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Artificial Intelligence Can Define and Predict the
"Optimal Observed Outcome" After Anterior

Shoulder Instability Surgery: An Analysis of 200
Patients With 11-Year Mean Follow-Up
Sara E. Till, M.S., Yining Lu, M.D., Anna K. Reinholz, B.S., Alexander M. Boos, B.A.,
Aaron J. Krych, M.D., Kelechi R. Okoroha, M.D., and Christopher L. Camp, M.D.

Purpose: The purpose of this study was to use unsupervised machine learning clustering to define the “optimal observed
outcome” after surgery for anterior shoulder instability (ASI) and to identify predictors for achieving it. Methods: Medical
records, images, and operative reports were reviewed for patients <40 years old undergoing surgery for ASI. Four unsu-
pervised machine learning clustering algorithms partitioned subjects into “optimal observed outcome” or “suboptimal
outcome” based on combinations of actually observed outcomes. Demographic, clinical, and treatment variables were
compared between groups using descriptive statistics and Kaplan-Meier survival curves. Variables were assessed for prog-
nostic value through multivariate stepwise logistic regression. Results: Two hundred patients with a mean follow-up of
11 years were included. Of these, 146 (64%) obtained the “optimal observed outcome,” characterized by decreased:
postoperative pain (23% vs 52%; P < 0.001), recurrent instability (12% vs 41%; P < 0.001), revision surgery (10% vs 24%;
P ¼ 0.015), osteoarthritis (OA) (5% vs 19%; P ¼ 0.005), and restricted motion (161� vs 168�; P ¼ 0.001). Forty-one percent
of patients had a “perfect outcome,” defined as ideal performance across all outcomes. Time from initial instability to pre-
sentation (odds ratio [OR] ¼ 0.96; 95% confidence interval [CI], 0.92-0.98; P ¼ 0.006) and habitual/voluntary instability
(OR ¼ 0.17; 95% CI, 0.04-0.77; P ¼ 0.020) were negative predictors of achieving the “optimal observed outcome.”
A predilection toward subluxations rather than dislocations before surgery (OR ¼ 1.30; 95% CI, 1.02-1.65; P ¼ 0.030) was a
positive predictor. Type of surgery performed was not a significant predictor. Conclusion: After surgery for ASI, 64% of
patients achieved the “optimal observed outcome” defined as minimal postoperative pain, no recurrent instability or OA, low
revision surgery rates, and increased range of motion, of whom only 41% achieved a “perfect outcome.” Positive predictors
were shorter time to presentation and predilection toward preoperative subluxations over dislocations. Level of
Evidence: Retrospective cohort, level IV.
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Arthroscopy, Sports Medicine, and Rehabilitati
nterior shoulder instability (ASI) remains one of
Athe most common causes of shoulder dysfunction
in athletic and active patients.1-4 ASI is traditionally
considered to be an injury primarily impacting the
young athlete, and literature demonstrates a bimodal
distribution with increased rates in fall-risk pop-
ulations.4-7 Treatment options depend on a multitude
of factors including the precipitating event, the number
of instability episodes, and the presence of concomitant
injuries. Operative management is generally advised for
patients with a history of multiple instability events,
substantial bone loss, or other risk factors for recurrence
(i.e., young age, male sex, contact sports, etc.).8,9

Because most patients undergoing surgery for ASI
tend to be athletes and/or active individuals, there is a
strong desire to return these patients to a high level of
function after surgery. However, it is unclear if having
them return to this high level of function adversely
impacts long term outcomes. Significant improvements
on, Vol 5, No 4 (August), 2023: 100773 1
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in mechanical function and daily pain with operative
treatment for chronic ASI for mid- and short-term
outcomes have been reported.10,11 Data on the long-
term outcomes are focused primarily on joint preser-
vation and rates of osteoarthritis.12-14 Although it is
clearly desirable that patients achieve a “perfect
outcome” by obtaining every one of these favorable
outcomes (no pain, normal stability, full motion, no
progression to OA, return to high demand activity/
sports, etc.), it is not clear if some of these may be
mutually exclusive from one another in actual
observed outcomes. To date, the predictors of opti-
mized functional outcome from a global perspective, as
opposed to domain-specific perspectives, remain
elusive.
This incomplete understanding may be attributable to

an absence of robust statistical tools to fully explore
these questions. Traditional statistical approaches are
subject to an inherent degree of bias given the need for
pre-specification of either an outcome of interest or a
risk factor (i.e., recurrent instability) or a stratifying risk
factor (i.e., smoking status). The determination of these
variables are the results of investigator input, and
although most are based on rigorous scientific
reasoning or clinical experience, some can, at times, be
arbitrary. Furthermore, traditional parametric regres-
sion models are limited in their validity and ability to
adapt to population changes over time because of the
specific assumptions about the distribution of data they
require. Conversely, unsupervised machine learning
clustering is data driven and may be able to detect
intrinsic structure in data without human input,
allowing for identification of factors that influence
outcomes based on the aggregation and evaluation of
numerous features rather than a single variable or
researcher-selected variables, as is the case in tradi-
tional statistical methods. Additionally, although ma-
chine learning is frequently praised for its ability to
analyze large quantities of data, it is well suited for
work with smaller numbers of patients with a large
number of features and high dimensional data. Clus-
tering, specifically, can work well within cohort sizes of
several hundred, and frequently algorithm perfor-
mance can be assessed empirically based on compari-
sons of the clusters generated.15

Currently, there remains a gap in knowledge
regarding reasonable expected functional outcomes for
patients undergoing surgery for ASI. The purpose of
this study was to use unsupervised machine learning
clustering to define the “optimal observed outcome”
after surgery for ASI and to identify predictors for
achieving it. We hypothesized that a majority of pa-
tients would achieve the “optimal observed outcome”
after surgery but that a relative minority would be able
to achieve a “perfect outcome.”
Methods

Data Source
Institutional review board approval was obtained

from both the Mayo Clinic and Olmsted Medical Center
(16-007084 and 042-OMC-16) for this retrospective
cohort study. Patients who experienced anterior
shoulder instability between January 1, 1994, and July
31, 2016, were identified using the Rochester Epide-
miology Project, an established geographic database of
more than 500,000 patients with complete medical
records of all residents in Olmsted County, Minnesota,
and neighboring counties in southeast Minnesota and
western Wisconsin. Exact methods for abstracting in-
formation from this database and its generalizability
have been previously described in detail.16-18 Patients
were identified with International Classification of
Diseases, Revisions 9 and 10, diagnosis codes for
shoulder instability. Patient charts were individually
reviewed in detail to confirm the diagnosis of anterior
shoulder instability, defined as a documented clinical
diagnosis of either dislocation or subluxation by a
consulting physician. Inclusion criteria consisted of pa-
tients (1) with 1 or more anterior shoulder instability
events, (2) <40 years of age at the time of initial
instability, because of potential confounding by pre-
existing osteoarthritis or concurrent rotator cuff
pathology, (3) treated surgically for ASI, (4) with a
minimum of 2 years’ follow-up, and (5) who gave
consent for research. Patients with evidence of multi-
directional instability or posterior-only shoulder insta-
bility based on chart reviews were excluded from
analysis, as were those treated solely without surgery.

Variables and Outcomes
Variables documented by the outcomes collection

platform were used for feature selection. These
included patient demographic information (age, sex,
body mass index, smoking status, occupation, activity
level, sports involvement near date of injury, date of
injury), surgical details (approach, type of repair, bone
block augmentation, and concomitant rotator cuff/bi-
ceps treatment), and outcome information (recurrence
of pain or instability, revision surgery, progression to
radiographical osteoarthritis, and physical examination
findings at final follow-up), and length of follow-up.
Patients were deemed to have achieved either the
“optimal observed outcome” or a “suboptimal
outcome” based on clustering results. Patients were
considered to have achieved a “perfect outcome” if they
obtained all of the following ideal results for each
outcome restoration of preoperative ROM to within 5�

of normal, no recurrent instability, no revision surgery,
no pain, full return to sports, no progression to OA, and
no complications.
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Unsupervised Clustering
Unsupervised clustering is a machine learning tech-

nique to produce optimized groupings of objects based
on a predefined distance measure within a multidi-
mensional feature space. This technique is distinct from
supervised machine learning in that an outcome of
interest is not explicitly supplied (hence, “unsuper-
vised”), with the goal of elucidating intrinsic structural
patterns within the data. For instance, rather than
asking the model to identify differences based on pa-
tient who return to sport and those who do not, it
naturally identifies outcome differences in patients
across all outcome measures of interests, clustering
them into groups based on the actually observed out-
comes without knowing which of the outcomes are
more desirable. This allows for a more unbiased
assessment of actual outcomes compared to
investigator-driven searches of the desired outcome(s)
(i.e., this helps tell the story of what actually happens
rather than what the investigators want to happen).
Additionally, because this technique is exploratory and
not predictive, a model is not generated, the classic
train-test internal validation scheme does not apply,
and the technique can be performed on smaller datasets
than traditional supervised learning. Given the
increased freedom in experimental design and ability to
aggregate and analyze all the known variables for a
patient, clustering is not subject to the limitations of
single binomial/multinomial outcomes (i.e., repeat
dislocation or not), which is useful when the goal is
identification of general risk factors and outcomes, as
opposed to modeling of individualized predictions.
Furthermore, the fidelity of this technique can easily be
empirically determined in the ability to yield useful
differentiable clusters.
Unsupervised clustering was performed utilizing the

following four candidate machine learning algorithms
based on previously established clustering analyses and
optimized based on Euclidean distance: unweighted
pair group method with arithmetic mean, K-means
clustering, agglomerative nesting of hierarchical clus-
tering, and divisive analysis of hierarchical clus-
tering.19-22 Clustering performances were evaluated by
using the 2 internal validation metrics: connectivity and
silhouette coefficient, as well as 2 internal stability
metrics: average distance and figure of merit. Internal
validation metrics evaluates the quality of clustering
based on the partitions produced and intrinsic charac-
teristics of the objects in each partition, whereas inter-
nal stability measures the consistency of the results
through repeated clustering following an iterative
feature-elimination process. These internal validation
values are calculated post-hoc following each cluster
generation, and the final candidate clusters are selected
based on optimization of all 4 machine learning algo-
rithms (unweighted pair group method with arithmetic
mean, K-means clustering, agglomerative nesting of
hierarchical clustering, and divisive analysis of hierar-
chical clustering), as well as effective partitioning of
distinct clusters after outlier elimination.
Briefly, connectivity is a measure of the degree to

which nearest neighbors in the feature space are clus-
tered together; it can take a value between 0 and
infinity and should be minimized.15 Conversely, the
silhouette coefficient is calculated by taking the ratio of
the mean intra-cluster distance between objects to the
mean distance between a cluster and its nearest-
neighbor cluster. The silhouette coefficient can take
any value between �1 and 1, with the optimal clus-
tering assignment maximizing its value. Average dis-
tance measures the changes in average distance
between observations within the same cluster and
figure of merit measures the variance within each
cluster, respectively, after iterative elimination of fea-
tures.15 After clustering, the largest clusters were
selected for pairwise comparisons while remaining
clusters were denoted as outliers and excluded from
analysis if no individual clusters accounted for more
than 10% of the overall cohort size. A detailed expla-
nation of the clustering algorithms and each optimiza-
tion metric is provided in Appendix Table A1.

Statistical Analysis
Statistical analyses were conducted by use of RStudio

software version 1.1.143 (R Foundation for Statistical
Computing, Vienna, Austria). Univariate comparisons
were performed using Welch’s t-tests for continuous
variables and c2 analyses for categorical variables be-
tween patients clustered on average CSO achievement
and patients with high relative CSO achievement. After
univariate analysis, a stepwise multivariable logistic
regression controlling for patient demographic, intra-
operative, and comorbid variables was used to identify
independent risk factors that predicted average CSO
achievement. Finally, a time-to-event analysis using
Kaplan-Meier plots was performed to compare the
natural postoperative clinical course between the
optimal and suboptimal clusters. All statistical tests
were 2-tailed, and the statistical difference was estab-
lished with a � 0.05.

Results

Population Demographics
A total of 654 patients had documented encounters

for ASI during the study period. Of these, 228 under-
went operative intervention for ASI and met inclusion
for analysis. There was a median follow-up of 11.1
years. After clustering and outlier removal (n ¼ 28), a
total of 200 patients were included in the final 2 largest
clusters for comparative analysis. Subsequent stratifi-
cation for functional outcome improvement



4 S. E. TILL ET AL.
achievement resulted in 146 (64%) patients within the
“optimal observed outcome” group, whereas 54 (36%)
patients were clustered into the suboptimal functional
outcomes group.
Demographics were largely similar between both co-

horts, with the exception of 3 preoperative variables
(Table 1). The mean age at instability diagnosis was
younger among the “optimal observed outcome” clus-
ter (21.4 � 6.4) compared with the “suboptimal
outcome” cluster (25.3 � 7.8, P < 0.001). Those with
“suboptimal outcome” experienced significantly longer
time from initial instability to time of diagnosis (51.4 �
64.2 vs 1.9 � 4.4 months, P < 0.001) and were more
likely to have a history of voluntary/habitual instability
(6.2% vs 18.5%, P ¼ 0.018). There were no differences
between cohorts in age, history of traumatic instability,
or the distribution of sports and athletic activities.
Comparison of intraoperative findings between the 2
clusters found no significant differences based on
labrum repair region, the use of bone block augmen-
tation, or concurrent procedures (Table 1). Among
Table 1. Baseline Characteristics of Cohorts After Clustering

Variables Optimal Observed O

Demographics
Male sex 121 (8
Age at initial instability event 20.53 (6
Age at instability diagnosis 21.37 (6
Months from initial instability to presentation 11.58 �
Months from initial instability to surgery 24.80 (2
Age at initial surgery 22.22 (6
Initial instability from acute trauma 138 (9

Sport
None 37 (25
Contact/Weights 82 (56
Extreme 6 (4.
Overhead 13 (8
Throwing 8 (5.

Habitual voluntary dislocation 9 (6.
Preoperative radiograph

Osteoarthritis present 1 (0.
Hills Sachs present 37 (25
Bony Bankart present 12 (8

Treatment
Formal physical therapy 110 (7
Open surgical approach 36 (24
Posterosuperior labral repair 3 (2.
Posteroinferior labral repair 4 (2.
Anteroinferior labral repair 122 (8
Soft tissue Bankart repair 114 (7
Anterosuperior labral repair 23 (15
HAGL repair 0 (0.

Hill Sachs repair
No 141 (9
Remplissage 2 (1.
Repair 3 (2.

Biceps tenodesis 1 (0.
Rotator cuff repair 5 (3.
Bone block augmentation 8 (5.

Italics indicates significance.
patients with baseline magnetic resonance imaging
scans (n ¼ 138 [69%]), there were no significant
differences in imaging findings between the groups
(Appendix Table A2).

Clustering Results
Visualization of the 2 largest clusters in multidimen-

sional feature space after outlier removal is provided in
Figure 1.

Differences Between “Optimal Observed
Outcomes” and “Suboptimal Outcomes” Clusters
After clustering, the suboptimal outcomes cluster

demonstrated significantly increased rate of recurrent
postoperative pain (51.9% vs 22.6%, P < 0.001), sub-
jective reporting of postoperative pain as moderate
(11.1% vs 1.4%) and severe (1.9% vs 0%, P < 0.001),
rate of recurrent instability (40.7% vs 12.3%,
P < 0.001), rate of revision surgery (24.1% vs 9.6%,
P < 0.015), the onset of symptomatic OA (18.5% vs
4.8%, P ¼ 0.005), and decreased forward elevation
utcome(N ¼ 146) Suboptimal Outcome (N ¼ 54) P Value

2.9%) 46 (85.2%) 0.860
.55%) 20.46 (6.40%) 0.947
.44%) 25.30 (7.84%) <0.001
15.21 55.86 � 54.37 <0.001

3.13%) 63.54 (52.70%) <0.001
.45%) 25.62 (7.64%) 0.002
4.5%) 50 (92.6%) 0.862

0.331
.3%) 14 (25.9%)
.2%) 23 (42.6%)
1%) 3 (5.6%)
.9%) 9 (16.7%)
5%) 5 (9.3%)
2%) 10 (18.5%) 0.018

7%) 2 (3.7%) 0.366
.3%) 16 (29.6%) 0.668
.2%) 1 (1.9%) 0.194

5.3%) 41 (75.9%) >0.999
.7%) 16 (29.6%) 0.596
1%) 1 (1.9%) >0.999
7%) 2 (3.7%) >0.999
3.6%) 42 (77.8%) 0.461
8.1%) 38 (70.4%) 0.344
.8%) 6 (11.1%) 0.547
0%) 2 (3.7%) 0.124

0.387
6.6%) 54 (100.0%)
4%) 0 (0.0%)
1%) 0 (0.0%)
7%) 0 (0.0%) >0.999
4%) 1 (1.9%) 0.911
5%) 2 (3.7%) 0.884



Fig 1. Final clusters after centering and
scaling and exclusion of outlying centers.
Patients are defined as “suboptimal out-
comes” (cluster 1, n ¼ 54) and “optimal
outcomes” (cluster 2, n ¼ 146). Dim1 and
Dim 2 are the two principal components
with the highest contribution to the clus-
tering model based on principal compo-
nent analysis.
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(161 � 18, 168 � 11; P < 0.001). Full pairwise com-
parisons are provided in Table 2. Additionally, Kaplan-
Meier analysis demonstrated that most adverse events
among the “optimal observed outcome” cluster
occurred within 24 months of the index surgery,
whereas patients in the “suboptimal outcome” cluster
continued to experience complications at both midterm
and long-term follow-up (44.4 months to recurrence,
P < 0.001, and 42.5 months to revision surgery,
P < 0.012) (Fig 2).

Significant Predictors of “Optimal Observed
Outcomes”
Significant predictors of “optimal outcomes”

achievement after operative intervention were deter-
mined by a stepwise multivariable logistic regression
model (Table 3). Months from initial instability to sur-
gical consult (odds ratio [OR] ¼ 0.95; 95% confidence
interval [CI], 0.92-0.98; P ¼ 0.006) and a diagnosis of
habitual/voluntary instability (OR ¼ 0.17; 95% CI,
0.04-0.77; P ¼ 0.020) predicted significantly decreased
likelihood for optimal functional achievement, whereas
number of subluxations prior to surgery in a patient
without a history of voluntary instability was a signifi-
cant positive predictor of achievement (OR ¼ 1.30;
95% CI, 1.02-1.65; P ¼ 0.030).

Patients Achieving a “Perfect Outcome”
Of the 200 patients treated surgically for ASI, only 82

(41%) achieved the idealized “perfect outcome” that is
the ultimate goal for all patients. The final outcomes for
this select group of patients included full ROM, no
recurrent instability, no complications, no pain, no
arthritis, and the ability to return to their preinjury
sports and level of activity.
Discussion
The most important finding of this study was that

64% of surgically treated ASI patients were able to
achieve the “optimal observed outcome,” of whom
41% of patients were able to achieve a “perfect
outcome.” The “optimal observed outcome” may
represent a more realistic goal based on actual out-
comes observed. This “optimal observed outcome”
group demonstrated statistically significant decreases in
recurrent pain (22.6% vs 51.9%), recurrent instability
(12.3% vs 40.7%), progression to symptomatic arthritis
(4.8% vs 18.5%), revision surgery (9.6% vs 24.1%),
and restricted ROM (161� vs 168�) compared to the
“suboptimal outcome” group. Further analysis demon-
strated that predictors for belonging to the “suboptimal
outcome” group included increased time from initial
instability to consult, presence of habitual instability,
and predilection for recurrent dislocations rather than
subluxations before surgery. Achievement of “optimal
observed outcome” was not influenced by labral repair
location, concurrent procedures, or use of bone block
augmentation.
Although there is complex interplay between

domain-specific outcomes such as recurrent instability,
pain, OA, and range of motion (ROM), the picture of



Table 2. Outcomes After Clustering

Optimal Observed Outcome (N ¼ 146) Suboptimal Outcome (N ¼ 54) P Value

After initial consult
Recurrent pain 122 (83.6%) 39 (72.2%) 0.111
Secondary to acute trauma 70 (47.9%) 20 (37.0%) 0.224
Recurrent Instability 115 (78.8%) 41 (75.9%) 0.812

After initial surgery
Recurrent pain 33 (22.6%) 28 (51.9%) <0.001
Months from surgery 20.9 (9.81) 51.1 (30.7) <0.001
Secondary to acute trauma 21 (14.4%) 18 (33.3%) 0.005

Recurrent Instability 18 (12.3%) 22 (40.7%) <0.001
Months from surgery 24.8 (6.18) 44.4 (23.26) <0.001
Months from consult 24.2 (19.9) 55.3 (43.66) <0.001
Months from initial instability 36.2 (23.0) 110.7 (31.62) <0.001

Postoperative pain 0.001
None 127 (87.0%) 35 (64.8%)
Mild 17 (11.6%) 12 (22.2%)
Moderate 2 (1.4%) 6 (11.1%)
Severe 0 (0.0%) 1 (1.9%)

Adhesive capsulitis 1 (0.7%) 2 (3.7%) 0.366
Postoperative infection 2 (1.4%) 0 (0.0%) 0.949
Postoperative nerve injury 5 (3.4%) 2 (3.7%) >0.999
Underwent revision surgery 14 (9.6%) 13 (24.1%) 0.015

Months from initial surgery 23.09 (6.88) 42.54 (19.45) <0.001
Age at revision surgery 24.25 (3.77) 29.44 (5.54) <0.001

Final follow-up
Symptomatic osteoarthritis 7 (4.8%) 10 (18.5%) 0.005
Years from initial XR 12.29 (2.06) 12.20 (3.85)
Forward elevation 168.10 (10.79) 160.95 (18.35) 0.001
External rotation 66.97 (17.55) 61.80 (19.42) 0.074
Internal rotation to T12 or higher 141 (96.6) 49 (90.7) 0.188

Italics indicates significance.
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“optimal observed outcome” remains ill-defined in pa-
tients with ASI. Specifically, it is unclear whether im-
provements across all domains can be achieved or
whether some are mutually exclusive from one
another. Absence of recurrent instability events and
avoidance of revision are 2 commonly used markers for
better outcomes.11,14,23,24 These 2 factors were also
identified in this study as markers of improved
outcome. Although return to play is often cited within
athlete cohorts, return to baseline activity and ROM for
the nonathlete is rarely discussed.10,24 In this study,
return to normal ROM, decreased postoperative pain,
Fig 2. The natural time course of outcomes in operatively manag
instability.
minimal recurrent pain, and no progression to osteo-
arthritis were concomitantly present in patients within
the “optimal observed outcome” cohort. This suggests
that these factors are not always mutually exclusive.
These factors have been intermittently identified in the
literature as individual markers of successful patient
outcome but have yet to be recognized as components
of a global functional outcome. Based on these findings,
the definition of “optimal observed outcome” can be
shifted from a singular outcome to achievement in
multiple clinical domains to this more global
perspective.
ed patients after their first presentation after anterior shoulder



Table 3. Predictors of Optimal Observed Outcome After Operative Treatment of Anterior Shoulder Instability

OR 95% CI P Value

Months from initial instability to surgical consult 0.95 (0.92-0.98) 0.006
Number of subluxations prior to surgery 1.30 1.02-1.65 0.030
Habitual/voluntary instability 0.17 (0.04-0.77) 0.020
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Although almost 2/3 of the cohort achieved optimal
functional outcome, patients obviously may achieve
varying levels of success within these 6 measurements.
In this work, only 41% of patients were considered to
have achieved a “perfect outcome” as evidenced by
achieving the ideal outcome on all analyzed metrics.
Although this has been and will continue to be the goal
for our patients, this work suggests that this is not a
realistic expectation for the majority of patients. Cur-
rent literature reports instability recurrence ranging
from 10% to 30% after operative treatment, with most
estimates around 20% at 10-year follow-up.25-27 This
study demonstrated significantly lower rates of recur-
rent instability in patients with “optimal observed
outcome” at 12.3%. These patients also showed
increased gains in forward elevation and return to
ROM, consistent with what is described in the litera-
ture.25,28,29 Recurrent pain beyond the postoperative
period was reported by just over one fifth of those with
“optimal observed outcome.” Osteoarthritis develop-
ment has a broad range in the existing literature, with
rates as high as 68% and as low as 11%.13,14,29-31

Reoperation rates are most often reported in the
context of specific technique, but overall rates have
been reported at 14%.31 Although the whole cohort
revision rate of 13.5% is similar, revision rates dropped
slightly (9.6%) for “optimal observed outcome” and
drastically increased in patients with suboptimal out-
comes (24.1%). Notably, achievement of “optimal
observed outcome” was not influenced by the type of
repair nor the need for larger, open procedures; this
coincides with recent long-term outcome findings by
Bernard et al.32 Overall, patients should be aware that
even with “optimal observed outcome,” up to 22.6%
may have recurrent pain, 9.8% may have recurrence or
require revision surgery, and 4.8% will experience
symptomatic OA.
Patients should also be counseled that almost half of

those with “suboptimal outcome” will experience
recurrent instability and postoperative pain. Approxi-
mately one quarter will require revision surgery and
develop significant osteoarthritis, with many of these
complications and sequelae occurring greater than 3 or
4 years after surgery. As a result of the delayed
appearance of these outcomes in the “suboptimal
outcome” group, these adverse events may be under-
reported in short terms studies with 2 to 4 years of
mean follow-up.
Both patient factors and injury characteristics have
been highly investigated for their roles in ASI and
outcomes. Certain patient demographics, such as sex,
have shown mixed effects, despite large discrepancies in
instability rate.26,28 Young age has been demonstrated
to increase the risk for recurrent instability.25,26,33,34

Delays in the time from injury to presentation and
treatment has been demonstrated to worsen out-
comes.3,34 In the current study, younger age at diag-
nosis, younger age at first operation, decreased time
from injury to treatment, and total number of sub-
luxations (rather than frank dislocation) were all
significantly associated with improved outcomes after
surgical intervention. Although the “optimal observed
outcome” cohort had a younger age at diagnosis, both
groups had similar ages at initial instability. This raises
the possibility that time from injury, rather than age,
may be the more important factor in determining
outcome.
A strength of this study comes from the ability to

examine multiple outcomes, whereas multivariate
regression and supervised machine learning have been
shown to generate reliable and effective models for the
prediction of singular outcomes. Clustering analysis
reviews and groups outcomes based on the aggregation
of all available information to enable the possible
identification of clinically meaningful subgroups
without the inherent bias present in traditional statis-
tical models designed to find investigator-selected out-
comes of interest. Additionally, this cohort closely
reflects those in previously published literature, with
the majority of patients being young males who
commonly participated in contact or overhead/
throwing sports and experienced an acute traumatic
injury leading to the onset of symptoms.7,35-38 These
similarities increase the generalizability of the study and
make the findings applicable to patients experiencing
anterior shoulder instability.

Limitations
This study is not without limitations. The study was

performed in a retrospective fashion and is subject to
the common limitations of retrospective research. This
includes variability in operative techniques and post-
operative regimens; however, this variability is consis-
tent with current standard of practice, where injury
characteristics and nuances (such as bone loss) often
determine the best surgical technique. Furthermore, we
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noted no significant differences in surgical techniques
and intraoperative findings between the cohorts. The
retrospective nature also led to a dearth of patient-
reported outcomes. Although this limited our ability
to define the “optimal observed outcome” from the
patient’s perspective, the majority of identified metrics
are likely highly important to patientsdsuch as recur-
rent instability or need for surgical revision. Although
this study population was overwhelmingly male, this
high prevalence of male patients is consistent with re-
ported incidence of anterior shoulder injuries, and the
16.5% female population is in line with currently re-
ported rates.1,28,31 Finally, this study analyzed a rela-
tively small cohort given the lengthy span of the study
period and a minimum 2-year follow-up requirement.

Conclusion
After surgery for ASI, 64% of patients achieved the

“optimal observed outcome” defined as minimal post-
operative pain, no recurrent instability or OA, low
revision surgery rates, and increased ROM, of whom
only 41% achieved a “perfect outcome.” Positive pre-
dictors were shorter time to presentation and predi-
lection toward preoperative subluxations over
dislocations.
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Appendix Table A1. Detailed definition of terms frequently encountered in unsupervised machine learning and clustering

Term Definition

Hierarchical clustering An umbrella term for clustering algorithms that groups objects into clusters/subgroups
based a calculated distance between each object that is described within a distance
matrix. This can be performed either in a top-down manner (starting with all
objects in the population of interest and dividing into smaller clusters) or a bottom-
up manner (all individual cases in the population of interest as their own clusters
and adding into form larger clusters), both of these are performed in an iterative
fashion. The former method is known as agglomerative hierarchical clustering
whereas the latter is known as divisive hierarchical clustering.

K-Means clustering A method for reducing the variability within clusters using iterations based off an
initial guess for the center of each cluster. After this initial guess each observation is
placed into the cluster to which it is closest, and then the cluster centers are
updated, and the entire process is repeated until the centers of each cluster no
longer move. This initial guess can also be determined using another clustering
algorithm, such as a hierarchical algorithm, to determine the starting points for the
cluster centers.

Unweighted pair group method with arithmetic
mean

An agglomerative hierarchical clustering method that constructs a dendrogram from
the bottom-up as the 2 nearest clusters are combined to form a new higher-level
cluster after each iteration until the desired number of clusters is achieved. The
distance between any 2 clusters is calculated as the average distance between the
elements in each cluster.

Divisive analysis of hierarchical clustering A specific divisive hierarchical algorithm that begins with all observations in a single
cluster and then subsequently divides the cluster until each cluster contains a single
observation.

Agglomerative nesting of hierarchical clustering An agglomerative hierarchical clustering method in which each observation starts as
its own cluster and then the observations are collected until all similar points form a
single cluster. The distance between 2 clusters is the mean of the dissimilarities
between elements in 1 cluster and the elements in another cluster.

Connectivity An internal validation measure of connectedness, or the extent to which observations
are placed in the same cluster as their nearest neighbors in space, given as a value
between 0 and infinity, with a smaller value reflecting a higher degree of
connectivity.

Silhouette coefficient A metric used to calculate the accuracy of a clustering technique based on the distinct
separation of clusters. A value from �1 to 1 is given with values near 1 representing
well-clustered observations, and values near �1 representing poorly clustered
observations.

Average distance A stability measurement computed from the average distance between observations
that are placed in the same cluster by the clustering algorithm both based on the full
data and then based on the data with a single variable removed. A value between
0 and infinity is assigned, with smaller values representing a better model.

Figure of merit A stability measure based on the mean variance of observations in the deleted column
within a cluster that is based on the undeleted variables, which estimates the mean
error using predictions based on the cluster averages. The final score is averaged
over all the deleted columns and is given as a value from 0 to infinity, with smaller
values representing better performance.
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Appendix Table A2. Baseline Findings in Those Undergoing Preoperative Magnetic Resonance Imaging

Variables Optimal Observed Outcome (N ¼ 100) Suboptimal Outcome (N ¼ 38) P

Posterosuperior labral tear 11 (11.0%) 2 (5.3%) 0.481
SLAP anterior superior tear 23 (23.0%) 9 (23.7%) >0.999
Posteroinferior labral tear 13 (13.0%) 5 (13.2%) >0.999
Anterior inferior labral tear 90 (90.0%) 30 (78.9%) 0.150
Bony Bankart 28 (28.0%) 13 (34.2%) 0.614
Glenohumeral ligament tear 0.064

Complete 0 (0.0%) 2 (5.3%)
Partial 18 (18.0%) 7 (18.4%)
No 82 (82.0%) 29 (76.3%)

Cartilage injury 0.657
Both 4 (4.0%) 0 (0.0%)
Glenoid 54 (54.0%) 22 (57.9%)
Humeral head 3 (3.0%) 1 (2.6%)
No 39 (39.0%) 15 (39.5%)

Hill Sachs (Yes) 80 (80.0%) 30 (78.9%) >0.999
Biceps tendon pathology 3 (3.0%) 2 (5.3%) 0.900
Cuff tear 14 (14.0%) 6 (15.8%) >0.999

Clustering was performed using cluster numbers ranging from a minimum of 2 and a maximum of 20 using the previously mentioned al-
gorithms. Among these algorithm and cluster center combinations, AGNES clustering with 13 clusters was the best-performing candidate al-
gorithm, with a connectivity of 20.9, a silhouette coefficient of 0.4, average distance of 99.5, and figure of merit of 2.9. Visualization of the 2
largest clusters in multidimensional feature space after outlier removal is provided in Figure 1, in which the 2 distinct clusters can be seen plotted
after principal component analysis was performed to reduce the entire feature set of each patient to a 2-dimensional cartesian coordinate system.
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