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)e existing deep learning models have problems such as large weight parameters and slow inference speed of equipment. In
practical applications such as fire detection, they often cannot be deployed on equipment with limited resources due to the huge
amount of parameters and low efficiency. In response to this problem, this paper proposes a lightweight smoke detection model
based on the convolutional attention mechanism module. )e model is based on the YOLOv5 lightweight framework. )e
backbone network draws on the GhostNet design idea, replaces the CSP structure of the FPN and head layers with the
GhostBottleNeck module, adds a convolutional attention mechanism module to the backbone network layer, and uses the CIoU
loss function to improve the regression accuracy. Using YOLOv5s as the benchmark model, the parameter amount of the
proposed lightweight neural network model is 2.75M, and the floating-point calculation amount is 2.56G, which is much lower
than the parameter amount and calculation amount of the benchmark model. Tested on the public fire dataset, compared with the
traditional deep learning algorithm, the model proposed in the paper has better detection performance and the detection speed is
significantly better than the benchmarkmodel. Tested under the unquantized simulator, the speed of the proposedmodel to detect
a single picture is 60ms, which can meet the requirements of real-time engineering applications.

1. Introduction

In 2021, a total of 748000 fires were reported in China,
including 1987 deaths, 2225 injuries, and 6.75 billion yuan in
direct property losses. In 2020, a forest fire in Yunnan
burned for three days and nights.)e area of the fire reached
170 hectares, and 5800 people were involved in suppressing
the fire. In addition, a bush fire in Australia burned for more
than four months, burning an area of 170000 square kilo-
meters and resulting in the loss of many vegetation and
animals. )e smoke generated by the fire poured into the
stratosphere, and the impact cannot be fully restored for a
long time [1]. Fire not only seriously threatens the safety of
human life but also has a great effect on the ecological
environment. Fire prevention is very important to protect
people’s lives and property and has important scientific
research significance [2, 3].

Traditional fire detection technologies include contact-
type fire detectors such as temperature detectors [4] and
smoke detectors [5, 6], which are commonly used in most

public places. However, the disadvantages of this kind of
detector are limited to indoor detection, aging, alarm time
delay, etc. )us, it is difficult to carry out fire monitoring in
outdoor spaces. Compared with traditional contact fire
detectors, noncontact video fire detection technology has the
characteristics of fast response, wide detection range, and
low hardware cost and is suitable for fire monitoring in large
indoor and outdoor spaces and forests. Video fire detection
technology can be divided into flame detection [7] and
smoke detection [8] according to the detection object.
Generally, in the early stages of a fire, the smoke appears
earlier than the flame and is not easy to cover, and the flame
will only be generated in the middle of the fire. When the
flame is detected, the fire has occurred, which makes it
impossible to prevent and control it for the first moments.
)erefore, the current video fire detection technology
mainly focuses on detecting smoke.

Smoke detection technologies include traditional ma-
chine learning-based methods and deep learning-based
methods. )e smoke detection technology based on
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traditional machine learning includes two parts: feature
extraction and classifier design. )e core research is smoke
feature research. Commonly used smoke features mainly
include artificially designed features such as the color [9],
texture [10], motion [11], background contrast [12], and
combinations of various features [13]. Smoke detection
technology based on traditional machine learning has dif-
ficulty meeting the application requirements of real-time
detection in terms of accuracy and false alarm rate. With the
successful application of deep learning technology in the
field of computer vision, deep convolutional neural net-
works are widely used in smoke detection. At present, smoke
detection algorithms based on deep learning are mainly
divided into two categories. One is a two-stage target de-
tection model based on region extraction, such as R-CNN
(regions convolutional neural network) [14–16], Fast
R–CNN [17], and Faster R–CNN [18], which divide the
target detection into the following two steps: feature ex-
traction and feature classification. )e other category is a
one-stage target detection model that directly performs
location regression, such as the SSD (single-shot multibox
detector) [19] and YOLO (you only look once) [20] series,
which converts target detection into a regression problem.

Most smoke detection algorithms based on deep learning
rely on convolutional networks for feature extraction. To
solve the problems of efficiency and storage, researchers
adopt network pruning [21], network parameter quantiza-
tion [22], and knowledge distillation [23] and design
lightweight networks to improve the speed of inference. For
example, MobileNet v1-v3 [24–26] and EfficientDet [27]
were proposed by Google, GhostNet [28] was proposed by
Huawei, and ShuffleNet [29, 30] and SqueezeNet [31] were
proposed by Megvii. )ese networks are well constructed. It
can reduce the number of model parameters and improve
the accuracy of the network detection, which plays an im-
portant role in real-time smoke detection.

Although smoke detection technology has been widely
used, the smoke detection scene is complex and changeable,
and the accuracy and robustness of the existing technology
in complex smoke scenes still have difficulty meeting the
needs of popularization and application. )erefore, this
paper designs a lightweight network based on the YOLOv5
framework, draws on the design ideas of GhostNet, and adds
the CBAM attention mechanism [32] to achieve model
compression and speed up inference without reducing the
accuracy of the model. )is model greatly reduces the need
for hardware environment and uses MNN as the framework
for unquantified testing. )e specific work is as follows:

(1) Improve the focus structure to reduce the parameters
and calculation amount of the focus layer.

(2) )e backbone network adopts the GhostNet module,
and the CSP of the FPN and the head layers is
modified to a Ghost bottleneck.

(3) Add an attention mechanism CBAM to the back-
bone network layer.

)e rest of the paper is arranged as follows: Section 2
introduces the work related to smoke detection; Section 3

focuses on the description of lightweight smoke detection
models and implementation details; Section 4 compares the
performance of different smoke detection models on smoke
detection datasets; finally, a summary and outlook are given.

2. Related Works

Traditional smoke detection technology tries to obtain the
characteristics of smoke to distinguish from other inter-
fering substances and performs smoke detection by man-
ually setting the smoke characteristics, but the detection rate
and false alarm rate have difficulty meeting the application
requirements. With the application of deep learning tech-
niques in the field of computer vision [33–35], researchers
have used deep convolutional neural networks for smoke
detection [36–39], which can learn deeper feature models.
Luo et al. [40] combined convolutional neural networks with
traditional foreground extraction methods for smoke de-
tection, extracted suspected smoke regions based on motion
and color information, and used a CNN to extract regional
features for classification. Pundir and Raman [41] input
texture features into deep belief texture learning to train the
smoke recognition model. Zhang et al. [42] solved the
problem of insufficient sample data by inserting real smoke
images in the forest background and adopted Faster R-CNN
to detect wildland forest fire smoke. Filoneko et al. [43, 44]
adopted classical convolutional neural networks (including
AlexNet, Inception-V3, Inception-V4, ResNet, VGG, and
Xception) to conduct experimental verification on four
large-scale smoke image databases. Sharma et al. [45] used
two pretrained deep convolutional neural networks, VGG
and ResNet50, to test unbalanced datasets and found that
deeper CNNs performed better on more challenging data-
sets. Yin et al. [46] proposed a 14-layer deep normalization
and convolutional neural network (DNCNN) to achieve
automatic feature extraction and classification. To further
reduce the problem of model overfitting caused by insuf-
ficient training samples, more training samples are gener-
ated from the original training set by using various data
enhancement techniques. Muhammad et al. [47] proposed
an energy-saving edge-assisted smoke detection method
based on a deep convolutional neural network for foggy
monitoring scenes, and the early smoke detection methods
outperformed the state-of-the-art methods. Xu et al. [48]
proposed a new video smoke detection method based on a
deep saliency network, which uses a circular convolutional
structure to construct a pixel-level saliency detection net-
work and uses the fused features for saliency reasoning. Li
et al. [49] proposed extracting suspicious smoke regions by
smoke region proposal, pruning and reconstructing a
convolutional neural network to improve real-time detec-
tion, and proposing a regularized loss function called score
clustering to improve the accuracy of the model. Liu et al.
[50] proposed a two-stage smoke detection method. In the
first stage, block DNCNN is used to detect the suspicious
smoke area from each frame image and put forward the
concept of visual change image. In the second stage, the SVM
classifier is used to classify the HOG features of the visual
change image of the suspected smoke area.
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Although smoke detection technology based on deep
learning has achieved good results, with the improvement of
the performance of the smoke detection algorithm, the
number of convolutional layers also increases, resulting in
the problems of large weight parameters and slow equip-
ment reasoning speed. In practical applications, it is often
unable to be deployed on equipment with limited resources
because of the high parameter quantity and low efficiency.
To solve the problem of efficiency and storage, researchers
have designed lightweight networks to improve the infer-
ence speed. For example, the YOLOv3-Tiny [51] network
launched for high parameters and inference speed is a
simplified version of the YOLOv3 network. Iandola et al.
[52] proposed SqueezeNet. )e main idea is to replace the
3× 3 convolution with a 1× 1 convolution and reduce
the amount of computation and parameters by reducing the
number of channels of the 3× 3 convolution. Howard et al.
[53] proposed MobileNet, which mainly uses many neural
networks designed with depthwise separable convolutions,
which can greatly reduce the number of parameters and
computations. MobileNetv2 employs a reverse residual
block, while MobileNetv3 achieves better performance with
fewer floating-point numbers. Based on MobileNetv3,
GhostNet [54] adopts an inexpensive linear operation
method to obtain richer output feature maps at a lower cost
of model parameters to increase the feature extraction ca-
pability to solve the redundancy of feature maps. Zhang et al.
[55] proposed ShuffleNet, which uses group convolution and
channel shuffling operations to effectively reduce the
computational complexity of point convolution and achieve
superior performance. ShuffleNetV2 further considers
practical speed in compact model design. In the field of
smoke detection, Silva et al. [56] proposed a novel light-
weight CNNmodel through RGB images, which can be used
from aerial images of UAVs and video surveillance systems
and combined with edge computing equipment to process
images through a convolutional neural network. Pan et al.
[57] used weakly supervised fine segmentation and light-
weight Faster R–CNN to propose a collaborative area de-
tection and classification framework for fire smoke, which
can simultaneously achieve early warning, area detection,
and classification of fire smoke. To reduce the complexity of
Faster R–CNN, this method introduces knowledge distil-
lation technology to compare the structure of the model.
With the advancement of mobile devices and the diversified
development of application scenarios, lightweight networks
show higher engineering value. )is paper balances between
the accuracy and speed of the model, reasonably optimizes
the YOLOv5 model, and designs a lightweight improved
model based on the GhostNet and CBAM attention
mechanisms. Without reducing the accuracy of the model, it
realizes model compression and improves the reasoning
speed, which greatly reduces the dependence on the hard-
ware environment.

3. Methodology

3.1.YOLOv5. YOLO (you only look once) is widely used as a
general object detection model. YOLOv1 uses one stage to

complete the classification and positioning of objects, and
then YOLOv2 [58] and YOLOv3 [59] further improve the
speed and accuracy to accelerate object detection in the
industrial world. YOLOv4 [60] can achieve training on an
ordinary GPU. Currently, the YOLO series has developed
into YOLOv5. Compared with YOLOv4, YOLOv5 is more
flexible. To some extent, the YOLOv5model is the most state
of the art of all the known YOLO series. It provides four
versions in the following ascending sizes: YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. )e model size and
accuracy of the four versions increase in turn and are dis-
tinguished by the number of bottlenecks. )e channel and
layer control factors are used to realize the version change,
and the appropriately sized model can be selected according
to the application scenario. )is paper mainly implements
model compression and acceleration, making it easier to
apply to the embedded devices with limited resources.
)erefore, YOLOv5s is used as the benchmark model with
the smallest network depth and feature map width.
YOLOv5s is mainly composed of the backbone and head.
)e backbone includes the focus, C3, and SPP modules, and
the head includes the neck and detect modules for extracting
fusion features.

3.2. Lightweight YOLOv5. Compared with the traditional
YOLOv5s, this paper first gives the implementation method
of some modules. )e main improvements include the
Focus_mod module, the GBN module (Ghost bottleneck),
and the attention mechanism CBAM.)e specific details are
presented in the following subsections.

3.2.1. Focus_mod Module. First, we downsample the orig-
inal image (640× 640× 3) to reduce the calculation of spatial
information, then form a 320× 320×16 featuremap through
convolution, and reduce the loss of image information
caused by the downsampling. Next, we perform 16 con-
volution kernels with 3× 3 convolutions to obtain the feature
map of complete information, implement MaxPooling again
to reduce the layer size, expand the perceptual field, pool to
form a feature map of 320× 320×16, and finally combine the
residuals and output a 320× 320× 32 feature map. Pooling
removes redundant information, compresses features,
simplifies the network complexity, reduces computation,
reduces memory consumption, andmakes the smoke feature
layer more obvious. Compared with the original focus
module, the parameters of the improved Focus_modmodule
are reduced by 6 times, and the calculation amount is re-
duced by 7 times, as shown in Figure 1.

3.2.2. GBN (Ghost Bottleneck) Module. GhostNet proposes
an innovative Ghost module that generates more feature
maps through cheap operations. )is new basic unit of the
neural network successfully achieves more featuremaps with
fewer parameters and computations. )e implementation of
this module is divided into two parts. First, GhostNet uses a
normal convolutional calculation to obtain feature maps
with fewer channels, then uses a cheap operation to obtain
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more feature maps, and finally concatenates different feature
maps together and combines them into a new output, as
shown in Figure 2.

In GhostNet, the Ghost bottleneck module is divided
into two types according to the stride. )e Ghost bottleneck
module structure when stride� 1 is modeled on ordinary
residuals and is composed of two Ghost modules. )e first
module acts as an extension layer to increase the number of
channels. )e second module reduces the number of
channels to match the shortcut path and then uses the
shortcut to connect the inputs and outputs of these two
Ghost modules. )e Ghost bottleneck module when
stride� 2 has the layout of the standard bottleneck structure
and maintains the structural characteristics when stride� 1.
By learning from the experience of the linear bottleneck
module of MobileNetv2, an intermediate block is added in
the middle of the stride� 1 structure. For a lightweight two-
dimensional depthwise convolution, the amount of com-
putation is reduced. )is method draws on the experience of
MobileNetv2. During the design process of the module and
when the ReLU activation function is not used after the
second Ghost module, the other layers use batch normali-
zation (BN) and the ReLU nonactivation function after each
layer. )e structure design of the Ghost bottleneck is shown
in Figure 3.

3.2.3. Attention Mechanism. )e convolutional block at-
tention module (CBAM) is a lightweight convolutional at-
tention module that combines channel and spatial attention
mechanismmodules [61]. CBAM includes two sub-modules,
the channel attention module (CAM) and the spatial at-
tention module (SAM), which perform channel and spatial
attention, respectively. )is not only saves parameters and
computing power but also ensures that it can be integrated
into the existing network architecture as a plug-and-play

module. CAM is an adjustment to the structure of the SE
module. Based on the SEmodule, a global maximum pooling
operation is added to the CAM. CAM compresses the feature
map into a one-dimensional vector in the spatial dimension,
uses global average pooling and global maximum pooling to
aggregate the feature information of the spatial map, and
performs an element-by-element sum operation on the
results by sharing the fully connected layer. )e structure
setting of the double pooling operation can make the
extracted high-level features richer and provide more de-
tailed information. SAM performs the concatenating op-
eration on the result of the CAM operation based on the
channel and performs single-channel dimensionality re-
duction through convolution. Similar to CAM, SAM adopts
a double pooling operation. CBAM is similar to the SE
module. )e module structure mostly uses a 1× 1 convo-
lution to operate and completes the information extraction
of the feature map through the entire channel dimension of
the SAM, as shown in Figure 4.

3.3. Lightweight YOLOv5. Figure 5 shows the lightweight
YOLOv5 network structure. Based on the YOLOv5s
framework, the main improvements involve the two parts of
backbone and neck. Combined with the introduction in
Section 3.2, the overall structure of the improved lightweight
network in this paper can be obtained.)emultiscale output
of the traditional model is output by the bottleneck module,
and the modifiedmultiscale output of the improved model is
output by concatenating the two characteristic diagrams.

Table 1 shows the comparison between the parameter
quantities of different sub-modules and the calculation
quantities of traditional YOLOv5 sub-modules (focus, Conv,
and CSP). )e number of parameters and calculations of
Focus_mod and GBN are significantly reduced. )e pa-
rameter quantity of the Focus_mod module is 232, and the
calculation quantity is 27.85M. )e parameter quantity of
the GBN module is 317, and the calculation quantity is
136.4M.

Table 2 shows the important parameters of the light-
weight network model. GBN modules are used in the
backbone network and head portion, and the Focus_mod
and CBAM attention mechanisms are used in the backbone
network portion.

3.4. Loss Function. )e loss function of the target detection
task consists of classification loss and bounding box re-
gression loss. IoU and its improved algorithm are the most
used in the bounding box regression loss. )e full name of
the IoU algorithm is the intersection over union, which is
obtained by calculating the ratio of the intersection and
union of the predicted box and ground-truth box, that is,
IoU(A, B)� (A∩B)/(A∪B), where A is the prediction box and
B is the ground-truth box. IoU can be used as a distance;
then, Loss_IoU� 1− IoU.)e advantage of IoU is that it can
reflect the detection effect of the prediction box and ground-
truth box. )is paper takes CIoU as the loss function of the
depth convolutional model, and the specific formula is as
follows:

images

1×3×640×640 1×3×640×640

MaxPool

Concat

LeakyRelu LeakyRelu

Conv

W
B

<16×3×3×3>
<16>

Resize

roi
scale

<0>
<4>

Conv

W
B
<16×3×3×3>
<16>

Figure 1: Focus_mod module.
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where b and bgt represent the center points of prediction
Box B and ground-truth Box Bgt, respectively; c represents
the square of the diagonal length of the minimum
bounding Box C; p represents the calculation of the Eu-
clidean distance between the two center points; α is the

weight parameter; and v is used to measure the similarity of
the aspect ratio.

4. Experimental Results

4.1. Experimental Data and Environment. )ere is currently
no authoritative dataset similar to ImageNet for smoke
detection. )e dataset used in this paper comes from the
dataset published by the Fire Monitoring Technology
Laboratory [62] and some network images, including a
total of 4829 real smoke images. )e sample images are
shown in Figure 6. )e smoke dataset covers the smoke
pictures collected in different scenarios, including indoor
monitoring, outdoor monitoring, field monitoring, field
monitoring tower, drone shooting, and network pictures.
)e smoke and background of some images are confusing
to some extent. At the same time, we collected many
nonsmog background images as negative samples and

Input Feature
Channel
Attention

Spatial
Attention

Refined Feature

Figure 4: CBAM module.

Ghost module
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BN
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Relu
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Figure 2: Ghost module.
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Figure 3: Ghost bottleneck module.
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divided the smoke dataset into a training set and a test set at
a ratio of 7 : 3.

)e experimental environment in this paper is the op-
erating systemWindows 10, graphics card NVIDIA GeForce
RTX3070, memory 16G, processor Intel(R) i7-11700k,
software environment CUDA11.4, and PyTorch 1.8.1.

4.2. Evaluation Standard. In this paper, the precision rate,
recall rate, average precision (AP), and mean average
precision (mAP@0.5) are used as model accuracy evalu-
ation indicators, where AP represents the area under the
PR curve, and mAP@0.5 represents the average AP of all
categories when IOU is set to 0.5.)e specific formula is as
follows:

P �
TP

TP + FP
,

R �
TP

TP + FN
,

AP � 
1

0
PdR,

mAP �


N
i�1 APi

N
,

(2)

where TP is the number of correctly classified bounding
boxes that are predicted, the bounding box coordinates are
correct, FN is the number of all unpredicted bounding
boxes, and FP is the number of predicted bounding boxes
that are misclassified or whose bounding box coordinates are
not up to standard.

Table 1: Parameters and calculations of the sub-modules.

Module Parameters FLOPs/M
Focus 1760 181.86
Focus_mod 232 27.85
Conv 464 196.61
CBAM 594 230.2
CSP 1120 481.69
GBN 317 136.4

Table 2: Overall architecture of lightweight network model.

Input Operator Conv Stride SE
640✕ 640✕ 3 Focus_mod 3✕ 3 1 —
320✕320✕64 CBAM 3✕ 3 2 —
160✕160✕64 GBN 5✕ 5 2 1
160✕160✕64 Conv 3✕ 3 2 —
80✕80✕64 GBN 3✕ 3 1 1
40✕ 40✕ 128 Conv 3✕ 3 2 —
40✕ 40✕ 128 GBN 3✕ 3 1 —
20✕ 20✕ 256 Conv 3✕ 3 2 —
20✕ 20✕ 256 GBN 3✕ 3 1 —
20✕ 20✕ 256 SPP 1✕ 1 2 —
20✕ 20✕ 512 GBN 3✕ 3 1 1
20✕ 20✕ 256 Conv 1✕ 1 1 —
40✕ 40✕ 256 Upsample —
40✕ 40✕ 256 GBN 3✕ 3 1 1
40✕ 40✕ 128 Conv 1✕ 1 1 —
80✕ 80✕ 128 Upsample —
80✕ 80✕ 128 GBN 3✕ 3 1 1
40✕ 40✕ 128 Conv 3✕ 3 2 —
40✕ 40✕ 256 GBN 3✕ 3 1 1
20✕ 20✕ 512 Conv 3✕ 3 2 —

640X640X3

Focus_mod

CBAM

GBN

Conv

GBN

Conv

Conv

NeckBackBone

Concat_1 GBN Conv

Concat_2 GBN

Concat_3 GBN Conv

Detect

Detect

Prediction

Concat_4

Detect

Conv

GBN

GBN

SPP

Figure 5: Lightweight network model.
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4.3. Experimental Results. In the network model training
phase, the iteration batch size was set to 32, the decay co-
efficient was 0.0005, the initial learning rate was 0.001, and
the total number of iterations was 300.

In order to verify the performance of the loss function,
the paper uses Alpha-IoU [63] as a comparative experiment
and uses CIoU as the benchmark loss function, setting alpha

Figure 6: Sample images from the dataset.
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Figure 7: Performance curves of different loss functions.

Table 3: )e performance of different models.

Model Parameters FLOPs (G) mAP@
0.5 (%)

YOLOv5s 7255094 16.86 97.04
YOLOv5s +Ghost 4434246 8.88 97.09
YOLOv5s +Ghost +CBAM 3624520 6.28 97.23
YOLOv5s-Lightweight 2751176 2.56 97.45
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Figure 8: Continued.
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values of 1, 2, and 3, respectively. Among them, alpha� 1
corresponds to the method proposed in the paper. Figure 7
shows the loss function curves corresponding to different
alpha values. It can be seen from the figure that the overall
performance of the method proposed in the paper is better.
When alpha� 2 or 3, the detection curve has obvious
fluctuations in the early stage. )is means that alpha is
invalid for smoke detection when the value is high.

To verify the overall performance of the proposed
method, the paper gives the following comparison
algorithms:

(1) YOLOv5s : YOLOv5s model without optimization.

(2) YOLOv5s +Ghost: modify the focus structure to
Focus_mod, and all the computing modules of the
backbone network use the GhostNet module.

(3) YOLOv5s +Ghost +CBAM: modify the head layer,
modify the CSP module to the Ghost bottleneck, and
add the CBAM module.

(4) YOLOv5s-Lightweight: modify the stride� 2 of the
first Ghost bottleneck of the backbone network based
on the previous network.

In addition, the traditional multiscale output of
YOLOv5s is output after the CSP module directly extracts

features, and the lightweight network model is modified to
CONCAT to connect dual feature maps for the output.
Table 3 shows the parameters and floating-point calculation
of the different algorithms. )e parameter of the lightweight
network model is only 2.75M, and the floating-point cal-
culation is 2.56G, which is approximately 38% of the
YOLOv5s parameter (7.25M) and 15% of floating-point
computation (16.86G). Figure 8 shows the precision, recall,
and mAP@0.5 curves of the four models. It can be seen from
the figure that the accuracy of the lightweight networkmodel
is slightly better than that of the other models, the detection
speed is the fastest, and the number of parameters is the
lowest.

Figure 9 shows the detection results of the lightweight
network model in different scenarios (including indoor
and outdoor, wild, etc.). It can be seen from the figure
that the lightweight network model can accurately
identify smoke targets in different scenarios. In addition,
we use the deep network inference engine MNN as the
framework to conduct unquantified tests on smoke im-
ages on a single-core Intel i7. )e traditional YOLOv5s
network model needs 140ms, while the lightweight
network model only needs 60ms, which further improves
the inference speed, reaching requirements for engi-
neering applications.

YOLOv5s
YOLOv5s+Ghost
YOLOv5s+Ghost+CBAM
YOLOv5s+Lightweight

0 50 100 150
step

200 250 300

1.000

0.975

0.950

0.925

0.900R

0.875

0.850

0.825

0.800

Recall

(c)

Figure 8: Performance detection curves of different models. (a) mAP@0.5. (b) Precision. (c) Recall.
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5. Conclusion

To solve the problem of the smoke detection algorithm with
large weight parameters and slow device reasoning speed,
this paper proposes a lightweight smoke detection model
based on GhostNet and CBAM. )e model uses Ghost
convolution instead of general convolution to improve the
detection speed, uses Ghost bottleneck to replace the CSP
structure in the original YOLOv5 to reduce model pa-
rameters, and increases the CBAM attention mechanism.
Finally, CIoU is used as the loss function to improve the
detection accuracy. Compared with the benchmark
YOLOv5s model, the parameter amount and calculation
amount of the improved model are significantly improved,
the mAP is slightly better than that of the benchmark model,
and the detection speed meets the requirements of engi-
neering applications.)e paper strikes a balance between the
model accuracy and speed, optimizes the YOLOv5 model
reasonably, realizes model compression, speeds up inference
without reducing model accuracy, and greatly reduces the
dependence on the hardware environment. At present, we
have completed the development of the prototype. In the
future, we will complete the quantitative processing and
deployment of the model on the mobile terminal and further
apply it to the field to realize real-time smoke detection.
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