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Correction of the hypomorphic Gabra2 splice site variant
in mouse strain C57BL/6J modifies
the severity of Scn8a encephalopathy
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Summary
De novo gain-of-function mutations of SCN8A are a significant cause of developmental and epileptic encephalopathy (DEE) (MIM:

614558). The severely affected individuals exhibit refractory seizures, developmental delay, and cognitive disabilities, often accompa-

nied by impaired movement. Individuals with the identical SCN8A variant often differ in clinical course, suggesting a role for modifier

genes in disease severity. In a previous study we demonstrated genetic linkage between a hypomorphic mutation in theGabra2 gene and

seizure severity in a mouse model of the human SCN8A pathogenic variant p.Arg1872Trp. Homozygosity for the hypomorphic Gabra2

mutation was associated with early seizure onset and shortened lifespan. We have now confirmed Gabra2 as the modifier gene using a

knock-in allele that corrects the splice site variant in strain C57BL/6J. Correction of the Gabra2 variant restores transcript abundance,

increases the age of seizure onset, and extends survival of the Scn8amutantmice.GABRA2 encodes the a2 subunit of the GABAA receptor

that provides inhibitory input to dendrites and the the axon initial segment of excitatory neurons. Quantitative variation in human

GABAA receptor expression could contribute to variation in the severity of genetic epilepsies and suggests a potential therapeutic inter-

vention.
De novo gain-of-functionmutations in SCN8A, encoding the

voltage-gated sodium channel Nav1.6, have been identified

in more than 400 individuals with developmental and

epileptic encephalopathy (DEE). The pathogenic variant

p.Arg1872Trp results in delayed channel inactivation and

has been identified in several individuals with DEE.1–3 We

generated a conditional knockin mouse model carrying the

Scn8a-R1872W variant.4 When combined with global

expression of Cre recombinase, this allele is activated and

generates early-onset, lethal, convulsive seizures. Activation

of the conditional allele by Emx1-Cre, with selective expres-

sion in forebrain excitatory neurons, generates the complete

phenotype of early-onset convulsive seizures and juvenile

lethality.4

To identify genetic modifiers of the epilepsy phenotype,

mice carrying Scn8a-R1872W and Emx1-Cre on the

C57BL/6J strain background were previously crossed with

wild-type mice from strain SJL/J.5 In the F2 generation, vari-

ation in the age of seizure onset co-segregated with a region

of chromosome 5 containing the Gabra2 gene. The median

survival of F2 mice with genotype Gabra2B/B was 53 days

(n ¼ 15). The median survival of mice with genotype

Gabra2B/S orGabra2S/S was 75 days. The comparable survival

of Gabra2B/S and Gabra2S/S mice indicated that the effect of

the hypomorphic Gabra2B allele is recessively inherited.

To directly test the role of the splice site mutation, we

have now used a corrected knockin line of C57BL/6J car-

rying a wild-type Gabra2 allele.6 The mutant Gabra2B

allele is characterized by deletion of a single nucleotide,
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a thymidine residue at the �3 position of the splice

acceptor site of exon 5.6 This splice variant reduces the

abundance of the Gabra2 transcript to 25% of wild-type

level. We predicted that the quantitative difference in

GABRA2 protein expression was responsible for the

shorter survival of mice with genotype Gabra2B/B.5 Using

Crispr-Cas9 targeting, the single-nucleotide deletion in

the GabraB allele was corrected to generate the Gabra2KI

knockin allele, which has the wild-type sequence and

expression level.6

The two-generation breeding scheme used to determine

the effect of the GabraKI allele is shown in Figure 1. Homo-

zygous C57BL/6J.Gabra2KI/KI mice were crossed with ho-

mozygous C57BL6/J.Emx1Cre/Cre mice (JAX 005628) to

generate double heterozygotes carrying one copy of

Emx1-Cre and one copy of the corrected Gabra2 allele.

The double heterozygotes were crossed with homozygous

conditional Scn8aR1872W/R1872W mice. Offspring with the

genotype Scn8aR1872W/þ, Emx1Cre/þ, Gabra2KI/B (heterozy-

gous corrected) were compared with the Scn8aR1872W/þ,
Emx1Cre/þ, Gabra2B/B (uncorrected) offspring. We observed

a 3-fold increase in lifespan in mice inheriting one copy of

the corrected splice site (Figure 2). The median lifespan of

the Gabra2KI/B mice was 72 days, which was comparable to

the long-lived mice in the previous study5 and signifi-

cantly longer than the 22-day median survival of the

Gabra2BB mice (p < 0.0001, log-rank [Mantel-Cox] test).

These data demonstrate that Gabra2 was the major modi-

fier locus segregating in the C57BL/6J X SJL/J cross.5
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Figure 1. Generation of Scn8a mutant mice carrying the corrected allele Gabra2KI on the C57BL/6J strain background
It is important to note that the Gabra2 splice site variant

is a private variant in the C57BL/6J strain and is not found

in other B6 sublines such as C57BL/6N or in any other of

the common inbred strains.6 Since C57BL/6J has been

widely used as a wild-type mouse in biomedical research,

the Gabra2B variant may have had previously unrecog-

nized effects on other neurological phenotypes studied in

this strain.

Gabra2 encodes the a2 subunit of the GABAA receptor,

which provides inhibitory input to excitatory neurons.

The reduction in inhibitory input due to the hypomorphic

Gabra2B allele is predicted to result in elevated neuronal

excitability, consistent with the early onset of seizures in

homozygous GabraB/B mice.5 A single copy of the wild-

type allele is sufficient to rescue early onset and lethality.
Figure 2. Correction of the hypomorphic Gabra2 splice site
variant in strain C57BL/6J extends the survival of epileptic
C57BL6/J Scn8aR1872W/þ, Emx1Cre/þ mice
Survival was lengthened from a median value of 22 days in Ga-
bra2B/B homozygotes (n ¼ 9) to 72 days in GabraB/KI heterozygotes
(n ¼ 9). p < 0.0001, log-rank (Mantel-Cox) test. B, C57BL/6J allele
of Gabra2; KI, corrected Gabra2 allele.

2 Human Genetics and Genomics Advances 3, 100064, January 13, 2
The hypomorphic Gabra2 variant in C57BL/6J mice

also modifies seizure severity in a mouse model of

Scn1a DEE (Dravet syndrome).7 Loss-of-function variants

of human GABRA2 have been identified in multiple indi-

viduals with epileptic encephalopathies, and the variants

with greater reduction in function were associated with

greater clinical severity.8,9 A genome-wide analysis of

15,212 epileptic individuals found that variants in

GABRA2 were significantly associated with genetic gener-

alized epilepsies.10 In addition, loss-of-function variants

of GABRA2 are underrepresented in the Genome Aggrega-

tion Database (gnomAD) (pLI ¼ 1.0, observed/expected ¼
0.05), suggesting that there has been selection against

haploinsufficiency. The commonly used anticonvulsant

clobazam is a GABAA receptor activator11 that is protec-

tive in Dravet model mice with genotype Scn1a þ/�,
Gabra2B/S.12 Together these findings suggest that reduced

GABRA2 activity could be a contributing modifier in

human sodium-channel-related epilepsy and that

pharmacological augmentation of a2 subunit-containing

GABAA receptor function may be a relevant therapy for

these disorders.
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