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A B S T R A C T

Determining the anatomical source of brain activity non-invasively measured from EEG or MEG sensors is
challenging. In order to simplify the source localization problem, many techniques introduce the assumption that
current sources lie on the cortical surface. Another common assumption is that this current flow is orthogonal to
the cortical surface, thereby approximating the orientation of cortical columns. However, it is not clear which
cortical surface to use to define the current source locations, and normal vectors computed from a single cortical
surface may not be the best approximation to the orientation of cortical columns. We compared three different
surface location priors and five different approaches for estimating dipole vector orientation, both in simulations
and visual and motor evoked MEG responses. We show that models with source locations on the white matter
surface and using methods based on establishing correspondences between white matter and pial cortical surfaces
dramatically outperform models with source locations on the pial or combined pial/white surfaces and which use
methods based on the geometry of a single cortical surface in fitting evoked visual and motor responses. These
methods can be easily implemented and adopted in most M/EEG analysis pipelines, with the potential to
significantly improve source localization of evoked responses.
1. Introduction

Non-invasive measures of brain activity such as magnetoencepha-
lography (MEG) and electroencephalography (EEG) are powerful tools
for generating insights into human brain function with millisecond-scale
temporal resolution. However, determining the current distribution that
gives rise to the signals measured from EEG and MEG sensors is chal-
lenging (Baillet et al., 2001; Darvas et al., 2004; Fukushima et al., 2012;
Haufe et al., 2011; Mattout et al., 2006). In order to simplify the source
localization problem, many techniques introduce constraints to the
dimensionality of source space. These constraints embody assumptions
about how the brain generates the signals which we can measure from
outside of the head.

Oneof these assumptions is that signalsmeasured byM/EEG sensors are
predominantly generated by large pyramidal neurons in deep cortical
layers, which are arranged in parallel columns so that their cumulative
nitives Marc Jeannerod, CNRS U
Bonaiuto).

2
m 7 April 2020; Accepted 14 Ap

vier Inc. This is an open access a
activity produces a measurable extracranial signal (Baillet, 2017; Buzs�aki
et al., 2012; Murakami and Okada, 2006; Okada et al., 1997). Two
commonlyusedsource localizationconstraintsbasedon thisassumptionare
that the locations of source dipoles are restricted to locations on a mesh of
thewhitematter surfaceas is it is closest to thedeepcortical layers (Dale and
Sereno, 1993; Henson et al., 2009; Hillebrand and Barnes, 2003, 2002;
Mattout et al., 2007), and that theorientationofdipoles is orthogonal to this
surface (H€am€al€ainen and Ilmoniemi, 1984, 1994; Henson et al., 2009;
Hillebrand andBarnes, 2003; Lin et al., 2006; Salmelin et al., 1995), thereby
approximating the orientation of cortical columns (Nunez and Srinivasan,
2006; Okada et al., 1997).

Using vectors orthogonal to the cortical surface may not be the best
approximation to the orientation of cortical columns. Cortical folding
patterns may result in curved cortical columns, and therefore their
orientation with respect to the cortical surface could be different along
the gray/white matter (white matter surface) and CSF/gray matter (pial
MR, 5229, Bron, France.
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surface) boundaries. Moreover, induced activity in low and high fre-
quency bands can predominate in deep or superficial cortical layers
(Bastos et al., 2015; Bonaiuto et al., 2018a; Buffalo et al., 2011; Haegens
et al., 2015; Maier et al., 2010; Spaak et al., 2012; van Kerkoerle et al.,
2014), and therefore the white matter surface may not be the optimal
source location model. In the past, however, the contribution of inac-
curacies in dipole location and orientation constraints to source locali-
zation error has likely been insignificant in the face of within-session
participant movement, co-registration error, and the relatively low res-
olution of cortical surface reconstructions. However, the recent devel-
opment of techniques for high precision MEG (Bonaiuto et al., 2018b,
2018a; Meyer et al., 2017; Troebinger et al., 2014b, 2014a) allow us to
compare competing current-flow orientation models in more detail.

Here, we set out to determine a better way to estimate the location
and orientation of source dipoles based on MRI-derived cortical surfaces.
We tested three different cortical surfaces for determining dipole loca-
tions: 1) white matter, 2) pial, and 3) combined white matter/pial, and
five different methods for computing dipole orientations: 1) down-
sampled surface normals, 2) cortical patch statistics, 3) original surface
normals, 4) link vectors, and 5) variational vector fields. The most
commonly used method, downsampled surface normals (Dale and
Sereno, 1993; Fuchs et al., 1994; H€am€al€ainen and Hari, 2002; Hillebrand
and Barnes, 2003; Lin et al., 2006), involves downsampling (decimating)
the original cortical surface, and then computing the normal vector at
each vertex as the mean of the normal vectors of each surface face it is
connected to. While surface decimation increases the computational
tractability of source inversion, it distorts the surface faces and therefore
biases the surface normal vector estimates. The cortical patch statistics
method was therefore designed to compute normal vectors by averaging
the individual normal vectors from vertices adjacent to the nearest vertex
in the original (down-sampled) mesh (Lin et al., 2006). The original
surface normals method takes advantage of the fact that the surface
decimation algorithm used here maintains a correspondence between the
downsampled and original surface meshes, and uses the normal vectors
of the corresponding vertices from the original cortical surface. These
three methods involve computation of dipole orientation based on the
geometry of a single cortical mesh: the white matter or pial surface. In
contrast, the link vectors (Dale et al., 1999) and variational vector field
(Fischl and Sereno, 2018) approaches establish correspondences be-
tween the white matter and pial surface meshes. The link vectors
approach simply uses the vectors connecting each vertex on the white
matter surface with the corresponding vertex on the pial surface (Dale
et al., 1999). The variational vector field method constructs a field of
correspondence vectors between the original white matter and pial sur-
faces which are constrained to be approximately normal to each cortical
surface and parallel to each other (Fischl and Sereno, 2018).

We first compared the resulting orientation vectors from each method
in terms of the angular difference at each surface vertex. We then ran
simulations of single dipoles at a given orientation, and subsequently
performed source reconstruction using various dipole orientations, noise
levels, and co-registration error magnitudes. Finally, we compared the
methods using evoked visual and motor responses in MEG data from
human participants.

2. Methods

Data from eight healthy, right-handed, volunteers with normal or
corrected-to-normal vision and no history of neurological or psychiatric
disorders was used for our analyses (six male, aged 28.5 � 8.52 years;
Bonaiuto et al., 2018a; Little et al., 2018). The study protocol was in
accordance with the Declaration of Helsinki, and all participants gave
written informed consent which was approved by the UCL Research
Ethics Committee (reference number 5833/001). All analysis code is
available at https://github.com/jbonaiuto/dipole_orientation.
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2.1. MRI acquisition

Prior to MEG scanning, two MRI scans were acquired with a 3T whole
body MR system (Magnetom TIM Trio, Siemens Healthcare, Erlangen,
Germany) using the body coil for radio-frequency (RF) transmission and
a standard 32-channel RF head coil for reception. The first was a standard
T1 for individual head-cast creation (Meyer et al., 2017), and the other
was a high resolution, quantitative multiple parameter map (MPM;
Weiskopf et al., 2013) for MEG source location.

The first protocol used a T1-weighted 3D spoiled fast low angle shot
(FLASH) sequence with 1 mm isotropic image resolution, field-of view set
to 256, 256, and 192 mm along the phase (anterior-posterior, A–P), read
(head-foot, H–F), and partition (right-left, R–L) directions, respectively.
The repetition time was 7.96 ms and the excitation flip angle was 12�.
After each excitation, a single echo was acquired to yield a single
anatomical image. A high readout bandwidth (425 Hz/pixel) was used to
preserve brain morphology and no significant geometric distortions were
observed in the images. Acquisition time was 3min 42s. A 12 channel
head coil was used for signal reception without using either padding or
headphones.

The second, MPM, protocol consisted of acquisition of three
differentially-weighted, RF and gradient spoiled, multi-echo 3D fast low
angle shot (FLASH) acquisitions and two additional calibration se-
quences to correct for inhomogeneities in the RF transmit field (Call-
aghan et al., 2015; Lutti et al., 2012, 2010), with whole-brain coverage at
800 μm isotropic resolution.

The FLASH acquisitions had predominantly proton density (PD), T1
or magnetization transfer saturation (MT) weighting. The flip angle was
6� for the PD- and MT-weighted volumes and 21� for the T1 weighted
acquisition. MT-weighting was achieved through the application of a
Gaussian RF pulse 2 kHz off resonance with 4 ms duration and a nominal
flip angle of 220� prior to each excitation. The field of view was 256 mm
head-foot, 224 mm anterior-posterior (AP), and 179 mm right-left (RL).
Gradient echoes were acquired with alternating readout gradient polarity
at eight equidistant echo times ranging from 2.34 to 18.44 ms in steps of
2.30 ms using a readout bandwidth of 488 Hz/pixel. Only six echoes
were acquired for the MT-weighted acquisition in order to maintain a
repetition time (TR) of 25 ms for all FLASH volumes. To accelerate the
data acquisition, partially parallel imaging using the GRAPPA algorithm
was employed with a speed-up factor of 2 in each phase-encoded direc-
tion (AP and RL) with forty integrated reference lines.

To maximize the accuracy of the measurements, inhomogeneity in
the transmit field was mapped by acquiring spin echoes and stimulated
echoes across a range of nominal flip angles following the approach
described in Lutti et al. (2010), including correcting for geometric dis-
tortions of the EPI data due to B0 field inhomogeneity. Total acquisition
time for all MRI scans was less than 30 min.

Quantitative maps of proton density (PD), longitudinal relaxation rate
(R1 ¼ 1/T1), MT and effective transverse relaxation rate (R2* ¼ 1/T2*)
were subsequently calculated according to the procedure described in
Weiskopf et al. (2013).

2.2. FreeSurfer surface extraction

FreeSurfer (v5.3.0; Fischl, 2012) was used to extract cortical surfaces
from the MPMs for MEG source localization. We used a custom Free-
Surfer surface reconstruction procedure to process MPM volumes, using
the PD and T1 volumes as inputs (Carey et al., 2017), resulting in surface
meshes representing the pial surface (adjacent to the cerebro-spinal fluid,
CSF), and the white/gray matter boundary (Fig. 1). FreeSurfer creates the
pial surface by expanding the white matter surface outward to the cor-
tex/CSF boundary. This is done by minimizing an energy functional
which includes terms promoting surface smoothness and regularity as
well as an intensity-based term designed to determine the cortex/CSF
boundary based on local volume intensity contrast (Dale et al., 1999).
Because this process involves moving the vertices of the white matter

https://github.com/jbonaiuto/dipole_orientation


Fig. 1. Dipole orientation models.
Pial and white matter surfaces are extracted
from proton density and T1 weighted quan-
titative maps obtained from a multi-
parameter mapping MRI protocol. Dipole
orientation vectors are computed from these
surfaces using five different methods. The
downsampled surface normal and original
surface normal methods compute vectors at
each vertex (dark red) as the mean of the
normal vectors of the surface faces they are
connected to (light red). The cortical patch
statistics method computes the mean of the
normal vertices adjacent to the correspond-
ing vertices in the original mesh. The link
vectors method computes vectors which link
corresponding vertices on the white matter
and pial surfaces. The variational vector field
method constructs a field of vectors which
are approximately parallel to each other and
orthogonal to the pial surface (shown in light
red for the original surfaces and dark red for
the subset of vertices in the downsampled
surfaces).
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surface based on the gradient of the energy functional, the result is a
one-to-one correspondence between white matter and pial surface
vertices. We used a custom routine to downsample each of these surfaces
by a factor of 10 while maintaining this correspondence. This involved
using MATLAB’s reducepatch function to remove vertices from, and
re-tesselate the pial surface, and then removing the same vertices from
the white matter surface and copying the edge structure from the pial
surface. This yielded two meshes of the same size (same number of
vertices and edges), comprising about 30,000 vertices each (M ¼ 30,
094.75, SD ¼ 2,665.45 over participants).

2.3. Dipole orientation computation methods

The downsampled surface normal method computes, at each vertex of
the decimated mesh, the average of the normal vectors of each adjacent
face (Fig. 1). This method was implemented using the spm_mesh_normals
function in SPM12. The cortical patch statistics method computes, at each
vertex of the decimated mesh, the average surface normal vector over all
vertices in the original, non-decimated mesh which are adjacent to the
corresponding original mesh vertex (Fig. 1). The original surface normal
method is implemented in the same way as the downsampled surface
normals method, but is applied to the original, non-decimated mesh
(Fig. 1). Because our decimation procedure only removed vertices from the
original surface, the resulting vectors can then bemapped onto the vertices
of the decimated mesh used for source localization. The link vectors
method takes advantage of the fact that our decimation routine maintains
the correspondence between white matter and pial surface vertices, and
for each vertex on the pial surface, uses the vector linking it to the cor-
responding vertex on the white matter surface (vi ¼ wi - pi, for the ith
white matter vertex, wi, and pial vertex pi; Fig. 1). The variational vector
field method constructs a vector field linking the white matter and pial
surfaces, by using gradient descent to minimize an energy functional that
encourages vectors to approximate surface normals and to be parallel to
each other (Fischl and Sereno, 2018) (Fig. 1). The angular difference be-
tween any two vectors, v1 and v2, was computed using the formula: atan2
(||v1 � v2||, v1 ⋅ v2).
3

Vectors obtained from each method were used to construct the lead
field matrix of the forward model used for source inversion of the
simulated or experimental data. The models constructed using each
method were compared to each other based on relative Bayesian model
evidence, as approximated by differences in free energy:

ΔFi;j ¼Fi � Fj

where Fi and Fj are the free energy values of models i and j, respectively.
Free energy is a parametric metric rewards fit accuracy and penalizes
model complexity (Bonaiuto et al., 2018b; Friston et al., 2008, 2007;
Henson et al., 2009; L�opez et al., 2014; Wipf and Nagarajan, 2009):

Fi ¼AccuracyðiÞ � ComplexityðiÞ
The first term is the log model evidence: the log of the probability of

the data, given the model and parameters, and the second term is the
Kullback-Liebler divergence between the true posterior density and an
approximate posterior density. Because the second term is always posi-
tive, free energy provides a lower bound on the model evidence (Penny
et al., 2010).

The best overall dipole orientation method and source space surface
model was determined using random effects family level Bayesian
inference (Penny et al., 2010) as implemented by the spm_compar-
e_families method in SPM12. This method groups models based on visual
ERFs 1 and 2 and the motor ERF in all participants into ‘families’, and
then combines the evidence of models from the same family and com-
putes the exceedance probability for each family. The exceedance
probability corresponds to the belief that a particular model family is
more likely than the other model families tested, given the data from all
participants. We first grouped models into families based on dipole
orientation method/source space surface model combinations (e.g.
downsampled surface normals/pial surface) to determine the best com-
bination over all ERFs and participants. We then grouped models based
on dipole orientation method, and finally based on source space surface
model.
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2.4. Simulations

All simulations were based on a single dataset acquired from one
human participant. This dataset was only used to determine the sensor
layout, sampling rate (1200 Hz, downsampled to 250 Hz), number of
trials (515), and number of samples (251) for the simulations. All sim-
ulations and analyses were implemented using the SPM12 software
package (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

In each simulation, we specified spatially distributed source activity
centered at a single vertex on the pial surface. We simulated a Gaussian
activity time course in this vertex, centered within the epoch, with a
width of 25 ms and a magnitude of 10 nA m. We then spatially smoothed
this simulated dipole time course with a Gaussian kernel (FWHM ¼ 5
mm), to obtain a patch of spatially distributed activity. Within this patch,
the orientation of each vertex differed, but was specified by the same rule
using the link vectors method. We then used a single shell forward model
(Nolte, 2003) to generate a synthetic dataset from the simulated source
activity. We simulated sources at 100 random vertices on the pial surface,
and ran two sets of simulations: one varying the level of noise in the
simulated data and the other varying the magnitude of co-registration
error.

Typical per-trial SNR levels for MEG data range from �40 to �20 dB
(Goldenholz et al., 2009), and therefore Gaussian white noise was added
to the simulated data and scaled in order to yield per-trial amplitude SNR
levels (averaged over all sensors) of�50,�40,�30,�20,�10, or 0 dB to
generate synthetic datasets across a range of realistic SNRs. Source
reconstruction was performed using 10 different models. The reference
model used the original link vectors as dipole orientation priors, and the
remaining 9 models used vectors with angular differences from the
original link vectors ranging from 7 to 63� (in increments of 7�). The
orientation of the 9 additional vectors was determined by taking random
points on the edge of a cone defined by the reference vector and the
angular distance. In these simulations, the co-registration error was 0
mm. Within each SNR level, the free energy metric was compared be-
tween each model and the reference model.

Within-session head movement and between-session co-registration
error commonly combine to introduce a typical magnitude of ~5 mm (or
more) of uncertainty concerning the relative location of the brain and the
MEG sensors in traditional MEG recordings (Adjamian et al., 2004; Gross
et al., 2013; Ross et al., 2011; Singh et al., 1997; Stolk et al., 2013;
Whalen et al., 2008). To simulate between-session co-registration error,
we therefore introduced a linear transformation of the fiducial coil lo-
cations in random directions (0 mm translation - 0� rotation, 2 mm - 2�, 4
mm - 4�, 6 mm - 6�, 8 mm - 8�, or 10 mm - 10�) prior to source inversion.
As in the SNR simulations, source reconstruction was performed using a
reference model with the original link vectors as orientation priors, and 9
models using vectors rotated in random directions with angular differ-
ences from the original vectors from 7 to 63�. In these simulations, the
per-trial amplitude SNR was set to 0 dB. Within each level of
co-registration error, we compared the free energy between each model
and the reference model.

2.5. Head-cast construction

From an MRI-extracted image of the scalp, a head-cast that fit between
the participant’s scalp and the MEG dewar was constructed (Bonaiuto
et al., 2018a; Meyer et al., 2017; Troebinger et al., 2014b). Scalp surfaces
were first extracted from the T1-weighted MRI scans acquired in the first
MRI protocol using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). This
tessellated surface, along with 3D models of fiducial coils placed on the
nasion and the left and right pre-auricular points, was used to create a
virtual 3D model, which was then placed inside a virtual version of the
scanner dewar in order to minimize the distance to the sensors while
ensuring that the participant’s vision was not obstructed. The model
(including spacing elements and ficudial coil protrusions) was printed
using a Zcorp 3D printer (Zprinter 510). The 3D printed model was then
4

placed inside a replica of the MEG dewar and polyurethane foam was
poured in between the surfaces to create the participant-specific head-cast.
The protrusions in the 3D model for fiducial coils therefore become in-
dentations in the foam head-cast, into which the fiducial coils can be
placed scanning. The locations of anatomical landmarks used for
co-registration are thus unchanged over repeated scans, allowing combi-
nation of data from multiple sessions (Bonaiuto et al., 2018a; Meyer et al.,
2017).

2.6. Behavioral task

Participants completed a visually cued action decision making task in
which they responded to visual instruction cue projected on a screen by
pressing one of two buttons using the index and middle finger of their
right hand (Bonaiuto et al., 2018a). After a baseline period of fixation, a
random dot kinematogram (RDK) was displayed for 2s with coherent
motion either to the left or to the right. Following a delay period, an
instruction cue (an arrow pointing either to the left or the right),
prompted participants to press either the left or right button. The level of
motion coherence in the RDK and the congruence between the RDK
motion direction and instruction cue varied from trial to trial, but for the
purposes of the present study, we analyzed the main effect of visual
stimulus onset and button press responses. For a full description of the
paradigm and task structure, see Bonaiuto et al. (2018a).

Each block contained 180 trials in total. Participants completed three
blocks per session, and 1–5 sessions on different days, resulting in
540–2700 trials per participant (M¼ 1822.5, SD¼ 813.21). The task was
implemented in MATLAB (The MathWorks, Inc., Natick, MA) using the
Cogent 2000 toolbox (http://www.vislab.ucl.ac.uk/cogent.php).

2.7. MEG acquisition and preprocessing

MEG data were acquired using a 275-channel Canadian Thin Films
(CTF) MEG system with superconducting quantum interference device
(SQUID)-based axial gradiometers (VSM MedTech, Vancouver, Canada)
in a magnetically shielded room. A projector was used to display visual
stimuli on a screen (~50 cm from the participant), and a button box was
used for participant responses. The data collected were digitized
continuously at a sampling rate of 1200 Hz. MEG data preprocessing and
analyses were performed using SPM12 (http://www.fil.ion.ucl.ac.uk/sp
m/) using MATLAB R2014a. The data were filtered (5th order Butter-
worth bandpass filter: 2–100 Hz, Notch filter: 50 Hz) and downsampled
to 250 Hz. Eye blink artifacts were removed using multiple source eye
correction (Berg and Scherg, 1994). Trials were then epoched from 1s
before RDK onset to 1.5s after instruction cue onset for analysis of visual
responses, and from 2s before the participant’s response to 2s after for
analysis of movement-evoked responses. Blocks within each session were
merged, and trials whose variance exceeded 2.5 standard deviations from
the mean were excluded from analysis. The epoched data were then
averaged over trials using robust averaging, a form of general linear
modeling (Wager et al., 2005) used to reduce the influence of outliers on
the mean by iteratively computing a weighting factor for each sample
according to how far it is from the mean. Preprocessing code is available
at http://github.com/jbonaiuto/meg-laminar.

2.8. Source reconstruction

Source inversion was performed using the empirical Bayesian
beamformer algorithm (EBB; Belardinelli et al., 2012; L�opez et al., 2014)
as implemented in SPM12. The source inversion was applied to a 100 ms
time window, centered on the event of interest (the peak of the simulated
signal, 100 ms following the onset of visual stimuli, or the button press
response). These data were projected into 274 orthogonal spatial (lead
field) modes and 4 temporal modes. Singular value decomposition (SVD)
was used to reduce the sensor data to 274 orthogonal spatial (lead field)
modes, each with 4 temporal modes (weighting the dominant modes of

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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temporal variation across the window). For uninformative priors, the
maximum-likelihood solution to the inverse problem is:

bJ ¼QLTðQε þ LQLTÞ�1Y

where bJ is the estimated current density across the source space, Y is the
SVD-reduced measured data, L is the lead field matrix that can be
Fig. 2. Substantial discrepancy in dipole orientations across methods.
Distribution of angular difference between dipole orientations on the pial surface (a)
Vertical dashed lines show the mean angular difference for each participant.

5

computed from the sensor and volume conductor geometry. Qε is the
sensor covariance and Q is the prior estimate of source covariance. We
assumed the sensor level covariance (Qε) to be an identity matrix (see
discussion). Most inversion algorithms can be differentiated by the form
of Q (Friston et al., 2008; L�opez et al., 2014). EBB uses a beamformer
prior to estimate the structure of Q (Belardinelli et al., 2012; L�opez et al.,
2014) based on the sensor-level data:
and white matter surface (b), generated using each method for each participant.
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QðiÞ¼ 1
LT
i Li

�
LT
i ðYYT Þ�1

Li þ λI
��1
where each element of the diagonal Q(i) corresponds to a source location
i. The lead field of each source location is Li, T denotes the transpose
operator, I is an identity matrix, and λ is a regularization constant (set to
0). The prior estimates of Qε and Q are then re-scaled or optimally mixed
using an expectation maximization scheme (Friston et al., 2008) to give
an estimate of J that maximizes model evidence. All inversions used a
spatial coherence prior (Friston et al., 2008) with a FWHM of 5 mm. We
used the Nolte single shell head model (Nolte, 2003).

For MEG source inversion, the accuracy term of the free energy
equation is defined as

AccuracyðiÞ¼Nc

2
trace

�
CYC�1

i

��Nc

2
logjCij � NcNt

2
logð2πÞ

where Nc is the number of channels, Nt is the number of samples, CY ¼
1
Nc
YYT is the data-based sampled covariance, Ci ¼ Qε þ LiQLTi Nt is the

model-based sample covariance, and j �j is the matrix determinant
operator.

For the EBB algorithm, the complexity term of the free energy
equation is dependent on hyperparameters, λ, that control the trade-off
between sensor noise Qε ¼ λ1INc , and the beamforming prior Q ¼ λ2Γ,
where Γ is the beamforming prior:

ComplexityðiÞ¼ 1
2
ðbλi � υÞTΠðbλi � υÞ þ 1

2
logjΣλiΠj

The prior and posterior distributions of λ, qðλiÞ and pðλiÞ are assumed
to be Gaussian:

qðλiÞ¼N
�
λ; υ;Π�1

�

pðλiÞ¼Nðbλi;Σλi Þ

where bλi and Σλi are the posterior mean and covariance of the hyper-
parameters for model i. We used non-informative mean and precision (υ
and Π) implemented as identity matrices scaled close to zero mean and
low precision, as implemented by default in SPM.

3. Results

3.1. Different methods for estimating vector orientation yield substantial
variation in dipole orientation

We first compared the dipole orientation vectors generated by each of
our five methods in terms of the angular difference between vectors at
the same vertex on the pial and white matter surfaces, respectively
(Fig. 2). The three methods that utilize only one surface, (downsampled
surface normals, cortical patch statistics, original surface normals)
generated vectors which were the most similar to each other on both the
pial (downsampled surface normals – cortical patch statistics individual
subject mean angular difference: 19.16–23.04�; over subjects: M ¼
22.30�, SD ¼ 1.51�; downsampled surface normals – original surface
normals: 16.00–17.95�; over subjects: M ¼ 16.94�, SD ¼ 0.67�; cortical
patch statistics – original surface normals: 17.80–22.89�; over subjects:
M ¼ 21.01�, SD ¼ 1.55�) and white matter surfaces (downsampled sur-
face normals – cortical patch statistics individual subject mean angular
difference: 10.65–11.35�; over subjects: M ¼ 10.99�, SD ¼ 0.27�;
downsampled surface normals – original surface normals: 9.64–10.57�;
over subjects: M ¼ 10.10�, SD ¼ 0.32�; cortical patch statistics – original
surface normals: 8.93–9.76�; over subjects: M¼ 9.34�, SD¼ 0.31�). Each
single- and multi-surface method generated vectors with mean angular
differences from each other of at least 20�, for both the pial surface
(downsampled surface normals – link vectors: 22.94–29.56�, M¼ 24.51�,
SD ¼ 2.15�; downsampled surface normals – variational vector field:
6

25.52–27.13�, M ¼ 26.05�, SD ¼ 0.55�; cortical patch statistics – link
vectors: 25.26–32.76�, M¼ 27.42�, SD¼ 2.06�; cortical patch statistics –
variational vector field: 28.80–32.55�, M ¼ 30.91�, SD ¼ 1.11�; original
surface normals – link vectors: 26.77–33.12�, M ¼ 28.44�, SD ¼ 2.06�;
original surface normals – variational vector field: 26.18–28.43�, M ¼
27.06�, SD ¼ 0.75�) and the white matter surface (downsampled surface
normals – link vectors: 21.81–29.03�, M ¼ 23.46�, SD ¼ 2.33�; down-
sampled surface normals – variational vector field: 27.08–36.26�, M ¼
28.78�, SD ¼ 3.06�; cortical patch statistics – link vectors: 22.64–24.82�,
M¼ 24.48�, SD¼ 2.34�; cortical patch statistics – variational vector field:
27.31–36.34�, M ¼ 29.04�, SD ¼ 3.00�; original surface normals – link
vectors: 23.38–30.09�, M ¼ 25.00�, SD ¼ 2.15�; original surface normals
– variational vector field: 26.43–35.69�, M ¼ 28.31�, SD ¼ 3.08�). The
two multi-surface methods, link vectors and variational vector field,
generated vectors with some of the largest mean angular differences of all
method pairs on each surface (pial surface: 67.41–30.74�, M ¼ 27.71�,
SD ¼ 1.40�; white matter surface: 31.33–40.74�, M ¼ 33.31�, SD ¼
3.04�). These results were comparable when using surfaces derived from
more commonly used 1 mm3 T1 scans instead of 800 μm3 MPMs
(Figure S1). Therefore, rather than being close approximations to each
other, each method generates substantially different dipole orientation
vectors, even within the multi-surface class of methods.

We next compared dipole orientation vectors generated by each
method between the pial and white matter surfaces derived from the 800
μm3 MPM volumes (Fig. 3) and 1 mm3 T1 volumes (Figure S2). Because
the link vectors method generates vectors that connect corresponding
vertices on the pial and white matter surfaces, the resulting dipole ori-
entations on each surface are equivalent (i.e. the link vector from a
particular vertex on the pial surface points in exactly the opposite di-
rection as the link vector from the corresponding white matter surface
vertex). All three single-surface methods generated vectors with the
lowest average angular difference between pial and white matter sur-
faces created using either the 800 μm3 MPM volumes (downsampled
surface normals: individual subject mean angular difference ¼
16.88–20.52�, over subjects M ¼ 18.23�, SD ¼ 1.13�; cortical patch
statistics: 22.66–27.81�, M ¼ 25.70�, SD ¼ 1.67�; original surface nor-
mals: 22.90–26.81�, M ¼ 24.46�, SD ¼ 1.26�) or the 1 mm3 T1 volumes
(downsampled surface normals: 17.89–19.49�, M ¼ 18.66�, SD ¼ 0.56�;
cortical patch statistics: 25.10–27.23�, M ¼ 26.23�, SD ¼ 0.70�; original
surface normals: 24.10–28.80�, M¼ 25.45�, SD¼ 1.46�). The variational
vector field method generated dipole orientation vectors that differed the
most between the pial and white matter surface (MPM: 37.47–43.54�, M
¼ 38.80�, SD¼ 1.99�; T1: 37.07–40.28�, M ¼ 39.10�, SD¼ 1.00�). Aside
from the link vectors method, there is therefore at least as much variation
in dipole orientations between the pial and white matter surfaces within
a method as there is between methods for one surface.

3.2. With high precision MEG data, getting the orientation right matters

Having established that each method yields substantially different
orientation vectors, we next sought to determine the minimum angular
difference between dipole orientations distinguishable by source inver-
sion model comparison, and how this is affected by typical levels of SNR
and co-registration error. We therefore simulated dipoles at 100 random
source locations on the pial surface and created synthetic datasets with
varying SNR and co-registration error levels. We then performed source
inversion on the synthetic datasets, using a reference model in which the
dipole orientations exactly match those of the simulated dipole, and 9
other models in which the dipole orientations were rotated with respect
to simulated dipole orientation. We then compared each of these models
to the reference model in terms of the relative free energy, using a sig-
nificance threshold of �3 for the free energy difference (indicating that
one model is approximately twenty times more likely than the other).

At lower SNR levels (�50 dB), each model was indistinguishable from
the reference model (magnitude of relative free energy less than 3).
However, as SNR increased, models with an angular error as low as 15�



Fig. 3. Substantial discrepancy in dipole orientations between pial and white matter surfaces. Distribution of angular difference between dipole orientations at
corresponding vertices on the pial and white matter surfaces, generated using the 800 μm3 MPM volumes. The link vectors method is not shown because this method
generates identical dipole orientations for the pial and white matter surfaces. Each solid line shows the distribution for a single participant. Vertical dashed lines show
the mean angular difference for each participant.
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relative to the reference model started to become differentiable (i.e., a
relative free energy difference of >3; Fig. 4a). Relative model evidence
was less dependent on co-registration error, and at all levels tested
models with an angular error of at least 15� could be differentiated from
the reference model (Fig. 4b). This angular error is well within the range
of the angular differences between vectors generated by each of the
methods considered here (Fig. 2). In other words, given sufficient SNR
and co-registration accuracy, one should be able to determine the best
method to use with human data based on source inversion model
comparison.
3.3. Comparing surface models with empirical head-cast data

We next compared orientation models based on three different
evoked responses from human participants. We performed source
inversion, and compared the resulting model fits in terms of relative free
energy compared to that of the downsampled surface normal model (the
current most commonly used method). This was repeated using source
space models restricted to the pial surface, white matter surface, and
combined pial – white matter surface (Bonaiuto et al., 2018a, 2018b). In
this case the combined pial-white model had double the number of
sources and these sources could be arranged with identical orientations
on each surface (link vectors); or different orientations (cortical patch
statistics, downsampled surface normals, original surface normals, and
variational vector field).

The evoked response fields (ERFs) were the visually-evoked response
7

to the RDK (visual ERF 1) and instruction cue (visual ERF 2), and the
motor-evoked response during the button press (motor ERF). When
running the source inversion over the full time course of each ERF, each
orientation model yielded slightly different peak cortical locations
(Fig. 5a and b), with the original surface normals and variational vector
field methods giving the closest peak coordinates (M ¼ 4.88 mm, SD ¼
2.93 mm), and the cortical patch statistics and link vectors methods
yielding coordinates furthest away from each other (M ¼ 13.96 mm, SD
¼ 12.76 mm). At each peak location identified by the downsampled
surface normals method, the source space ERFs given by the down-
sampled surface normals, cortical patch statistics, and variational vector
field methods, respectively, were most similar to each other, whilst the
link vectors methods yielded an ERF with a larger amplitude, and the
original surface normals method yielded an ERF with inverted polarity
(RMSE<0.1; Fig. 5c and d). However, at the peak coordinate identified
by each method the ERFs were very similar (RMSE<0.05; Fig. 5e and f).

We then compared eachmethod in terms of model fit. The link vectors
method achieved a significantly better model fit than the downsampled
surface normal method in 7/8 subjects for visual ERFs 1 and 2 and the
motor ERF using the pial surface, 7/8 subjects for visual ERF 1 and the
motor ERF and 8/8 subjects for visual ERF 2 using the white matter
surface, and 7/8 subjects for visual ERFs 1 and 2 and the motor ERF using
the two-layer surface (Fig. 6b). The variational vector field method had
significantly better model fit than the downsampled surface normal
method in 6/8 subjects for visual ERF 1 and 4/8 subjects for visual ERF 2,
but only 2/8 subjects for the motor ERF using the pial surface, 1/8
Fig. 4. With high precision MEG data, model ev-
idence decreases with dipole orientation error.
a Each line shows the change in model evidence (ΔF)
as the orientation of the dipole used for inversion is
rotated away from the true orientation at different
SNR levels (co-registration error ¼ 0 mm). The
shaded regions represent the standard error of ΔF
over all 100 simulations at each angular error value
tested. The lower dotted line (at ΔF ¼ �3) show the
point at which the imperfect model is 20 times less
likely than the true model. The differences between
models become more apparent at higher SNR. b As in
a, for different magnitudes of co-registration error
(SNR ¼ 0 dB). Co-registration error has a smaller
impact than SNR on discriminating between models
with different dipole orientations.



Fig. 5. Variation in source localization across methods.
a Peak source locations on the pial surface for visual ERF 1, for each dipole orientation method, in a single subject. b Mean (left) and standard deviation (right) of the
Euclidean distance between peak source locations for each method, using the pial surface, over subjects and ERFs. c Time course of source activity for visual ERF 1 for
the different methods, at the peak pial source location identified using the downsampled surface normals method, for a single subject. d Mean (left) and standard
deviation (right) of the RMSE between source activity time courses at the peak source location identified using the downsampled surface normals method, for each
method, using the pial surface, over subjects and ERFs. e Time course of source activity for visual ERF 1 at the peak pial source location identified from each method,
for a single subject. f Mean (left) and standard deviation (right) of the RMSE between source activity time courses at the peak source location identified using each
method with the pial surface, over subjects and ERFs.
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subjects for visual ERF 1 and the motor ERF and 4/8 subjects for visual
ERF 2 using the white matter surface, and 5/8 subjects for visual ERFs 1
and 2 and 1/8 subjects for the motor ERF using the two-layer surface. The
original surface normal method was most similar to the downsampled
surface normal method, only being significantly better in 4/8 subjects for
visual ERF 1, 5/8 subjects for visual ERF 2, and 0/8 subjects for the motor
ERF using the pial surface, 0/8 subjects for visual ERFs 1 and 2 and the
motor ERF using the whitematter surface, and 1/8 subjects for visual ERF
1, 3/8 subjects for visual ERF 2, and 0/8 subjects for the motor ERF using
the two-layer surface. The cortical patch statistics method was signifi-
cantly better than the downsampled surface normals method in 3/8
subjects for visual ERF 1, 6/8 subjects for visual ERF 2, and 2/8 subjects
for the motor ERF using the pial surface, 0/8 subjects for visual ERFs 1
and 2 and the motor ERF using the white matter surface, and 2/8 subjects
for visual ERF 1, 4/8 subjects for visual ERF 2, and 0/8 subjects for the
motor ERF.

While the cortical patch statistics and original surface normal
methods are an improvement on the widely used downsampled surface
8

normal method, multi-surface methods such as link vectors and varia-
tional vector fields achieve better model fits overall, using either single-
or two-layer cortical surface models (Fig. 6b). These results were com-
parable when using surfaces derived from more commonly used 1 mm3

T1 scans instead of 800 μm3 MPMs, with the exception of the variational
vector field method, which performed significantly worse than the
downsampled surface normal method in 6/8 subjects for the motor ERF
using the pial surface (Figure S3).
3.4. Interaction between orientation and source space models

We next sought to establish how the orientation models interacted
with the different possible choices of source space, specifically the
cortical surface used to define source locations and the surface used to
compute dipole orientations. We fit the empirical evoked response data,
using source space location models based on the white matter, pial, or
combined white matter/pial surfaces, and for each orientation model
using the white matter, pial, or combined white matter/pial surfaces



Fig. 6. Surface correspondence-based methods yield the best model fit.
a Trial-averaged event-related fields (ERFs) aligned to the onset of visual stimulus 1 (the random dot kinematogram; top), visual stimulus 2 (the instruction cue;
middle), and to the participant’s response (button press; bottom). Data shown are for a single representative participant. The inlays show the MEG sensor layout with
filled circles denoting the sensor from which the ERFs are recorded. Each shaded region represents the time window over which source inversion was performed. b
Change in free energy (relative to the downsampled surface normals model) for each method tested for each participant for visual ERF 1 (top), visual ERF 2 (middle),
and the motor ERF (bottom) using vectors derived from 800 μm3 MPM volumes and source space models based on the pial (left), white matter (center), and combined
pial/white matter surfaces (right).
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(with the exception of the combined surface source space orientation
model which can only be used with the combined surface source space
location model).

To compare source space surface location and orientation models, we
Fig. 7. Source inversion using the pial surface and surface correspondence-bas
a-e Exceedance probabilities for each combination of source space orientation (pial,
models for each dipole orientation vector method tested (a downsampled surface n
variational vector field) using surfaces derived from 800 μm3 MPM volumes. In each p
source space location or orientation model alone. f As in a-e, for each source space
Exceedance probabilities for each source space orientation model over all source spa
space location model over all source space orientation models and dipole orientation
source space orientation and location models (bottom).

9

used random effects family level Bayesian inference (Penny et al., 2010)
over the results from visual ERFs 1 and 2 and the motor ERF in all par-
ticipants. This method groups models into ‘families’, and then combines
the evidence of models from the same family to compute the exceedance
ed methods yield the best model fit overall.
white matter, and combined) and location (pial, white matter, and combined)
ormals, b cortical patch statistics, c original surface normals, d link vectors, e
anel the top and right plots show exceedance probabilities for models grouped by
orientation and location models over all dipole orientation vector methods. g

ce location models and dipole orientation vector methods (top), for each source
vector methods (middle), and for each dipole orientation vector method over all
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probability (EP) for eachmodel family. This corresponds to the belief that
a particular model family is more likely than the other model families
tested, given the data from all participants. We first compared combi-
nations of source space location and orientation surface models within
each method, and found that for most dipole orientation methods
(downsampled surface normals, cortical patch statistics, original surface
normals, and variational vector field), the best source orientation space
model was the pial surface and the best source space location model was
the white matter surface (downsampled surface normals EP ¼ 0.708,
cortical patch statistics EP ¼ 0.968, original surface normals EP ¼ 0.924,
variational vector field EP ¼ 0.975; Fig. 7a–c,e). For the link vectors
method, the best source space location model was the white matter
surface, and the pial and white matter source space orientation models
were nearly indistinguishable (pial orientation model EP ¼ 0.458, white
matter orientation model EP ¼ 0.468; Fig. 7d). This was not unexpected
because the orientation vectors generated from these surfaces using the
link vectors method are exactly 180� to each other. Over all dipole
orientation methods, the best source space orientation surface was the
pial surface and the best source space location model was the white
matter surface (EP ¼ 0.654; Fig. 7f). We then grouped models into
families based on the source space surface used for orientation and
location. This confirmed that the models using the pial surface to
compute dipole orientation provided the best model fit, with an EP of
0.608 (white matter surface EP ¼ 0.379), and models using the white
matter surface to define source space locations outperformed the others,
with an EP of 0.985 (Fig. 7g). Finally, we grouped models based on the
method used to compute dipole orientation vectors and confirmed that
the link vectors and variational vector field methods were the best
overall, with EPs of 0.918 and 0.064, respectively (Fig. 7g). Using sur-
faces obtained from 1 mm3 T1 volumes yielded the same results
(Figure S4).

4. Discussion

In this paper we show that methods for computing dipole orientation
which are based on establishing correspondences between white matter
and pial cortical surfaces dramatically outperform methods based on the
geometry of a single cortical surface in fitting evoked visual and motor
responses. To this end, we compared five different approaches for esti-
mating dipole vector orientation, both in simulations and visual and
motor evoked MEG responses.

Our results show substantial variation in dipole vector orientation
across the different methods. This indicates that the choice of method is
likely to significantly impact the quality of source estimation. At low SNR
levels and with head movements commonly observed in conventional
MEG recordings, this influence is small or non-detectable. However, with
the increased SNR and reduced head movements afforded by high-
precision MEG (Meyer et al., 2017; Troebinger et al., 2014b), these dif-
ferences become distinguishable when average angular errors between
methods vary by around 15�. These small orientation errors put a hard
limit on any possible improvements in non-invasive estimates of cortical
current flow. For example Hillebrand and Barnes (2003) showed that
small orientation errors resulted in localization errors which increased
monotonically with SNR.

This means that with higher precision MEG recordings, accurate
estimation of the dipole orientation becomes increasingly important.
Consequently, conventional approaches which estimate vector orienta-
tion from a single (downsampled) surface, and based on lower resolution
MRI volumes, are likely to offer limited accuracy in source estimation, at
least for evoked fields, as analyzed here. By contrast, methods that utilize
link vectors between pial and white matter surfaces constructed from
higher resolution structural images perform significantly better in
explaining observed evoked responses.

The average angular differences between the five methods compared
here were substantial, with means of 18–30�, both in high-resolution
MPMs and in commonly used T1-weighted structural images with 1
10
mm3 spatial resolution. We do not know the ground truth of current flow
orientation in the brain, but we show here that the average angular
difference between methods is within the range distinguishable in
simulated data with SNR and co-registration error levels achievable with
high precisionMEG.Wewere therefore able to compare these methods in
terms of how well they fit human MEG data, leveraging the free energy
metric, in order to determine which method best estimates true dipole
orientations.

We were surprised by the large variation in orientation estimates
from the same anatomy using different methods. The typical expected
orientation differences between methods was ~20–30�. This in turn led
to differences in estimated source location of ~5–14mm. In this study we
sought to minimize head-movement and co-registration errors by using
head-casts, but in typical MEG studies such additional errors will only
add to this variation. Based on these estimates it would seem that if
precise anatomical information (e.g. from high resolution MRI volumes)
is not available then an approach using some form of loose orientation
constraint is advisable (Lin et al., 2006). However, one advantage of
being able to exploit anatomical information is to use the sensitivity of
MEG to cortical orientation to refine the source localization.

While the family of source space location models based on the white
matter surface yielded the highest exceedance probability, the results of
the surface comparison varied by evoked response and dipole orientation
computation method. Evoked responses can be broken down into
temporally dynamic components and therefore may be the result of a
complex temporal pattern of signals in both deep and superficial cortical
layers. We here used the same 100 ms time window for source inversion
in all participants and therefore this analysis did not take into account
between-participant differences in the timing of evoked responses and
could not track the time course of laminar activity. The inherent differ-
ences between induced and evoked responses may therefore explain the
more variable attribution of the evoked response to pial and white
matters surfaces, compared to the bias of high- and low frequency signals
towards deep and superficial cortical laminae, respectively (Bonaiuto
et al., 2018a). Future extensions of this work could utilize source inver-
sion in successive time bins to address this limitation and generate
temporally resolved estimates of laminar activity.

We assumed the sensor level covariance matrix to be diagonal.
However, an independent sensor dataset recorded during a similar time
period in an empty room, showed off-diagonal structure (Figure S5).
Importantly, the same pattern of model comparison results was obtained
when using a sensor covariance matrix based on these noise measure-
ments (Figure S6, S7).

In this work, we used free energy as our metric of model fit but we
would expect these findings to generalize across other metrics. For
example, we have previously shown that for model comparison problems
of the type utilized in this study, free energy is very highly correlated
with nonparametric cross validation error measures of model fit
(Bonaiuto et al., 2018b).

The present findings do not just impact high SNR MEG recordings
obtained with cryogenic sensors, but also for new generations of cryogen-
free MEG sensors (optically-pumped magnetometers; OPMs). These
sensors can be worn on the head and permit long-duration recordings
without head-to-sensor movement, with accurate knowledge of each
sensor’s position with respect to the brain (Boto et al., 2018, 2017;
Holmes et al., 2018; Iivanainen et al., 2019, 2017; Knappe et al., 2014).
Our results show that source estimation for this type of recordings is
likely to benefit from methods that estimate vector orientation based on
white matter – pial surface vertex correspondences, as opposed to more
commonly used techniques employing a single surface.

We here assumed that straight vectors provide the best approximation
of the orientation of cortical columns that generate MEG data. However,
cortical columns are often curved (Bok, 1929). In future work, the cur-
vature of cortical columns could be approximated using sequences of
straight vectors computed from laminar equivolumetric surfaces (Waeh-
nert et al., 2014; Wagstyl et al., 2018). If each vector was tangential to the
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corresponding segment of the actual (curved) cortical column, this would
result in a piecewise linear estimate of column shape, which may allow
more precise source localization (Bonaiuto et al., 2018b, 2018a; Troe-
binger et al., 2014a). This development would benefit from higher reso-
lution (e.g. 7 T) MRI scans, as well as cytoarchitectonic data from
histological sections (Amunts et al., 2013; Wagstyl et al., 2018). The cur-
rent paper provides a novel framework and set of baselines for in vivo
evaluation of the impact of future columnar models on source modeling.

Our results are likely to impact other methods which require accurate
estimation of cortical surfaces and the orientation of surface normal
vectors. For example, current flow modelling techniques that estimate
the distribution of current delivered with non-invasive brain stimulation
approaches such as transcranial direct current stimulation (tDCS; Best-
mann and Walsh, 2017; Bestmann and Ward, 2017) estimate the normal
component of the electric field across the cortical surface, and relate this
component to the observed physiological changes elicited by tDCS (e.g.
Laakso et al., 2019; Seo and Jun 2019). We expect that improved surface
segmentation approaches and vector estimation, as introduced in our
present study, will provide more accurate estimates of these normal
components. This will be relevant for explaining how current delivery via
tDCS impacts on physiological and behavioral responses, and whether
the normal component of the electric field is indeed important to explain
these effects.

5. Conclusion

Based on the results of our model comparisons, we have shown that,
for evoked responses, source inversion using source locations on the
white matter surface and dipole orientation priors computed using link
vectors outperforms the other source location and orientation computa-
tion methods we tested. We therefore recommend that this approach be
used as the default in source inversion.
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