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Abstract: Vitamin E is often associated with health benefits, such as antioxidant, anti-inflammatory
and cholesterol-lowering effects. These properties make its supplementation a suitable therapeutic
approach in neurodegenerative disorders, for example, Alzheimer’s or Parkinson’s disease. However,
trials evaluating the effects of vitamin E supplementation are inconsistent. In randomized controlled
trials, the observed associations often cannot be substantiated. This could be due to the wide variety of
study designs regarding the dosage and duration of vitamin E supplementation. Furthermore, genetic
variants can influence vitamin E uptake and/or metabolism, thereby distorting its overall effect.
Recent studies also show adverse effects of vitamin E supplementation regarding Alzheimer’s disease
due to the increased synthesis of amyloid β. These diverse effects may underline the inhomogeneous
outcomes associated with its supplementation and argue for a more thoughtful usage of vitamin E.
Specifically, the genetic and nutritional profile should be taken into consideration to identify suitable
candidates who will benefit from supplementation. In this review, we will provide an overview
of the current knowledge of vitamin E supplementation in neurodegenerative disease and give an
outlook on individualized, sustainable neuro-nutrition, with a focus on vitamin E supplementation.

Keywords: vitamin E; neurodegenerative diseases; nutrition; vitamin E supplementation; Alzheimer’s
disease; personalized medicine

1. Introduction

Vitamin E was first discovered by the American endocrinologist and anatomist Her-
bert. M. Evans, together with his assistant Katherine S. Bishop [1]. The isolated substance,
later termed vitamin E, describes a group of compounds consisting of four tocopherol (TP)-
and four tocotrienol (TT)-derivatives. They all share a chromanol ring as their structural
basis and are therefore termed tocochromanols. The chromanol ring is hydroxylated in
position 6 and, due to the methylation of the ring, α-, β-, γ- and δ-forms can be differenti-
ated (Figure 1). TPs and TTs are classified according to their side chain: TPs contain one
saturated fatty acid, whereas TTs contain a triple unsaturated fatty acid (Figure 1). The
biological properties of vitamin E compounds are mainly determined by their structure. In
humans, α-TP is the biologically most active form that binds with highest affinity to the
α-tocopherol-transfer protein (α-TTP) [2]. α-TTP is a soluble protein found in the cytosol
of hepatocytes in humans that acts to transport TPs between membrane vesicles, allowing
for the distribution of vitamin E [3].
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The definition of vitamin E and which derivates should be associated with this term
are still under discussion. While vitamin E is extensively used as an umbrella term for
different TP- and TT-forms, some authors use it as a synonym for α-TP. Azzi et al. justify the
use of vitamin E as a synonym for α-TP by considering the classification of vitamins, which
describes them as a group of substances essential for normal metabolism with deficiencies
leading to disorders treatable by supplementation [4]. Accordingly, only α-TP should be
named vitamin E, since it is the only form that has been shown to prevent the rare, inherited
neurodegenerative disorder ataxia with vitamin E deficiency (AVED), which is caused
by mutations in gene encoding for α-TTP, alpha tocopherol transfer protein (TTPA) [4,5].
However, since TPs and TTs are generally both implied when using the term vitamin E the
scientific literature, we will also use vitamin E as an umbrella term in this review.

Considering the consequences of vitamin E deficiency—ataxia, dysarthria and neuro-
muscular disorders [6]—it is clear that this substance plays an important role in the central
and peripheral nervous systems. Of interest, abetalipoproteinemia, a disorder characterized
an inability to absorb fat and thereby profound the deficiency of chylomicrons, low-density
lipoprotein (LDL) and very low-density lipoprotein (VLDL), all of which, being necessary
for vitamin E absorption, result in ataxic neuropathy, retinal pigmentation, areflexia, and
loss of proprioception [7]. Furthermore, equine neuroaxonal dystrophy/equine degener-
ative myeloencephalopathy, a neurodegenerative disorder affecting foals that resembles
AVED, is associated with vitamin E deficiency, but is not associated with mutations in
TTPA, such as is the case for AVED [8]. Interestingly, Kono et al. describe a case of juvenile
spinocerebellar ataxia resulting from mutations in the phospholipid transfer protein (PLTP)
gene, as well as TTPA [9].

Particularly in neurodegenerative disorders, vitamin E demonstrates notable ben-
efits due to its antioxidant, anti-inflammatory and cholesterol-lowering properties [10].
Vitamin E supplementation as a therapy, particularly for neurodegenerative disorders,
appears feasible and has been widely investigated, both in vitro and in vivo [11,12]. How-
ever, it has so far not been established in the prevention or treatment of these disorders,
given the incoherent and sometimes contradictive results of interventional studies, and
the apparent adverse effects of vitamin E supplementation [13]. Following recent insights
into genetic polymorphisms, which play a crucial role in the metabolism of vitamin E,
a new approach applying personalized medicine has emerged [14]. In this review, we
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will discuss the advantageous and disadvantageous effects of vitamin E in the context of
neurodegenerative disease, as well as the factors that should be taken into consideration
when tailoring personalized vitamin E supplementation strategies.

2. Characteristics of Vitamin E in the Context of Neurodegenerative Diseases

Structural differences give rise to biological variability among vitamin E derivatives
(Table 1). These differences are important when considering the disease-modifying and
preventive effects of supplementation.

Table 1. Characteristics of vitamin E-derivates.

Vitamin E Biological Properties Refrences

Tocopherols Antioxidation [15–17]
Cholesterol-lowering [18,19]

α-Tocopherol Anti-inflammation [17,20,21]
γ-Tocopherol Anti-inflammation [21,22]

Anti-neoplastic [23,24]
δ-Tocopherol Anti-neoplastic [25]

Tocotrienols Antioxidation [15,26]
Cholesterol-lowering [27–29]

Anti-inflammation [16,30]
Anti-neoplastic [24,31–33]

α-Tocotrienol Immunostimulation [34–36]
Neuroprotection [37,38]

β-Tocotrineol Neuroprotection [39]
γ-Tocotrienol Neuroprotection [38]
δ-Tocotrienol Immunostimulation [40]

Given the prominent role of oxidative stress, chronic inflammation and dyslipidemia in the pathophysiology of
neurodegenerative diseases, vitamin E is considered a promising therapeutic strategy (Table 2).

Table 2. Overview of relevant vitamin E-related clinical trials and results in neurodegenerative disorders.

Vitamin E Related Clinical Trials in Neurodegenerative Disorders

Subject Supplementation Duration Results Reference

Alzheimer’s
disease 57 AD patients 800 I/dU vitamin E,

Placebo 6 months

Differentiation
responders/non-responders;

responders showed lower
oxidized glutathione levels

than non-responders;
cognitive status decreased in

non-responders

[41]

613 patients with
mild to moderate

AD

2000 IU/d α-tocopherol,
20 mg/d memantine,

2000 IU/d α-tocopherol + 20
mg/d

memantine,
Placebo

6 months
α-tocopherol compared with

placebo resulted in slower
functional decline

[42]

341 moderate AD
patients

10 mg/d monoamine oxidase
inhibitor, 2000 IU/d

α-tocopherol, Selegiline and
α–tocopherol, Placebo

2 years

In patients with moderately
severe impairment,
α-tocopherol slows

progression

[43]

Parkinson’s
disease 60 PD patients

400 IU/d vitamin E + 1000
mg/d omega-3 fatty acids

from flaxseed oil plus
supplements,

Placebo

12 weeks
Favorable effects on UPDRS,

hs-CRP, TAC, GSH, and
markers of insulin metabolism

[44]

800 PD patients 2000 IU/d tocopherol +/or
10 mg/d deprenyl, Placebo 2 years Tocopherol did not extend the

time to levodopa therapy [45]



Int. J. Mol. Sci. 2021, 22, 10087 4 of 15

Table 2. Cont.

Vitamin E Related Clinical Trials in Neurodegenerative Disorders

Subject Supplementation Duration Results Reference

Huntington’s
disease 73 HD patients 3000 IU/d α-tocopherol 1 year

Selective therapeutic effect on
neurologic symptoms for

patients in the early course of
the disorder

[46]

Amyotrophic
lateral

sclerosis

160 patients with
either probable or

definite ALS

5000 mg/d α-tocopherol,
Placebo

as add on to riluzol
18 months

No significant effect regarding
survival rates, calculated time

to death, tracheostomy, or
permanent assisted

ventilation

[47]

289 ALS patients
500 mg α-tocopherol,

Placebo
as add on to riluzol

12 months
α-tocopherol group was less

likely progressed from state A
to more severe state B

[48]

Abbreviations: AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington’s disease; ALS, Amyotrophic lateral sclerosis; UPDRS,
unified Parkinson’s disease rating stage; hs-CRP, high-sensitivity C-reactive protein; TAC, total antioxidant capacity; GSH, glutathione.

α-TP has previously been in scientific focus due to its high bioavailability [49]. TPs
are known to have antioxidant effects by increasing the activity of antioxidant enzymes
and free radical scavenging. They can therefore interrupt free radical chain reactions. The
free hydroxyl group on the aromatic ring is responsible for these antioxidant properties, as
it is capable of scavenging free radicals, resulting in a relatively stable vitamin E radical.
This radical can be reduced by ascorbic acid, which is then regenerated by glutathione [50].

Given its antioxidant properties, vitamin E has been considered an attractive ther-
apeutic agent for the prevention and treatment of neurodegenerative diseases, such as
Alzheimer’s (AD) and Parkinson’s disease (PD), where oxidative stress is an important
pathophysiological driver [51,52]. Due to structural differences, TTs exert comparable
or even more pronounced antioxidative effects, since they are distributed more homoge-
neously in the lipid membrane, and because recycling from chromanoxyl radicals is more
efficient, thereby providing better reaction conditions, due to the stronger disordering of
membrane lipids [53].

In addition, certain TPs and TTs exert anti-inflammatory effects through various meth-
ods of interference with the cellular and humoral immune systems. The antioxidative
effects of TPs and TTs are intrinsically linked to their anti-inflammatory properties, since
oxidative stress is a part of the inflammatory response [54]. However, certain effects are
independent of these antioxidative properties. As such, vitamin E interferes with the inflam-
matory response at different levels, e.g., via transcription factors, signaling cascades, and
the synthesis of signaling molecules [55]. α-, γ- and δ-TP have been shown to control Nrf-2
and NfkB signaling pathways in Caco-2 intestinal cells, which are crucial for the inflamma-
tory response [56]. Of note, Jian et al. demonstrated that the suppression of prostaglandin
synthesis through α-, γ- and δ-TP, by direct competitive inhibition of cyclooxygenase-2
(COX-2) with α-TP, inhibits tumor necrosis factor α (TNF-α) [57]. A meta-analysis of ran-
domized controlled trials revealed a significant reduction of C-reactive protein (CRP) levels
in groups supplemented with α- and γ-TP [58]. An additional meta-analysis suggested
an association between α-TP-supplementation and decreased interleukin 6 (IL-6) serum
levels [59].

However, the biological profile of vitamin E is not only restricted to the mediation
of anti-inflammatory effects, but also characterized by immune-stimulatory properties,
such as amplification of T-cell function [60]. Consistent with this, dietary in vivo studies
suggested improved T-cell mediated functions, such as interleukin 2 (Il-2) production and
T helper activity, in response to vitamin E supplementation [61,62].

Aside from these immunomodulatory effects, antineoplastic properties have been
observed for vitamin E in case-control studies, as well as in interventional studies, but
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without reaching a definite conclusion [63–65]. Since most of these studies were performed
with α-TP, the conflicting results shifted the focus to other vitamin E compounds. As such,
a γ-TP-rich TP mixture demonstrated inhibitory potential on lung, colon, prostate, and
breast cancer cell lines [22,23,25,66]. In mice with an induced lung tumor, application
of the TP mixture resulted in reduced tumor burden, volume and multiplicity. Lower
levels of DNA damage and thereby DNA repair, as well as increased apoptosis, were also
observed [67]. Furthermore, a recent study suggested potent cytotoxic effects on brain
cancer cells through γ-TT combined with the indole alkaloid jerantinine [24].

The cholesterol-lowering properties of the vitamin E compounds further demonstrate
their use as therapeutic substances in chronic disease [68]. In 1986, Qureshi et al. isolated
a cholesterol-lowering substance out of barley, later found to be α-TP [18]. In in vivo
as well as human interventional studies, vitamin E compounds produced an improved
serum cholesterol profile. This effect was partly attributed to the inhibition of HMG-CoA-
reductase, which is unique to TPs. The comparison of different vitamin E compounds
revealed a 30-fold higher inhibition of cholesterol biosynthesis for γ-TT compared to
α-TP [27,69]. In human neuroblastoma cells, both α-TP and α-TT induced the reduction of
total cholesterol as well as free cholesterol. Since α-TP achieved a more marked reduction
of total cholesterol than free cholesterol, a link between this cholesterol-lowering effect and
cholesterol esters is implied [28].

Aside from the modulation of de novo cholesterol synthesis at the protein level,
vitamin E also affects gene transcription underlying cholesterol biosynthesis. Valastya et al.
reported a reduction in the expression of genes responsible for cholesterol biosynthesis in
hepatocytes upon α-TP treatment [19].

While all of the characteristics of vitamin E compounds discussed so far are indi-
rectly neuroprotective due to the neurotoxic potential of inflammation [70] and oxidative
stress [71,72], direct neuroprotective effects have also been described. In HT4 hippocampal
cells, α-TT but not α-TP inhibited glutamate-induced pp 60 (c-Src) kinase activation and
thereby cell death, with TTs being particularly potent [34]. Moreover, the modulation
of 12-lipoxygenase, which also mediates glutamate-induced neurodegeneration, through
α-TT was described, suggesting a further route for α-TT-mediated neuroprotection [35].

As such, epidemiological studies of patients aged 65 years or older reported that
high dietary intake of vitamin E is inversely correlated with AD incidence. Interestingly,
this effect was more pronounced with a combination of vitamin E compounds than with
α-TP alone [73]. However, in patients with mild cognitive impairment (MCI) or AD, α-TP
supplementation neither attenuated the progression of dementia nor improved cognitive
function [12]. In comparison with donepezil, a standard therapy for symptomatic control
of AD, the supplementation of 2000 IU vitamin E was of no benefit to patients with MCI,
whereas donepezil was associated with a reduced progression of AD during the first
12 months of treatment [74]. A closer look into the bioavailability and metabolism of
vitamin E is warranted for a potential explanation of this translational roadblock.

In PD, high dietary vitamin E, intake was inversely correlated with the occurrence
of PD, independent of age or gender [11]. In a double-blind placebo-controlled trial with
60 PD patients, the dietary intake of 1000 mg omega-3-fatty acid and 400 IU vitamin E led to
an improvement in the unified Parkinson’s disease rating stage (UPDRS), total antioxidant
capacity and glutathione concentration compared to placebo. There was also a decrease in
high-sensitivity C-reactive protein (hs-CRP) and favorable effects on markers of insulin
metabolism [44]. However, a placebo-controlled clinical trial (deprenyl and tocopherol
antioxidative therapy of parkinsonism (DARATOP)) treated patients with early PD with
10 mg/d depernyl and/or 2000 IU/d TP to investigate whether this supplementation
strategy could extend the time until levodopa therapy is required. Depernyl displayed
protective properties, whereas TP demonstrated no efficacy [45]. Interestingly, Fahn et al.
reported an extension of 2.5 years to the time before requirement of levodopa therapy, due
to the administration of α-TP and ascorbate in patients with early PD [75]. Contrasting
these observations with those of epidemiological studies, which indicate that vitamin E
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may well be of benefit in PD, the inconsistent results of the interventional studies may
explain why it has so far not been successfully integrated into clinical practice [76,77].

Few studies have investigated vitamin E for other neurodegenerative disorders such
as Huntington’s disease (HD) or amyotrophic lateral sclerosis (ALS). There is evidence
suggesting that the excessive activation of glutamate-gated ion channels followed by
cell death through oxidative stress is the cause of HD pathogenesis [46]. Hence, the
antioxidative properties of α-TP may be beneficial for HD patients. However, the high-
dose treatment of 73 HD patients with α-TP demonstrated no overall effect on neurologic
or neuropsychiatric symptoms, but a selective effect on neurological symptoms of patients
with early HD [46].

Since vitamin E had favorable effects on the onset and progression of murine ALS,
it was considered a treatment or additive therapy in the management of ALS [78]. In a
double-blind, placebo-controlled study including 289 patients suffering from ALS for less
than 5 years, the supplementation of α-TP had no effect on the deterioration of function,
as assessed by the modified Norris limb scale. However, patients receiving α-TP were
less likely to progress from state A to the more severe state B on the ALS Health State
scale [48]. Another study investigatingα-TP as an add-on therapy to riluzol in ALS reported
no significant effect regarding survival rates, calculated time to death, tracheostomy, or
permanent assisted ventilation [47].

3. Genetics in the Metabolism of Vitamin E

The metabolism and therefore bioavailability of vitamin E can be influenced by various
factors, such as interaction with other nutritional compounds or pharmaceutics [49], gen-
der [79], age [80], and lifestyle [81]. Due to the inhomogeneous outcome of interventional
studies, individual response to vitamin E supplementation was considered as a potential
explanation. Genetic heterogeneity arising from single nucleotide polymorphisms (SNPs)
as a determinant of vitamin E homeostasis emerged as a hypothesis. SNPs are variations of
a single nucleotide in a genome that can influence the biological properties of the encoded
protein when occurring in coding regions [82,83]. Döring et al. described SNPs associated
with genes that have a role in vitamin E metabolism, with the following genes considered
as possible targets of SNPs, based on their function: lipoproteinlipase (LPL), tocopherol (α)
transfer protein (TTPA), tocopherol-associated protein (TAP), multidrug resistance protein
2 (MRP2), pregnane X receptor (PXR), and the genes encoding cytochrome P450 enzymes
(CYP3A5, CYP3A4 and CYP4F2). In the exons of TTPA, TAP and CYP3A5, only a few coding
SNPs (cSNP) were found. The cSNP frequency calculated was 503–837 bp per cSNP and
is therefore not highly polymorphic. There is also a common SNP in TAP, which leads to
an exchange of amino acids in the N-terminal functional domain of the protein. In LPL,
MRP2, PXR, CYP3A4, and CYP4F2, cSNPs were reported with a range of 100 bp per cSNP,
constituting a high number of polymorphisms [84].

Several genome-wide and candidate gene association studies have since uncovered
further SNPs in proteins involved in vitamin E absorption efficiency or catabolism. This
includes SNPs in CYP4F2, the gene encoding for cytochrome P4504F2, which catabolizes
vitamin E, as well as scavenger receptor class B member 1 (SCARB1), which encodes scav-
enger receptor class B member 1, a plasma membrane receptor for high-density-lipoprotein
(HDL), and the apolipoprotein A1/C3/A4/A5-gene cluster, which encodes for apolipopro-
teins that are associated with α-TP status [85–87]. Borel et al. showed that the postprandial
chylomicronic α-TP response to TP-rich meals was highly variable among subjects. The
interindividual variability in TP bioavailability was estimated at 81%, to which 28 SNPs
and 11 genes were identified to be potentially contributing. Since most vitamin E is trans-
ported from the intestine to the liver and other organs by chylomicrons, 7 genes were
involved in the postprandial chylomicronic triacylglycerol response. The other 4 genes
were associated with the chylomicronic-TP response. The authors further observed that the
plasma TP-concentration was positively correlated with the chylomicronic α-TP response to
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TP-rich meals, highlighting the importance of interindividual ability to respond to dietary
tocopherol intake as an influential factor for α-TP serum concentration [88].

α-TTP plays an important role in vitamin E homeostasis [89]. Resultant from two
SNPs in the TTPA gene are two variants, E141K and R59W, which are associated with ataxia
due to vitamin E deficiency. They cause the reduced binding of α-TP to α-TTP in vitro, as
the variants are located near the ligand-binding domain of TTPA [90]. These findings are in
line with Wright et al., who showed an approximate 3% lower baseline vitamin E plasma
level associated with the TTPA (−980T > A) variant in the promotor region of TTPA [91].
Regarding vitamin E catabolism, cytochrome P450 plays a substantial role, as it catalyzes
the initial step in the vitamin E-ω-hydroxylase pathway, and notably contributes to vitamin
E levels [92]. Bardowell et al. discovered two SNPs differently influencing enzyme activity.
While the CYP4F2 W12G variant leads to increased activity of the enzyme towards TPs
and TTs, the CYP4F2 V433M variant reduces enzyme activity for TPs, but not for TTs [93].
In a clinical trial comparing these genetic variants, the V433M genotype was associated
with significantly higher plasma α-TP levels after 48 weeks of vitamin E supplementation
(pioglitazone versus vitamin E versus placebo for the treatment of non-diabetic patients
with nonalcoholic steatohepatitis (PIVENS) study: r = 20.35, p = 0.004 and treatment of
nonalcoholic fatty liver disease in children (TONIC) study: r = 20.34, p = 0.026) [94].

4. Vitamin E Can Fuel the Pathogenesis of Neurodegenerative Diseases

Although vitamin E displays beneficial effects, not only in neurodegenerative disease,
but also cancer, cardiovascular disease and infections, current evidence does not support
vitamin E supplementation in the treatment or prevention of these diseases. This is due
to inconsistent study results and the evidence that high-dose vitamin E supplementation
(>400 U/d) might increase all-cause mortality [13]. Since these studies often involve
malnourished populations or combined vitamin E with other substances, it remains unclear
whether or not this effect would be seen in a population that is not nutritionally deficient.

Mechanisms explaining increased all-cause mortality are still debated. However,
a number of adverse effects have been observed for vitamin E. Very high dosages of vitamin
E (44 mg/kg body weight) increased blood pressure in spontaneously hypertensive stroke
prone (SHRSP) rats [95]. There was also a rise in: phosphorylated neurofilament H protein,
a prognostic marker of neurological disorders [96] and acute ischemic stroke [97]; glial
fibrillary acidic protein associated with AD [98]; and cathepsin D in the CNS [95]. A study
investigating the neuroinflammatory response following ischemic stroke in α-TTP-deficient
mice treated with an α-TP diet (1680 IU/d) observed an exacerbation of ischemic stroke
injury, due to supraphysiological brain injury accompanied by an increase in markers of
oxidative injury and neurodegeneration [99].

Regarding AD, Grimm et al. investigated the in vitro effect of α-, γ- and δ-TP on
the synthesis and degradation of amyloid β (Aβ), a peptide aggregating in extracellular
plaques and a key driver of AD pathophysiology. Surprisingly, there was an increase in Aβ
synthesis after incubation of SH-Sy5Y APP cells with 10 mM vitamin E over 24 h [100]. In
contrast, Azzori et al. reported a reduction in Aβ42 concentration in SH-SY5Y APP Swe
cells, due to incubation with α- and γ-TP [101]. Since Grimm et al. used an antibody that
detects the last 5 amino acids of Aβ, and thereby not only Aβ42 but total Aβ, it may be
that there is a distinct influence of vitamin E compounds on different Aβ forms. Further
experiments by Grimm et al. highlighted that the increased Aβ synthesis is also due to
increased γ- and β-secretase activity, especially through γ- and δ-TP. α-TP increased the
protein levels of presenilin 1, a component of gamma secretase. The expression of genes
encoding compounds of β-secretase was increased in response to α-TP [100].

In contrast, an in vivo study using mice showed no effect of vitamin E on the expres-
sion of β-site of APP cleaving enzyme (BACE-1) or a disintegrin and metalloproteinase
domain-containing protein 10 (ADAM-10) [102]. In another study, the same group was able
to validate the findings of increased Aβ synthesis through vitamin E compound supple-
mentation [28]. Here, α-TP and α-TT amplified Aβ synthesis after incubation on SH-SH5Y
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cells. These effects were mild. However, given the long preclinical phase of AD, even
a small change in pathogenesis could result in earlier manifestation of clinical symptoms.
To test the influence of α-TT on a non-AD in vitro model, Grimm et al. used SH-SY5Y WT
cells. Surprisingly, there was an even more pronounced effect on Aβ synthesis [28]. A pos-
sible explanation could be the increased substrate presence in SH-SY5Y APP cells, resulting
in enhanced Aβ degradation. Given that high Aβ level sustained over a long period of time
may increase Aβ catabolism, unaltered Aβ synthesis as observed by Arrozi et al. could be
explained by the treatment period of over six months [101]. A study investigating TP levels
in the human cortex observed an association between higher α- and γ-TP levels and lower
total and activated microglia density in cortical regions, suggesting a microglia-mediated
beneficial effect on the slowly accumulating AD neuropathology [21]. In later stages of
AD, continued microglial activation can exacerbate tau pathology and negatively affect
neurons and synapses [103,104]. During these stages, ameliorated microglial activation
could be favorable. However, microglia activation may be protective in the early stages of
AD, as microglia clear soluble Aβ, build protective barriers around Aβ plaques and remove
debris [105,106]. Furthermore, a specific microglia cell type, disease-associated microglia
(DAM), which has the potential to limit neurodegeneration, has been described [107].
Consequently, TPs being associated with reduced microglial activation highlights the pos-
sibility of further, perhaps adverse, effects of vitamin E supplementation on AD, as the
transition into DAM might be restricted. On the contrary, in vitamin E-deficient mice,
RNA-sequencing of the spinal cord demonstrated the upregulation of genes associated
with the innate immune response, indicating that microglial activation may result from
tocopherol deficiency [108].

Overall, this underpins the need for the proper timing of vitamin E supplementation
in the course of neurodegenerative disease to improve the outcomes of treatment and
mitigate adverse effects (Figure 2).
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Figure 2. Positive and negative effects of vitamin E supplementation on neurodegenerative diseases.
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5. Is Vitamin E Supplementation Suitable for Everyone?

Data from randomized controlled trials suggests that there are beneficial properties
of vitamin E in neurodegenerative disease, as it is associated with a reduced risk of
disease development and may slow disease progression [10]. However, due to inconsistent
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interventional trails that failed to validate the proposed favorable findings, vitamin E
is not yet a part of the treatment or prevention of these disorders [109]. In addition,
the evidence suggesting high-dose vitamin E may increase all-cause mortality warrants
further caution [13,110]. Clearly, vitamin E is not suitable as a therapy that is to be used
indiscriminately. However, in the current scientific landscape, the beneficial effects of
vitamin E supplementation seem to outweigh the possible adverse effects, the latter to be
considered for individual cases. As already discussed for AD, vitamin E has been shown
to increase Aβ-synthesis in an in vitro AD model [28].

Due to its anti-inflammatory, antioxidative and cholesterol-lowering properties, vita-
min E is considered a suitable therapeutic or preventive strategy. In line with the framework
of personalized medicine, it could be argued that patients with a high inflammatory re-
sponse, cholesterol levels or the occurrence of oxidative stress may benefit from vitamin
E supplementation. In contrast, patients with low cholesterol, minimal inflammatory
burden and little oxidative stress may be adversely affected by supplementation. Regard-
ing the effects of α- and γ-TP on activated microglial cell density [21], supplementation
can lead to either desirable or detrimental effects, dependent on disease progression and
method of administration.

When analyzing a patient’s suitability for supplementation, not only metabolic status
and disease progression need to be taken into consideration, but also comorbidities and
comedication. Vitamin E inhibits vitamin K-dependent coagulation factors (II, VII, IX and
X) in the presence of vitamin K deficiency, and thereby induces coagulopathy [111]. This
indicates an increased bleeding risk in patients taking vitamin K-dependent anticoagulation.
Considering that falls are common in the elderly [112] and patients with neurodegenerative
diseases [113], hemorrhagic complications are of high importance.

Lastly, when evaluating vitamin E supplementation, the administered dose needs
to be defined. There is no consistent recommendation for the daily intake of vitamin E,
as the recommended dietary allowance (RDA) is defined by different methods across
countries. Furthermore, various individual factors influence the metabolism and thereby
bioavailability of vitamin E (Figure 3) [49]. Considering the genetic polymorphisms in
genes involved in the metabolism of vitamin E, the recommended intake should be tailored
to the patient’s genetic profile.
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6. Individualized, Proactive, Sustainable: The Future of Neuro-Nutrition

For many chronic disorders, current healthcare outcomes are considered inadequate [114].
Neurodegenerative diseases affect millions of patients worldwide [115]. Personalized medicine
is emerging as a focus point in healthcare, aiming not only for better treatment, but also pre-
vention, in order to improve outcomes and reduce the prevalence of chronic disease [116]. In
this regard, nutrition and its beneficial role in the prevention and delay of neurodegenerative
disease onset has become tremendously important in recent years. There is compelling evi-
dence that inflammation and oxidative stress lead to the onset of several chronic diseases, and
that diet might help to postpone, prevent or modulate the progression of these disorders [117].

Foods rich in vitamin E—e.g., wheat germ oil [118], almonds, hazelnuts and walnuts
—have demonstrated protective properties in AD [119]. The Mediterranean diet, which is
characterized by a high intake of fruit, vegetables, monounsaturated fat, fish, wholegrains,
legumes, and nuts, is associated with a reduction in the risk factors for AD and cognitive
decline. However, evidence for other neurodegenerative disorders and for markers of
neurodegeneration is lacking [120]. Further studies are needed to evaluate which dietary
components carry the greatest responsibility for the demonstrated effect, since similar
properties have been described for different nutrients.

Interventional studies in humans were unable to substantiate the promise of the
therapeutic potential of vitamin E regarding neurodegenerative diseases, as observed in
in vivo studies [10]. This failure may be due to interindividual differences in vitamin E
metabolism. To overcome this roadblock, an in-depth understanding of the factors affect-
ing vitamin E metabolism is necessary to improve treatment strategies and, ultimately,
treatment outcomes (Figure 4) [121]. Personalization of vitamin E supplementation is likely
to be expensive but, given the immense burden imposed by neurodegenerative disorders
on healthcare systems locally and globally [115], harnessing the therapeutic potential of
vitamin E appears to be a worthwhile pursuit for future studies.
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