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Bacterial outer membrane vesicles (OMVs) are nanometer-scale, spherical vehicles released
by Gram-negative bacteria into their surroundings throughout growth. These OMVs have
been demonstrated to play key roles in pathogenesis by delivering certain biomolecules to
host cells, including toxins and other virulence factors. In addition, this biomolecular delivery
function enables OMVs to facilitate intra-bacterial communication processes, such as
quorum sensing and horizontal gene transfer. The unique ability of OMVs to deliver large
biomolecules across the complexGram-negative cell envelope has inspired the use ofOMVs
as antibiotic delivery vehicles toovercome transport limitations. In this review,wedescribe the
advantages, applications, and biotechnological challenges of using OMVs as antibiotic
delivery vehicles, studying both natural and engineered antibiotic applications of OMVs. We
argue that OMVs hold great promise as antibiotic delivery vehicles, an urgently needed
application to combat the growing threat of antibiotic resistance.
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1 INTRODUCTION

The treatment of bacterial infections continues to be more difficult due to the growing number of
antibiotic-resistant organisms and the slow pace of antibiotic discovery. Recently, the United States
Centers for Disease Control and Prevention (CDC) reported that annually, almost three million
people develop antibiotic-resistant infections in the United States, and more than 35,000 die as a
result (1). Gram-negative bacteria, in particular, are extremely difficult to treat with many classes of
antibiotics due to their complex, dual-membrane cell envelopes (2). A majority of the CDC’s biggest
antibiotic resistant threats are Gram-negative bacteria, including carbapenem-resistant
Acinetobacter and Enterobacterales, and drug-resistant Neisseria gonorrhoeae (1). Gram-negative
bacteria have been reported to be responsible for more than 30% of nosocomial infections, including
70% of infections acquired in intensive care units (ICUs) in the United States (3). In order to combat
Gram-negative-associated infections, research has focused on developing new types of drugs as well
as new delivery strategies to overcome the limitations of currently available drugs.

Like most other cells, Gram-negative bacteria release membrane vesicles, often referred to as
outer membrane vesicles (OMVs) to aid in numerous cellular processes. OMVs are biological
spheres that are naturally produced by many, if not all, bacterial species. These bilayered vesicles are
derived from the outer membrane of the Gram-negative bacteria, range in size from 50-250 nm in
diameter, and contain many of the same components as the outer membrane of the bacterial cell
(4–7) (Figure 1). In recent years, the role of OMVs in intracellular communication, both between
bacterial cells and the host as well as between bacterial cells, has been established (5, 8). This
communication is possible due to the ability of the OMVs to deliver a wide range of biomolecules,
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including proteins, lipids, nucleic acids, peptidoglycan, and small
molecules to other cells (8–15). In particular, the unique ability
of OMVs to deliver molecules across the Gram-negative cell
envelope (10, 14, 16–19) suggests that OMVs have potential as
natural antibiotic delivery vehicles to overcome the limitations of
antibiotic delivery to these difficult-to-treat bacteria (20–23).

In this paper, we describe the intrinsic delivery functions of
OMVs in relation to their potential use as antibiotic delivery
vehicles. We provide examples demonstrating successful
application of these vehicles for therapeutic purposes and
discuss the limitations that remain to be addressed to enable
the translation of OMVs as antibiotic delivery vehicles.

2 NATURAL FUNCTIONS OF OMVs

Derived from the outer membrane of Gram-negative bacteria,
OMVs contain many similar components, including lipids,
proteins, peptidoglycan, and nucleic acids, though not necessarily
Frontiers in Immunology | www.frontiersin.org 2
in the same proportions as in the donor cell (14, 24–27). One of the
primary functions ofOMVs is to transport thesemolecules to other
cells, including both host and bacterial cells. While much focus has
been placed on understanding OMV-mediated virulence factor
delivery to host cells to understand the role of OMVs in the host-
pathogen interaction, it has become clear that OMVs are also used
by bacteria to communicate with neighboring bacterial cells by
delivering proteins, genetic material, and quorum sensing
molecules. In this section, we describe several specific natural
functions of OMVs that provide them with advantages that could
be harnessed for the delivery of antibiotics.

2.1 Transport Across the Bacterial
Cell Envelope
The primary advantage of using OMVs as antibiotic delivery
vehicles is their inherent ability to deliver their cargo across the
cell envelope of Gram-negative bacteria. With a cell envelope
that consists of two membranes, Gram-negative bacteria are
FIGURE 1 | OMV Biogenesis. OMVs are formed due to blebbing of the bacterial outer membrane. The vesicle contains outer membrane-associated proteins and
lipids (including lipopolysaccharide), as well as periplasmic components such as peptidoglycan.
September 2021 | Volume 12 | Article 733064
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inherently resistant to many antibiotics (2). Several reports of the
OMV-mediated delivery of active proteins or genes across the
Gram-negative cell envelope highlight the potential utility of
OMVs to enhance antibiotic delivery to these cells. Although
detailed mechanisms of this process remain elusive, future work
to better understand this delivery processes will further enhance
research into the use of OMVs as antibiotic delivery vehicles to
overcome current transport limitations.

The first reports of OMV-mediated transport across the Gram-
negative cell membrane focused on the delivery of peptidoglycan-
degrading hydrolases (19, 22). These “predatory” OMVs were
hypothesized to fuse with the target cell’s outer membrane,
delivering their enzyme cargo to the periplasm of the target cells
(22). This hypothesis was supported by subsequent experiments
demonstrating that components of Shigella flexneri and
Pseudomonas aeruginosa OMVs are incorporated into the
membranes of other bacterial cells (Salmonella typhi, Salmonella
typhimurium, and Escherichia coli) (18). More recently,
myxobacteria, small Gram-negative soil-dwelling bacteria (28),
have been found to produce OMVs encapsulating hydrolytic
enzymes (29, 30), which exhibited lytic activity against E. coli (14,
31). Together, these findings demonstrate that OMVs are able to
deliver cargo to the periplasm of certain bacteria (Figure 2A).

In addition to the delivery of intact, functional proteins,
OMVs have been observed to facilitate delivery of DNA to
bacterial cells (Figure 2B). The first evidence of DNA in
OMVs was uncovered in 1995, when Kadurugamuwa and
Beveridge observed its presence in the OMVs produced by two
strains of P. aeruginosa (H103 and ATCC 19660) (32). Kolling
andMatthews later demonstrated the presence of DNA in OMVs
produced by E. coli O157:H7. They observed that these OMVs
Frontiers in Immunology | www.frontiersin.org 3
contained DNA encoding certain virulence genes, including stx1
and stx2, which encode for Shiga toxins 1 and 2, respectively.
These genes were delivered to noncompetent recipient cells,
E. coli JM109 (33). Yaron et al. later demonstrated that E. coli
O157:H7 OMVs transfer DNA to E. coli JM109 and Salmonella
cells, and the recipient cells were shown to express the virulence
proteins encoded in the genes (34).

The role of OMVs in the horizontal transfer of antibiotic
resistance genes has also been demonstrated. Rumbo et al.
observed that two clinical strains of Acinetobacter baumannii
that were resistant to carbapenem released OMVs containing the
blaOXA-24 gene, which encodes for a b-lactamase. When these
blaOXA-24-containing OMVs were incubated with a
carbapenem-susceptible strain of A. baumannii, resistance to
several b-lactam drugs was observed. Importantly, this
previously susceptible strain was subsequently found to express
blaOXA-24 and to release blaOXA-24-containing OMVs (35).
Similarly, OMV-mediated horizontal gene transfer has also been
identified in the oral pathogen Porphyromonas gingivalis (36), E.
coli O104:H4 (37), and S. typhi (38).

Delivery of functional genes and the important role of OMVs in
horizontal gene transfer indicates that the OMVs enable delivery of
their DNA cargo into the bacterial cytosol. This process was first
visualized by Fulsunder et al. by using immunogold labeling of
double-stranded DNA to observe movement of DNA from the
donor bacterial cells (Acinetobacter bayli, JV26) into OMVs and
then recipient cells (both E. coli DH5a and A. bayli JV26) (15).

Together, these observations of OMV-mediated protein and
DNA delivery demonstrate that OMVs are able to deliver
functional cargo across the Gram-negative cell envelope. This
behavior is particularly appealing for the delivery of antibiotics as
A

B D

C

FIGURE 2 | Natural Delivery Functions of OMVs. (A) Protein Delivery. Proteins derived from a donor cell are encapsulated within OMVs and delivered to recipient
cells. (B) Gene Delivery. DNA (plasmid, chromosomal, and/or phage-associated) is encapsulated within OMVs and delivered to recipient cells. In some cases, this
new gene is expressed by daughter cells. (C) C16-HSL and CAI-1. Hydrophobic quorum sensing molecules, such as C16-HSL and CAI-1, have been observed to
be delivered to bacterial cells via OMVs. (D) Quorum sensing. PQS is a hydrophobic quorum sensing molecule. As it intercalates into the outer leaflet of the bacterial
membrane, a wedge-like force promotes the formation of PQS-containing OMVs.
September 2021 | Volume 12 | Article 733064
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it suggests that encapsulation of the drugs within OMVs might
decrease the transport issues that limit the efficacy of many
antibiotics against Gram-negative bacteria.

2.2 Delivery of Hydrophobic Molecules
With their membrane structure, OMVs have a unique property of
being able to transport both hydrophilic and hydrophobicmolecules
simultaneously. This property has been demonstrated in the natural
delivery processes ofOMVs andholds great importance in the future
development of OMVs for antibiotic delivery.

Quorum sensing is the process by which bacteria sense cell
population density and as a result, alter gene expression. In
bacteria, this process occurs through the release of certain
molecules; as cell density increases, the concentration of these
quorum sensing molecules increases correspondingly, thus
serving as a signal of high population density (39). N-acyl-
homoserine lactones (AHLs) are the most common quorum
sensing molecules employed by Gram-negative bacteria (40). A
long-standing question in the quorum sensing field was how
hydrophobic, long-chain containing AHLs were delivered
through the aqueous extracellular environment. Toyofuku
demonstrated that N-hexadecanoyl-L-homoserine lactone
(C16-HSL, Figure 2C), produced by Paracoccus denitrificans, is
packaged into outer membrane vesicles to promote solubility of
the molecule (41). Similarly, CAI-1, a long-chain ketone QS
molecule (Figure 2C), was observed to be released in association
with OMVs produced by Vibrio harveyi. The OMV-associated
CAI-1 was able to be delivered in an active form to non-CAI-1-
producing cells, including Vibrio cholerae (42).

P. aeruginosa produces several quorum sensing molecules,
including 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas
quinolone signal, PQS). Mashburn and Whiteley demonstrated
that a majority of the produced PQS was released in association
with OMVs, while less hydrophobic signaling molecules were
not. Interestingly, the authors observed that the PQS molecule
itself promotes OMV formation (43). Subsequent work by this
group found that PQS intercalates into the outer membrane to
induce membrane curvature, thereby promoting OMV
formation (42, 44, 45) (Figure 2D).

Recently, Choi et al. demonstrated that Chromobacterium
violaceum delivers the hydrophobic molecule, violacein, to bacterial
cells by packaging it in OMVs (46). This process appeared to be
regulated, as the OMVs were found to contain more violacein than
protein.TheOMV-encapsulatedviolacein retained its activity against
the Gram positive organism, Staphylococcus aureus (46).

Thus, the natural ability of OMVs to solubilize hydrophobic
molecules could enable improved delivery of lipophilic
antibiotics, which often exhibit low bioavailability due to poor
solubility, limited absorption, and rapid metabolism (47).

2.3 Selective Delivery of OMVs to Specific
Bacterial Cells
OMVs have been observed to naturally interact with other
bacterial cells, both from the same and different species.
Selective delivery of their cargo has been observed, but the
processes mediating this phenomenon remain unclear.
Frontiers in Immunology | www.frontiersin.org 4
Tashiro et al. used a classical colloidal science theory, the
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in an
attempt to explain the interaction of certain OMVs with
specific bacterial cells. This group observed that OMVs
produced by Buttiauxella agrestis selectively associated with
B. agrestis cells, enabling delivery of plasmid DNA and
gentamicin specifically to B. agrestis cells. Because this selective
association of OMVs with the bacterial cells did not require the
cells to be viable, the authors hypothesized that interaction
energies, as calculated using the DLVO theory, might explain
this behavior. In this theory, the interaction energy is defined as
the sum of the attractive London-van der Waals forces, which
depend on OMV radius, and the repulsive electric force, which is
a function of the surface charge (zeta potential) of the OMV. The
authors observed a correlation between interaction energies and
OMV association, which was not entirely linear; therefore, they
proposed that this interaction energy is only one factor that
regulates OMV specificity for certain bacterial cells, and they
hypothesized that surface proteins on both the OMV and
bacterial cell surface likely play an additional role in this
specific delivery process (48).

Tran and Boedicker investigated whether OMV-mediated
DNA transfer is regulated by the relatedness of the OMV
donor and recipient cells. The authors observed that E. coli is
able to encapsulate plasmids with different replication origins
within its OMVs and deliver this genetic cargo to recipient cells.
Aeromonas veronii and Enterobacter cloacae exhibited similar
behavior. The rate of gene transfer between the three types of
OMVs and five types of cells: E. coli, A. veronii, E. cloacae, C.
violaceum, and P. aeruginosa was studied, but no relation
between the rates of uptake and the relatedness of the donor
and recipient cells was observed (49). The authors did observe
that the rates of delivery differed depending on the origin of the
OMVs, with A. veronii OMVs being the most efficient (49).

Recently, some evidence of the involvement of an OMV
surface protein in selective delivery of OMVs was reported.
Agrobacterium tumefaciens is a phytopathogen that releases
OMVs containing a small lipoprotein called Atu8019. The
authors of this study observed that OMVs produced by a
DAtu8019 deletion mutant were similar in properties to the
OMVs released by wildtype cells; however, OMVs from the
deletion mutant exhibited an inhibited propensity for cell
association, suggesting a role for this protein in selective OMV
delivery (50).

The naturally targeted delivery of OMVs to specific bacterial
cells holds exciting promise in their development for drug
delivery. However, the details of this process have yet to be
elucidated. Future research to identify the biological
determinants enabling this specificity will enhance the design
of targeted delivery systems, both natural and synthetic, for
improved antibiotic function.

2.4 OMV Stability
A final advantage of using OMVs for antibiotic delivery is their
extreme stability and their ability to protect their luminal content
from enzymatic degradation, thus promoting long-
distance delivery.
September 2021 | Volume 12 | Article 733064
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The inherent ability of OMVs to protect their cargo from
degradation has been widely reported, particularly in the transfer
of b-lactamases between bacteria. This process has been observed
in a number of organisms, including A. baumanii, Moraxella
catarrhalis, Stenotrophomonas maltophilia, E. coli, and P.
aeruginosa (51–55). The luminal location of these antibiotic
resistance enzymes has been demonstrated to protect the
proteins from enzymatic degradation (54) as well as serum
IgG-mediated neutralization (56). In addition, transfer of
various protein toxins via OMVs has been reported to protect
them from enzymatic degradation (12, 57–60), which has been
hypothesized to enable long-distance delivery in vivo (12).

OMVs are also able to protect their nucleic acid cargo from
enzymatic degradation. Koeppen et al. observed that inclusion of
RNA within the OMV lumen protected it from RNase digestion
(61). Similarly, OMV-encapsulated genes were protected from
DNase digestion (34, 35, 62).

In addition to protecting their cargo from enzymatic
degradation, OMVs appear to protect their cargo from
degradation due to handling and storage. In a systematic study
of the stability of OMV-encapsulated cargo, Alves et al. packaged
an enzyme, phosphotriesterase (PTE) into the lumen of E. coli
OMVs. The authors observed increased stability of the protein
cargo relative to free PTE against multiple freeze-thaw cycles
(63). Later work by this group demonstrated that encapsulation
within OMVs protected long-term enzyme activity under
multiple storage conditions, including freezing, heating, and
lyophilization (64).

Together these observations demonstrate that encapsulation
within the OMV lumen is able to protect the cargo from
degradation, both in vivo and during storage. This property is
likely to enhance the activity of encapsulated antibiotics,
enabling delivery of reduced dosages.
3 NATURAL ANTIBIOTIC PROPERTIES
OF OMVs

OMVs play important roles in the interactions of the microbiota,
including interspecies competition. This innate antibiotic
property has inspired some groups to propose the use of native
OMVs as natural antibiotics (65). These “predatory OMVs” have
been observed in many different systems, showing a conservation
of this trait across bacterial species.

P. aerguinosaOMVs have a well-documented ability to interact
with foreign bacteria. Kadurugamuwa and Beveridge observed
fusion between native OMVs from strain PAO1 and both Gram-
positive and Gram-negative bacteria. Electron micrographs
demonstrated the degradation of the bacterial peptidoglycan after
incubation with PAO1 OMVs, leading the authors to hypothesize
that the OMVs may be carrying autolysins that act to disintegrate
the wall of other bacteria cells. Interestingly, the authors found that
when the cells were grown in the presence of a sub-inhibitory
concentration of gentamicin, the resulting OMVs were even more
potent. These antibiotic-loaded OMVs contained less gentamicin
thanwhatwouldnormallybeused for treatment, butwith the added
protection from the OMVs, and the additional lytic ability of the
Frontiers in Immunology | www.frontiersin.org 5
OMVs, the antibiotic loaded OMVs were effective in killing the
gentamicin-resistant strain, P. aeruginosa 8803 (22).

Li et al. investigated the lytic behavior of OMVs produced by 15
different strains of Gram-negative bacteria against 17 different
species of Gram-positive and Gram-negative bacteria. They
observed significant and broad lytic activity in P. aeruginosa
PAO1 OMVs, particularly against E. coli K12 cells and other cells
with similar peptidoglycan structures. Not all OMVs demonstrated
lytic activity; those from Enterobacter agglomerans, Klebsiella
pneumoniae, Citrobacter freundii, and Morganella morganii had
very little activity. No OMVs were able to lyse cells of the parent
strain (19). This group had previously demonstrated that P.
aeruginosa OMVs contain a murein hydrolase that is capable of
degrading peptidoglycan (66). Additionally, this group has shown
that OMVs from P. aeruginosa are able to break open the S-layer,
the planar paracrystalline structures on some Gram-negative and
Gram-positive bacteria that protects the peptidoglycan, and release
a peptidoglycan hydrolase (67). They therefore hypothesized that
the lytic behavior of the OMVs was due to the presence of these
peptidoglycan-degrading enzymes in the OMVs (19).

More recently, OMVs from the soil bacterium, Myxococcus
xanthus, were demonstrated to lyse E. coli cells. The authors
observed that the addition of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), an enzyme that enhances
membrane fusion, increased the cytotoxicity of the M. xanthus
OMVs; as a result, the authors concluded that the predatory
activity of M. xanthus OMVs arises from fusion of the OMVs
with the target cell membrane (14). Proteomic analysis
demonstrated that M. xanthus OMVs contain numerous
putative hydrolytic enzymes (30), which may be responsible
for this predatory activity. OMVs produced by two additional
myxobacterial strains, SBSr073 and Cbv34, were also shown to
inhibit E. coli growth, a property the authors attributed to the
presence of cystobactamids (myxobacterial-derived inhibitors of
bacterial gyrase) within the OMVs (68). This group subsequently
showed that OMVs produced by CBv34 and Cbfe23 (another
myxobacterial strain) were taken up by host cells and inhibited
intracellular growth of Staphylococcus aureus cells (69).

In addition to encapsulation of anti-bacterial molecules, some
OMVs have been observed to naturally encapsulate anti-fungal
molecules. Meers et al. demonstrated that Lysobacter enzymogenes
OMVsexhibit chitinase activity andare able to inhibit the growthof
the fungi, Saccharomyces cerevisiae and Fusarium subglutinans.
Importantly, the OMVs were responsible for almost all of the anti-
fungal activity of the L. enzymogenes supernatant, demonstrating
that OMV-mediated transfer of these molecules is the primary
pathway for this anti-fungal activity (70).
4 METHODS OF ENGINEERING OMVs TO
IMPROVE THEIR POTENTIAL AS DRUG
DELIVERY VEHICLES

The ability of OMVs to deliver functional molecules, including
proteins, nucleic acids, and small molecules, combined with their
natural selectivity has increased interest in their potential as
September 2021 | Volume 12 | Article 733064
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natural delivery vehicles. In particular, OMVs have an intrinsic
ability to protect cargo from enzymatic degradation, and with
their hydrophobic membrane and hydrophilic lumen, they have
the ability to encapsulate a range of drug types. OMVs have been
reported to be highly stable (12, 63), and they are readily
functionalized to enhance targeted delivery. Despite these
numerous advantages, several issues must first be address to
enable the translational potential of OMVs as drug delivery
vehicles. These challenges include increasing the vesicle yield,
reducing the immunogenicity of the OMVs, incorporating
specific molecules, and promoting targeting of specific cell
types. Continued advancement of these techniques will
improve the therapeutic potential of OMVs, particularly as
antibiotic delivery vehicles.

4.1 Strategies to Increase Vesicle Yield
OMVs are naturally produced throughout bacterial growth;
however, the resulting yields are too low for biotechnological
applications. To overcome this challenge, many groups have
looked towards genetic modifications that result in increased
vesiculation. Mutations in the Tol-Pal system have been
particularly appealing for this purpose. The tol-pal operon
consists of seven genes, including the five genes comprising the
Tol-Pal system: tolQ, tolR, tolA, tolB, and pal. These genes
express proteins that together, form a complex linking the
inner membrane, peptidoglycan, and outer membrane (71)
(Figure 3A). Mutation of any one of the genes results in
increased vesiculation in E. coli (72, 73). A similar approach
that included mutation of the tolR gene along with the galU gene,
which is involved in LPS biogenesis, was found to increase
vesiculation in Shigella sonnei (74). In Helicobacter pylori,
deletion of tolB but not pal increased vesiculation (75).
Frontiers in Immunology | www.frontiersin.org 6
Building on the finding of the importance of the Tol-Pal
system in vesiculation, Henry et al. demonstrated that genetic
modifications to promote production of certain protein domains
that interact with elements of the Tol-Pal system can likewise
increase OMV production. Specifically, they found that
periplasmic production of a TolR domain induced a high level
of vesiculation in E. coli. Additionally, periplasmic production of
the translocation domain of colicin A, colicin E3, and minor coat
protein g3p also increased vesiculation. Finally, the authors
demonstrated that the approach could be used in other
bacteria, including Shigella flexneri and Salmonella enterica (76).

These multiple genetic approaches to increase OMV
production have already enabled the use of OMVs for
biotechnological purposes, particularly as vaccines and are
likely to enable future development of OMVs as natural
antibiotic delivery vehicles.

4.2 Engineering to Decrease LPS Toxicity
Another important limitation in the use of OMVs as drug
delivery vehicles is their inflammatory nature. Derived from
the outer membrane, the surface of OMVs is primarily
composed of lipopolysaccharide (LPS). LPS consists of a
hydrophobic lipid A molecule, which is tethered to the
membrane via six acyl chains, core oligosaccharides, and the
O-antigen (77) (Figure 3B). The lipid A portion, also called
endotoxin, is responsible for the inflammatory response induced
by LPS (78). Thus, to use OMVs as drug delivery vehicles, it is
imperative that the toxicity of the LPS be reduced.

One strategy to reduce the toxicity of LPS is to genetically
modify the genes leading to full acylation of the lipid A moiety.
Nine enzymes are required for the biosynthesis of lipid A (77)
and knockout of certain genes encoding these enzymes, in
A B

FIGURE 3 | Engineered OMVs. (A) The Tol-Pal System. The Tol-Pal system consists of five proteins, TolA, TolQ, and TolR located in the inner membrane (IM), TolB
located in the peptidoglycan layer, and Pal located in the outer membrane. Mutation of any of these components has been shown to affect vesiculation. (B) Structure
of LPS. LPS consists of a hydrophobic lipid A, which is commonly hexaacylated and di-phosphorylated (P). The polysaccharide portion of the molecule consists of a
well conserved inner and outer core and a nonconserved O-antigen.
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particular lpxL and lpxM (also known as msbB) have been
demonstrated to result in under-acylated strains with reduced
endototoxicity (79–81).

Alternatively, modification of the phosphorylation of the lipid
A moiety can be an effective strategy to reduce endotoxicity of
LPS. Lipid A is usually diphosphorylated (82). Edgar Ribi
observed that monophosphorylated lipid A is significantly less
immunogenic (83), and since then, monophosphoryl lipid A
(MPL) has been FDA-approved as an adjuvant (84). A promising
strategy to create OMVs consisting of monophosphorylated lipid
A is to express the Helicobacter pyloriHp0021 gene in the OMV-
producing organism. This enzyme removes the 1-phosphate of
the lipid A moiety, resulting in monophosphorylated lipid A
(85). When this gene was heterologously expressed in E. coli, the
1-phosphate group of lipid A was removed (86). While
promising, this approach has not yet been used to develop
OMVs for biotechnological purposes.

While LPS toxicity remains a serious concern with usingOMVs
as drug delivery vehicles, multiple promising approaches have
demonstrated the potential to reduce the inflammatory response,
thus enabling their future use as antibiotic delivery vehicles.

4.3 Strategies for Drug Loading
While certain OMVs naturally possess some antibiotic
properties, additional work has focused on encapsulating
specific molecules within the OMV lumen to expand on the
potential of OMVs as delivery vehicles. Several methods to
encapsulate different molecules, including antibiotics, have
been explored, as described below. Further optimization of
these approaches will enable full realization of the potential of
OMVs as drug delivery vehicles.

4.3.1 Antibiotic Export via OMVs
The role of OMVs in removing unwanted material from the cell
has been employed as a method to load OMVs with antibiotics.
In this passive loading approach, bacterial cells are grown in the
presence of the desired drug. The resulting antibiotic-containing
OMVs are collected and tested to measure drug loading
efficiencies (Figure 4A).
Frontiers in Immunology | www.frontiersin.org 7
Kadurugamuwa and Beveridge first discovered that bacteria
grown in thepresenceof antibiotics release vesicles containing some
drug (22). The authors cultured P. aeruginosa strain PAO1 in
gentamicin and discovered that the OMVs contained 4 ng of drug
per mg of protein. These gentamicin-containing OMVs killed
S. aureus, E. coli, and P. aeruginosa (strains PAO1 and Pa8803).
Importantly, the authors observed that in Pa8803, which is a
permeability mutant, OMV encapsulation enhanced gentamicin
delivery significantly, demonstrating the potential of OMV-
mediated drug delivery to overcome this mechanism of resistance
(22). However, the Beveridge group later demonstrated that OMV-
mediated delivery is unable to overcome all mechanisms of
resistance. The group observed that Burkholderia cepacia strain
CEP0248 was susceptible to both free and OMV-associated
gentamicin, but the highly resistant strain C5424 was not. The
OMVs were able to deliver gentamicin; however, the cells were not
sensitive to the drug. The authors therefore hypothesized that
this strain must possess another mechanism of resistance
beyond inhibition of drug uptake (87). Gentamicin-containing
P. aeruginosa OMVs were also found to be effective in killing
some Gram-positive organisms as well, including Bacillus subtilis
and S. aureus (23).

Tashiro et al. hypothesized that the selective delivery of B.
agrestis OMVs to B. agrestis cells (as described in Section 2.4)
could enable OMV-mediated selective antibiotic delivery. To test
this, the authors grew B. agrestis until the late stationary phase,
then added gentamicin at a concentration four times higher than
the MIC for 30 mins. The purified OMVs were found to contain
gentamicin, and selective delivery of gentamicin to B. agrestis
cells was observed (48).

Huang et al. grew A. baumanii in sub-MIC concentrations of
levofloxacin and observed that the resulting OMVs contained a
high concentration of levofloxacin (20). They demonstrated that
OMV encapsulation increased the stability of levofloxacin under
a number of storage conditions. The levofloxacin-containing
OMVs were able to kill enterotoxigenic E. coli (ETEC) cells,
and at a low dose, the levofloxacin-containing OMVs were more
effective than free levofloxacin. The authors also demonstrated
that these levofloxacin-containing OMVs were effective in killing
A B

FIGURE 4 | Strategies for Drug Loading. (A) Bacterial Incubation. Bacteria grown in the presence of antibiotics have been found to release antibiotic-containing
OMVs. (B) Electroporation and Sonication. Electroporation and sonication can enhance drug loading within the OMV lumen.
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K. pneumoniae and P. aeruginosa as well, and the procedure for
loading could be accomplished with other antibiotics,
demonstrating a broad potential of the approach. In a mouse
model of ETEC infection, the levofloxacin-containing OMVs
were more effective than free drug. Finally, the authors observed
that the levofloxacin-containing OMVs were biocompatible (20).

4.3.2 Active Loading Techniques
To enhance the incorporation of drugs and other therapeutics in
OMVs and other extracellular vesicles, several active
incorporation techniques have been proposed, including
electroporation and sonication, (Figure 4B). Although none of
these techniques have yet been used specifically to load
antibiotics into OMVs, it is likely that these approaches could
improve the encapsulation efficiencies of antibiotics, as has been
observed with other drugs and vesicle types.

4.3.2.1 Electroporation
Electroporation involves the use of a strong electric field to
induce the formation of transient pores in a biological membrane
(88). This technique has long been used to enhance DNA uptake
by bacterial cells (88), and more recently has been used to
promote loading of content into human-derived extracellular
vesicles (89–93). Gujrati et al. demonstrated that the approach
could also be used with OMVs, when they loaded OMVs with
siRNA against kinesin spindle protein (KSP) to develop anti-
cancer therapeutics. To accomplish loading, the authors
electroporated the OMVs in the presence of the siRNA using
an empirical approach to identify the optimal conditions (700 V,
50 mF) that promoted loading but did not affect OMV integrity
(94). Similarly, Ayed et al. optimized electroporation conditions
to load gold nanoparticles (7 nm) into P. aeruginosa PAO1
OMVs. The authors observed that one pulse of 0.47 kV was
sufficient to encapsulate 55% of the nanoparticles without
disrupting OMV integrity (95). These results suggest that
electroporation is an effective method for loading a variety of
cargo into the OMV lumen, and could have great potential for
improving the encapsulation efficiencies of antibiotics.

4.3.2.2 Sonication
Sonication is the use of ultrasonic energy to increase the fluidity
of a membrane to enhance drug diffusion. While this technique
has not yet been reported as a means of loading drug into
bacterial vesicles, it has been used to improve loading efficiencies
within human-derived vesicles (96, 97). The primary drawback
of this approach is that it may permanently disrupt the integrity
of the vesicles (98).

4.3.3 OMV Coating Approach
Wu et al. took advantage of the natural delivery properties of
OMVs to enhance delivery of rifampicin-loaded mesoporous
silica nanoparticles (MSNs). Rifampicin is a hydrophobic
antibiotic with limited effectiveness against Gram-negative
bacteria due to its inability to cross the cell envelope.
Incorporation of rifampicin within MSNs improves drug
solubility, but uptake by Gram-negative bacteria is low. The
authors observed that coating the rifampicin-loaded MSNs with
E. coli OMVs extended the release of drug and the OMV-coated
Frontiers in Immunology | www.frontiersin.org 8
MSNs were taken up by E. coli cells more effectively than
uncoated MSNs or free drugs. The OMV-coated nanoparticles
also displayed good biocompatibility (99).

4.4 Surface Engineering
In order to enhance targeting or functionality of OMVs, several
approaches to display particular moieties on the vesicle surface
have been employed. These genetic approaches involve the
development of fusions between the desired protein and certain
surface-localized proteins (42, 100–102), or the use of the
SpyCatcher/Tag or SnoopCatcher/Tag systems to promote
isopeptide bond formation between the desired protein and a
surface-localized protein (103, 104) (Figure 5). These
approaches have been primarily developed for vaccine
technology; however, targeted delivery of antibiotics specifically
to pathogenic cells could likely be accomplished using
similar approaches.

The ClyA toxin expressed by many E. coli strains and
enriched in OMVs (27) has been commonly employed as a
fusion partner to localize specific proteins to the OMV surface.
Kim et al. first demonstrated the power of this approach by
creating a series of chimeric ClyA fusion proteins, using green
fluorescent protein (GFP), b-lactamase, b-galactosidase,
organophosphorous hydrolase (OPH), and a single chain Fv
antibody fragment (100). The authors observed that each fusion
partner retained its activity and was located on the surface of the
vesicles (100). In engineering their siRNA-containing OMVs,
Gujrati et al. genetically fused a targeting affibody to the ClyA
protein and demonstrated that this approach enabled targeted
delivery of the siRNA-containing OMVs to HER2-expressing
cells (94).

Another fusion protein approach that has been shown to be
successful takes advantage of the autotransporter (AT) Hbp.
Mycobacterium tuberculosis antigens were localized to the
surface of E. coli or Salmonella enterica OMVs through fusion
to Hbp. Hbp is one of the most abundant proteins detected in E.
coli and S. enterica OMVs, making it a strong fusion partner
candidate. In addition, the authors exploited the dispensability of
certain side domains of Hbp to simultaneously display multiple
heterologous antigens on the OMV surface (101). In subsequent
work, the authors developed a strategy to overcome limitations
in the size and complexity of proteins that can be displayed on
the surface of the OMVs via fusion to Hbp. In this approach, the
authors fused the SpyTag protein (105) to Hbp. Upon
translocation of the Hbp across the outer membrane, the
SpyTag protein was found to be displayed on the surface of the
OMVs. Large protein antigens or nanobodies were then
conjugated to the SpyCatcher protein to enable efficient
ligation to the OMV. The SnoopTag/SnoopCatcher system
(106) was used in tandem to facilitate surface display of
heterologous proteins (103, 104).

Chen et al. developed an approach to simultaneously localize
proteins of interest within and on the surface of E. coliOMVs. To
target the OMV lumen, the authors created a fusion protein with
SlyB, a native lipoprotein that is localized at the inner leaflet
(periplasmic side) of the outer membrane (107). At the same
time, they localized an antibody on the surface of the OMV using
September 2021 | Volume 12 | Article 733064
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an ice nucleation protein (INP) anchor (108) tethered to an
antibody-binding Z domain via a scaffold assembly consisting of
3 cohesin domains (Scaf3). As proof of concept, the authors
encapsulated nanoluciferase for detection purposes and tethered
IgG to the surface to target thrombin (102).

The ability to functionalize the surface of the OMV to enable
selective delivery holds great promise for the targeted delivery of
antibiotics. Although not yet commonly employed, targeted
delivery of antibiotics represents a promising approach to limit
the development of antibiotic resistance, as it would limit
exposure of the healthy microbiota to the drug.
5 FUTURE DIRECTIONS

OMVs have several properties that make them promising
antibiotic delivery vehicles as described above, including
overcoming the entry limitation of certain antibiotics for
Gram-negative bacteria. However, while the potential is strong,
a number of limitations and challenges remain to be addressed
before the use of this novel delivery system can be fully realized.

The mechanisms by which OMVs deliver cargo to bacterial
cells remains understudied. While great advances have been
made in our understanding of OMV delivery to host cells, little
work has focused on delivery to bacterial cells. Additionally, the
factors leading to targeted delivery to certain cell types remain
unclear. As a more detailed understanding of mechanisms
leading to inter-bacterial delivery emerges, researchers will be
well-equipped to engineer better performing OMVs or to
incorporate specific OMV features into synthetic (liposome)
systems to enhance delivery.
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In order to realize OMVs as biotechnological devices, several
manufacturing advances are necessary. OMV purification remains
time-consuming and inefficient, relying on long ultracentrifugation
runs as well as filtration and other slow processes. Although OMVs
are produced throughout growth, the yield remains low, even for
hypervesiculating strains. Thus, more advanced techniques to scale-
up these systems are needed. In addition, the heterogeneity ofOMVs
has recently been established (57, 109–111). For biotechnological
applications, it will be essential to develop optimized strategies to
purify more homogeneous OMV populations. Furthermore, while
someworkhasdemonstrated stabilityofOMVsunder certain storage
conditions (63), additional research to identify and/or develop
optimal processing and storage conditions that do not affect OMV
integrity are necessary.

Finally, standardization of techniques and analyses has been
lacking in the OMV field. To overcome this issue, the
International Society for Extracellular Vesicles (ISEV) has
worked diligently towards developing a set of standards to be
applied to all EV studies (112–114). Full adoption of such
standards in the OMV field would greatly advance the rate of
development of OMVs for biotechnological applications.
6 CONCLUSIONS

Despite these challenges, the potential of OMVs for antibiotic
delivery remains a promising approach to treat Gram-negative
bacterial infections, which are otherwise difficult to treat. The field
has advanced rapidly over the past 10 years, and it is expected that
new discoveries will further advance the biotechnological
applications of OMVs, particularly as antibiotic delivery vehicles.
FIGURE 5 | Surface Engineering of OMVs. Several genetic strategies have been used to localize certain proteins on the surface of OMVs. Fusion proteins between
cytolysin A (ClyA) and several cargos, including GFP have been created in E. coli. Ice nucleation protein (INP) was used to tether an antibody on the surface of the
OMV by creating a fusion between INP, a cohesin-containing Scaf3 domain, and an antibody-binding Z-domain. Simultaneously, SlyB was used to localize luciferase
to the OMV lumen. Up to four bacterial antigens were tethered to the surface of OMVs using the hemoglobin protease (Hbp). This protein was also used in
combination with the SpyCatcher/Tag and SnoopCatcher/Tag systems to display heterologous proteins on the OMV surface.
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