched clusters having the greatest number
of spots were spatially mapped to the tissue and the differ-
ence between the two clustering methods was visually as-
sessed (Supplementary Figure S28). SPADE 11-HVG 6 and
SPADE 15-HVG 4 mismatched spot clusters were located at
the subcortical layer and hippocampus, respectively (Sup-
plementary Figure 28B, C). In summary, SPADE could bet-
ter delineate the margins of both cortical and subcortical
structures compared with HVG-based clustering.

DISCUSSION

SPADE, which integrates histological image patterns with
spatial gene expression data, identified genes associated
with the morphological landscape. The analysis of five dif-
ferent spatial transcriptomic datasets showed a flexible and
scalable application of SPADE to various platforms, as well
as tissue types and stain methods. The mapping of SPADE
genes on tissue images showed spatial patterns that distin-
guish the morphological architectures. Moreover, SPADE
was able to analyze biological processes related to the mor-
phological heterogeneity of tissues by using conventional
analytic methods, such as gene ontology. Since SPADE
genes were related to heterogeneous image patterns, it was
suggested that clustering based on these genes can effec-
tively preserve morphological contexts.

SPADE can be applied as an investigative tool to un-
veil key genes or enriched biological processes related to
the spatial and morphological heterogeneity of tissue. In
breast cancer tissue, the MALAT1 gene showed the great-
est variation in expression associated with PC1 image la-
tent features (Figure 1D). MALAT1 is differentially ex-
pressed between cancer and stromal tissues and works as
a tumor suppressor gene in breast cancer patients (30). As
MALAT1 explained the spatial and cellular heterogeneity
of tumor tissue, it can be assumed to be a key molecular
feature underlying the morphological heterogeneity of the
tumor microenvironment. Furthermore, the enriched GO
terms for SPADE genes of breast cancer tissue included
immune response and extracellular matrix (Figure 1F, G),
which are important components of the tumor microenvi-
ronment, exhibited under H&E staining (31,32). The bio-
logical implications of SPADE genes were also found in ol-
factory bulb and prostate cancer tissues. NRGN, one of the
spatial marker genes in the olfactory bulb (Figure 2C) and a
gene when translated to a protein, binds to calmodulin and
modifies the downstream signaling pathway in neurons, is
localized in the granule cell layer of the olfactory bulb (33).
MYL9, a component of the myosin light chain, is depleted
in prostate cancer compared to non-cancer tissue (34). Be-
sides, PDLIM5, a gene related to actin cytoskeleton orga-

nization, aids in the proliferation and migration of cancer
cells (35). MYL9 and PDLIM5 were selected as PC1 or PC2
spatial markers in prostate cancer tissues (Figure 3B, Sup-
plementary Figure S16B and Table S1) and among the GO
terms, the muscle contraction and cell adhesion were highly
enriched in SPADE genes of prostate cancer tissue (Figure
3D, E, H and Supplementary Figure S17). Meanwhile, in
mouse brain immunofluorescence data, PC1 image features
were associated with mitochondrial genes and correspond-
ing negative GO terms (Figure 5B, E and Supplementary
Figure S23A). There is little evidence that mitochondrial
genes are differentially expressed across brain cortical and
subcortical structures. However, the density of DAPI nu-
clear stain increases along with PC1 value and total unique
molecular identifier (UMI) counts are significantly corre-
lated with PC1 value (Supplementary Figure S29), thus PC1
image latent reflects the density of the nucleus in the patches.
The expression of mitochondrial genes dominates in nu-
cleus depleted regions of the tissue where PC1 value is low,
probably resulting in the extraction of mitochondrial genes
in top PC1 negative genes.

The molecular markers and functions identified by
SPADE showed variable patterns according to different im-
age latent features. In the case of P3.3 prostate cancer tis-
sue, PC1 and PC5 image latent features represented the dif-
ferent morphologic patterns of cancer tissues (Figure 3A).
The SPADE genes and molecular functions were selected
accordingly, thus GO terms for PC1 and PC5 were similar
but different. PC1 and PC5 SPADE genes overrepresented
functions such as ‘Golgi vesicle transport’ and ‘regulation
of cell-substrate adhesion’ which are related to the patho-
genesis of prostate cancer (Figure 3D, E) (35,36). Also, in
the breast cancer tissue, PC1 extracted image features in the
cancer tissue while PC3 extracted in both extracellular ma-
trix and cancer tissues (Figure 1B). GO terms associated
with PC1 and PC3 were similar but different. PC1 nega-
tively related genes included and ‘regulation of complement
activation’, ‘phagocytosis’ and ‘immunoglobulin receptor
binding’ which are associated with immune functions (Fig-
ure 1F). On the other hand, PC3 negatively related genes
were mainly composed of extracellular matrix terms (Fig-
ure 1G). As different molecular functions were discovered
according to the image latent features, SPADE could lead
to the analysis of close interactions of molecular function
and morphological patterns. Moreover, SPADE genes were
extracted similarly in the morphologically close tissues. The
PC1 image latent from P3.3 tissue extracted comparable his-
tological features with PC2 or PC4 image latent from P2.4
and the GO terms in both PCs presented considerable over-
lap (Supplementary Figure S18). The shared GO terms were
related to muscle system, extracellular matrix, and cell ad-
hesion which are well represented morphologically under
H&E staining. Therefore, SPADE is capable of extracting
similar histological patterns and associated genes and func-
tions across the replicate of heterogeneous cancer tissue.

One of the feasible applications of SPADE is the clus-
tering of spots by preserving the morphological landscape.
Since SPADE genes are representative genes responsible
for morphological features, clustering of spots based on
these genes could reflect the variability of image-level pat-
terns. Accordingly, SPADE-based clusters better matched
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with pathologic annotation than HVG-based clusters (Fig-
ure 4C, D). It implies that SPADE-based clusters closely re-
flect visual patterns identified by pathologists to delineate
the margin of cancer considering morphological features.
Furthermore, when applied to brain tissue, the SPADE-
based cluster could divide the cortical layers clearly and
well-delineated the margin of the amygdala (Figure 5G).
The spatial mapping of the top mismatched cluster SPADE
15-HVG 4 revealed that SPADE could divide the hippocam-
pus into subregions while HVG-based clustering could
not (Supplementary Figure S28C). Therefore, the SPADE-
based clustering method can be used to cluster spots, more
reflecting tissue structural architectures, such as human
brain cortical layers, in an unsupervised manner because
this type of architecture was conventionally defined by mor-
phological features (37).

Besides, in accordance with the validation result for im-
munofluorescence tissue, SPADE can be combined with dif-
ferent types of images, such as non-invasive imaging and
immunohistochemistry, which provide expression patterns
of specific proteins if spatially coregistered images are avail-
able. In other words, by using different types of images, tran-
scriptomes associated with spatial patterns of a specific pro-
tein or function can be analyzed to obtain key markers and
investigate functional interactions.

There are several factors that may have influenced the
SPADE analysis. Since image patches corresponding to
spots are provided as inputs, the density of the spots and
size of image patches may significantly affect the result.
The distance between the center of spots in the human
breast and mouse brain data from 10x genomics was ap-
proximately 100 micrometers, while in the olfactory bulb
and prostate cancer dataset was 200 micrometers (5,8). De-
tailed morphological information could have been lost due
to the sparse distribution of spots in the olfactory bulb and
prostate cancer tissue, and the value of SPADE in explor-
ing marker genes may have been underestimated. In spite
of the concerns, SPADE could be applied to datasets with
different spatial resolutions. Another inherent problem in
SPADE is in the relatively large size of the spot compared
with cell or nucleus. The morphological information ob-
tained from the patches could not directly reflect single-
cell level heterogeneity. It may lead to difficulty in inter-
preting the data, specifically in cancer tissues where a mix-
ture of heterogeneous cell types present in a small region
of the tissue. By integrating single-cell RNA-seq data and
developing spatial transcriptomic data with higher reso-
lution, the suggested limitation may be overcome in the
future.

Our approach can help to elucidate the close relation-
ship between molecular function and structure by iden-
tifying important genes responsible for the morphologi-
cal landscape. Several methods have been proposed to find
spatially variable genes employing location information of
spots and focusing on the representative patterns of spa-
tial gene expression (38–40). However, these methods did
not employ image features, thus these methods identify spa-
tially variable markers instead of markers associated with
morphological features. Another analysis tool, SpaCell, uti-
lized spatial transcriptomic data along with tissue image
features derived from a deep neural network to identify cell
type and classify the stage of disease (41). While SpaCell

applied the deep learning model to classify cell type and
disease stage labels in a supervised manner, feature ex-
traction with SPADE provides unbiased information about
morphologically important genes associated with histolog-
ical features. Recently, a study extracted deep learning-
based image features to predict spatial gene expression pat-
terns (42). Compared with this prediction model, SPADE
more concentrated on the relationship between morphology
and gene features. As transcriptomic data could be com-
bined with different types of data in addition to the deep-
learning application, the integrative analysis may provide
an opportunity to understand the function and structure of
tissues.

In conclusion, SPADE is flexibly used to interrogate
molecular profiles responsible for the tissue morphological
landscape by listing important genes and biological pro-
cesses. The integration of different types of data, images,
and spatially resolved transcriptomes may help to eluci-
date the close relationship between structure and molecular
functions, which may eventually lead to a comprehensive
explanation of the pathophysiology of various diseases.
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