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Ginsenoside Rg3 is a steroidal saponin isolated from Panax ginseng. Previous studies
have shown that Rg3 treatment downregulates the activity of rapamycin complex 1
(mTORC1) activity and inhibits the growth of cancer cells. However, the inhibitory effect
of Rg3 on cancer cells is associated with high concentrations of Rg3 that are difficult
to achieve in vivo. The human cervix adenocarcinoma HeLa cells were treated with
Rg3. The protein levels of AMP-activated protein kinase alpha (AMPKα), protein kinase
B(Akt), ribosomal S6 protein(S6), and Erk were determined by immunoblotting analyses.
We used a fluorescent probe to detect reactive oxygen species (ROS) production
in living cells. The oxygen consumption rate (OCR) was examined by the Seahorse
Extracellular Flux Analyzer. The content of adenosine triphosphate (ATP) was measured
by ATPlite kit and Mitotracker was applied to detect the mitochondria. We showed
that at lower concentrations, Rg3 activates mTORC1 independent of AKT and AMP-
activated protein kinase (AMPK). Rg3 promotes mitochondrial biogenesis and function,
increases the oxygen consumption of mitochondria and the content of ATP. This
effect is in contrast to that of high concentrations of Rg3, which inhibits cell growth.
These findings demonstrate a pro-growth activity of Rg3 that acts through mTORC1
and mitochondrial biogenesis and suggest a dose-dependent effect of Rg3 on tumor
cell growth.
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INTRODUCTION

Rg3 is one of the pharmaceutical ingredients extracted from Panax ginseng. Its preparations
have been widely used in cancer treatment to enhance patient’s general health and improve the
efficacy of chemotherapeutic agents (Lu et al., 2008; Zhou et al., 2016; Guo et al., 2018; Pan et al.,
2019; Wang et al., 2019). A national survey on men and women in the United States estimated
that 4–5% of those aged 45–64 years used ginseng (Kaufman et al., 2002). Research to better
understanding the therapeutic potential of Asian ginseng has been supported by the National
Center for Complementary and alternative medicine (Jia et al., 2009).
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GRAPHICAL ABSTRACT | Ginsenoside Rg3 promotes cell growth through activation of mTORC1 and increasing mitochondrial biogenesis.

Previous studies have shown that Rg3 possesses activities to
inhibit cell growth and induce apoptosis. It has been shown
that Rg3 induces apoptosis via classical mitochondria-dependent
caspase activation (Kim et al., 2013) and the death receptor-
dependent extrinsic pathway (Kim et al., 2014). Rg3 exerts
cytotoxic effects by activating the p53 signaling pathway and
subsequently inducing apoptosis (Yuan et al., 2010; Zhang et al.,
2015). In addition, Rg3 has been shown to inhibit mutant
p53 and NF-κB signaling, possibly via the inactivation of
extracellular signal-regulated kinase (ERK) and AKT to activate
the mitochondrial cell death pathway (Kim et al., 2013, 2014; Aziz
et al., 2016). Experiments studies also suggest that Rg3 in vivo
and vitro can inhibit the growth of a variety of tumor cells both
in vivo and vitro (Wang et al., 2014, 2018; Yuan et al., 2017; Chen
et al., 2019). Previous studies have proposed that Rg3 inhibits
cell growth by downregulation of lncRNA CCAT1 (Li and
Qi, 2019), inhibition of Wnt/β-Catenin, NF-κB, and mitogen-
activated protein kinases (MAPK)/ERK signaling pathways (Kim
et al., 2004; Lee et al., 2009; Yuan et al., 2010; He et al., 2011;
Joo et al., 2015; Yang et al., 2016, 2017). These activities of Rg3
are believed to underlie the enhanced chemotherapeutic efficacy
in clinical studies (Lu et al., 2008; Zhou et al., 2016) and in

experimental mice (Chang et al., 2014; Shi et al., 2020). However,
the pro-apoptosis and anti-proliferation effects of Rg3 occur only
at high concentrations (>100 mM), which can be difficult to
achieve in vivo due the low bioavailability of Rg3 (Xie et al., 2005;
Jia et al., 2009).

In the present study we examined the effects of Rg3 on
cell signaling and proliferation at low concentrations. We show
that at at low concentrations, Rg3 activates the mTORC1 and
promotes cell growth. This observation provides information on
the efficacy of Rg3 and guide the selection of a safe dose for
further study or human use as a certain in vivo concentration
cannot be guaranteed.

MATERIALS AND METHODS

Cell Line and Culture
The human cervix adenocarcinoma HeLa cells obtained from
the American Type Culture Collection (ATCC, Manassas, VA,
United States) were cultured in EMEM supplemented with 10%
of fetal bovine serum (FBS) (Sigma-Aldrich Chemical Co., St.
Louis, MO, United States). In order to inhibit the activity of
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mTORC1 and induce the baseline level of PS6 in HeLa cells,
serum starved cells were cultured in serum starvation condition
(0.5% FBS) for 24 h after cells reaching confluence. The cell
cultures were incubated at 37◦C in a humidified atmosphere with
5% CO2. The cell cultures were incubated at 37◦C in a humidified
atmosphere with 5% CO2.

Cell Counting Kit-8 (CCK8 Assay)
Cell growth was assessed using the Cell Counting Kit-8 (CCK8)
assay. CCK8 assay was conducted in accordance with the
manufacturer’s instructions (BS350B, Biosharp, China). Briefly,
HeLa cells (1 × 103 cells/well) were seeded in 96-well plates.
The next day, the cells were treated with Rg3 at various
doses. After 24 h, 10 µl of CCK8 solution was added to each
well and incubated for 1 h before the light absorbance was
measured at 450 nm.

Antibodies and Reagents
The primary antibodies used in this study include the following:
mouse anti-AMPKα (Cat. # 2793), rabbit anti-phospho-AMPKα

(T172) (Cat. # 2535), rabbit anti-Akt (Cat. # 9272), rabbit
anti-phospho-Akt (Thr-308) (Cat. # 4056), rabbit anti-phospho-
Akt (S473) (Cat. # 4060), mouse anti-S6 (Cat. # 2317),
phospho-S6(S235/236) (Cat. # 2211), anti-Erk (Cat. # 4695S),
and anti-phospho-Erk (Cat. # 9101S) were purchased from
Cell Signaling Technology, mouse anti-β-actin (Cat. # 612657)
was purchased from BD Transduction Laboratories. Rg3 (Cat.
#SML0184, Sigma, purity >98%) was dissolved in dimethyl
sulfoxide (DMSO), The N-acetyl-l-cysteine (NAC) (Cat. #194603,
MP Biomedical) was dissolved in H2O, Oligomycin (Cat. #
SLBZ3164, Sigma) and FCCP (Cat. #C2920, Sigma), and tert-
Butyl hydroperoxide (Cat. #180340050, ACROS Organics).

Western Blot Analysis
Cells were lysed with lysis buffer. Samples were subjected
to sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE)
electrophoresis. Western blot analysis was performed as
described previously (Zhong et al., 2016) and the immobilized
proteins were visualized by the enhanced chemiluminescent
(ECL) detection system. Antibody concentrations were
optimized with various dilutions to ensure that the blotting
signals are linear to the levels of loaded proteins. Quantitative
analysis of the blots was performed with densitometry scanning.
Data from at least three independent experiments were analyzed.

Reactive Oxygen Species Analysis
The probe CellROX R© Green Reagent (Molecular Probe,
United States) was applied to detect the cellular reactive oxygen
species (ROS) levels. Cells were treated with drug vehicle, Rg3,
or 200 µM of tert-butyl hydroperoxide as a positive control for
1 h. Cells were stained with 5 µM probe and 1 µg/ml DAPI
for 30 min and then imaged on a laser scanning microscopy
(LeicaTC-SP2 Confocal System) using a 40× objective.

Measurement of Oxygen Consumption
Rate
HeLa cells were cultured on Seahorse XF 24 plates for 24 h. To
detect oxygen consumption rate (OCR), the growth media was

replaced with the XF Assay medium, and the plate was loaded
into the Seahorse XF24 Analyzer. OCR baseline measurements
were determined for HeLa cells pretreated with Rg3 or vehicle
control for 24 h.

Measurement of ATP Content
Cells were seeded in 96-well plates in triplicate and treated
with Rg3 at various doses. After treatment for 24 h, cells
were measured with ATPlite kit (Perkin Elmer, United States),
according to the instruction (Whitworth et al., 2012). All assays
were performed with six replicates in three separate experiments
and results are reported as the mean ± SD.

Mitochondrion Detection
Live cells were incubated with 150 nM Mitotracker Green FM
(Life Technologies) for 30 min or with 100 nM Mitotracker Red
CMXRos (Life Technologies) for 40 min in the dark at 37◦C.
Samples were then washed twice in PBS and imaged with a
laser scanning microscope (LeicaTC-SP2 Confocal System). The
relative fluorescence intensity was quantified by Image J software.

Statistical Analysis
All experiments were repeated at least three times and
representative data were shown. All data were expressed as
the mean ± SD. One-way analysis of variance (ANOVA)
with multiple comparisons using Dunnett’s test was applied to
compare the differences amongst the groups. P < 0.05 was
considered significantly different.

RESULTS

Rg3 Promotes Cell Growth and
Proliferation
Previous studies have demonstrated that Rg3 at concentrations
of more than 100 µM inhibits cell growth, but such high
concentrations are difficult to achieve in vivo. To evaluate how
Rg3 affects cell growth at a concentration that is tenable in vivo,
we treated HeLa cells with different concentrations of Rg3 and
examined cell growth and proliferation (Figure 1). We found
that while Rg3 inhibited cell proliferation at 50 µM, surprisingly,
at concentrations lower than 50 µM, Rg3 stimulated cell
proliferation in a concentration -dependent manner (Figure 1B).
We further examined the effect of Rg3 on HeLa cell growth using
a CCK8 assay (Figure 1C). As expected, in the presence of Rg3 at
a concentration lower than 50 µM, the number of cells increased
at 24 h. This result demonstrated that Rg3 induces HeLa cell
proliferation in a dose-dependent manner.

Rg3 Activates the mTORC1 and ERK1/2
Signaling Pathways
To determine the mechanism by which Rg3 stimulates cell
growth, we examined several major growth-promoting signaling
pathways in Rg3 treated cells. We found that Rg3 treatment
increased mTORC1-dependent phosphorylation of S6 in a
dose-dependent manner that peaked at the concentration of
20 µM (Figures 2A,C). However, Rg3 had no obvious effect

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 September 2021 | Volume 9 | Article 730309

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-730309 September 8, 2021 Time: 16:36 # 4

Liu et al. Ginsenoside Rg3 Activates mTORC1

FIGURE 1 | Low concentrations of Rg3 promote cell proliferation. HeLa cells were treated with various concentrations of Rg3 for 24 h in 10% FBS. (A) The number
and morphology of cells. Cell images were captured using a phase contrast microscope (100×). Scale bar, 100 µm. (B) Viable cell count performed using trypan
blue at 24 h. **P < 0.01. (C) Cell Counting Kit-8 (CCK-8) assay on the effect of Rg3 on cell proliferation. Values shown represent mean ± SD of three independent
experiments. One-way ANOVA followed by Dunnett’s t-test (**P < 0.01).

FIGURE 2 | Rg3 activates the mTORC1 and extracellular signal-regulated kinase (ERK)1/2 signaling pathways. Serum starved cells treated with different
concentrations of Rg3 for 1 h (A) or 20 µM of Rg3 for various time points (B). (C) Quantitative presentation of the relative levels of phosphorylated S6 expressed as
the ratio of phospho-S6/total S6. Data are from three independent experiments and expressed as mean ± SD. **P < 0.01.
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FIGURE 3 | Rg3 attenuates dephosphorylation of S6 upon serum withdrawal. (A) Cells were treated with Rg3 (A) or vehicle control (B) for 30 min followed by serum
withdrawal. The levels of phosphorylated S6 and total S6 at indicated time points after the serum withdrawal were determined by Western blotting.

FIGURE 4 | Rg3 stimulates mTORC1 independent of reactive oxygen species (ROS). (A) Effect of Rg3 on ROS production. Cells were starved in 0.5% of FBS for
24 h followed by treatment with different concentrations of Rg3 for 1 h. N-acetyl cysteine (NAC) (50 µM) was added to the control and 20 µM Rg3 treated wells.
Scale bar, 20 µm. (B) Quantitation and statistical analysis of oxidative stress based on staining with CellROX R© Oxidative Stress Reagents. Data are from three
independent experiments and expressed as mean ± SD. **P < 0.01. (C) Cells were pretreated with 50 µM NAC (+) or vehicle control (–) for 10 min followed by
treatment with Rg3 for 1 h. mTORC1-dependent phosphorylation of S6 was determined by Western blot.

on activation-dependent phosphorylation of AKT and AMPK
(Figure 2A), suggesting that Rg3 activated mTORC1 through
an unconventional mechanism. Analysis of the time-dependent
activation of mTORC1 revealed that Rg3 was able to activate
mTORC1 within 10 min after the cells were exposed to the
drug (Figure 2B). We also observed a transient activation of
ERK1/2, which peaked at 10 min and then returned to basal
level (Figure 2B).

Rg3 Attenuates Dephosphorylation of S6
Upon Serum Withdrawal
To further determine whether Rg3 stimulates the level of
phosphorylated S6 depends on the presence of serum, cells
pretreated with or without Rg3 were starved for serum. As
showed in the Figure 3B, in cells without Rg3 treatment, the level
of phosphorylated S6 decreased rapidly upon serum withdrawal.

However, the change of phosphorylated S6 was not obvious in the
Rg3 treated cells (Figure 3A).

Rg3 Stimulates mTORC1 Independent of
ROS
The above results indicated that Rg3 affects mTORC1
independent of AKT and AMPK, We further examined if
ROS, which stimulates mTORC1 activity at low concentrations
(Martin et al., 2013), mediates the effect of Rg3 on the
activation of mTORC1. We first evaluated whether Rg3
stimulates ROS production. We found that in comparison with
vehicle-treated cells, cells treated with Rg3 at a concentration
higher than 10 µM exhibited a strong accumulation of ROS
(Figures 4A,B). Rg3 induced increase in ROS was blocked
by treatment with the reducing agent, NAC, However, NAC
had no significant effect on the P-S6 level stimulated by Rg3

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 September 2021 | Volume 9 | Article 730309

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-730309 September 8, 2021 Time: 16:36 # 6

Liu et al. Ginsenoside Rg3 Activates mTORC1

FIGURE 5 | Rg3 promotes mitochondrial biogenesis and function. Cells were treated with different concentrations of Rg3 for 24 h. (A) Cells were stained with
150 nM Mitotracker Green FM for 30 min and imaged with fluorescent microscopy. Scale bar, 100 µm. (B) Quantitative presentation of the fluorescent intensity on
mitochondria shown in panel (A). Data were collected from three independent experiments and expressed as mean ± SD. **P < 0.01 (C) Cells were stained with
MitoTracker Red CMXRos (100 nM) for 40 min and imaged with fluorescent microscopy. Scale bar, 100 µm. (D) Quantitative presentation of the fluorescent intensity
of mitochondria shown in panel (C). Data were collected from three independent experiments and expressed in mean ± SD. *P < 0.05.

FIGURE 6 | Rg3 increases the basic oxygen consumption and ATP of cells. Cells were treated with Rg3 for 24 h with 10% FBS. (A) The basal oxygen consumption
rate (OCR) value were obtained using a Seahorse Extracellular Flux Analyzer. *P < 0.05. (B) the levels of ATP in the treated cells was measured. The data were from
three independent experiments and expressed in mean ± SD. The differences between the control and Rg3 treated samples. **P < 0. 01.

(Figure 4C), suggesting that the activation of mTORC1 by Rg3
was independent of ROS.

Rg3 Promotes Mitochondrial Biogenesis
and Function
Next, we examined the effect of Rg3 on the biogenesis of
mitochondria and their function. We used a membrane potential-
(1ψm)-independent mitochondrial stains, MitoTracker
Green FM, to measure the number of mitochondria and
1ψm-dependent dye MitoTracker Red CMXRos to monitor
mitochondrial integrity. We found that Rg3 at concentrations
lower than 50 µM dose-dependently increased the number of
mitochondria. However, the drug had an opposite effect at higher
concentrations (Figures 5A,B). Rg3 at 20 µM also caused a small

but significant increase in mitochondrial membrance potential-
(Figures 5C,D), suggesting that the drug was able to affect
mitochondrial activity. Collectively, these findings demonstrated
that Rg3 can increase the number of mitochondria and affect the
activity of mitochondria.

Rg3 Increases the Basic Oxygen
Consumption and ATP Generation
Oxygen consumption rate is a measure of the cellular respiration
and mitochondrial function. Using a Seahorse Extracellular Flux
Analyzer, we monitored the cellular OCR of cells treated with Rg3
in real time. We found that Rg3 treatment significantly increased
the OCR of the cells (Figure 6A). Similarly, Rg3 also increased
the levels of ATP in the treated cells (Figure 6B). These results
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indicated that Rg3 can increase the basic oxygen consumption
and ATP production.

DISCUSSION

As a ginsenosides monomer, Rg3 has been reported to be
beneficial for the treatment of various cancers t. Previous studies
indicate that Rg3 has potential as a chemo preventive agent
or adjuvant treatment. In vitro studies have shown that Rg3 at
high concentrations (>100 µM) is able to inhibit cancer cell
proliferation and migration (Zhao et al., 2019). However, Rg3
has poor oral bioavailability mainly because of its extensive pre-
systemic metabolism and poor membrane permeability (Jia et al.,
2009). Thus, it is very difficult to achieve the concentration of
Rg3 in vivo required for inhibiting cancer cell growth. Therefore,
further in vivo studies are required to elucidate the beneficial
effects of Rg3 in the treatment of tumors.

In the present study, we show that Rg3 at low concentrations
is able to stimulate, instead of inhibiting, cell growth. We find
that Rg3 has an immediate effect on activating the mTORC1
and MAPK signaling pathways. Surprisingly, Rg3 does not affect
the activities of AKT and AMPK, two upstream regulators of
mTORC1 that, respectively, channel growth factor and energy
signals to mTORC1. This observation suggests that Rg3 activates
mTORC1 independent of the conventional mechanisms. We find
that Rg3 can stimulate cellular ROS production. Although it is
possible that Rg3 activates mTORC1 through increasing ROS
levels by inducing, oxidative stress, we consider this possibility
unlikely for the following two reasons. First, Rg3 could activate
mTORC1 at low concentrations that had no obvious effects on
cellular ROS levels (Figure 2B). Second, pretreating cells with
NAC prevented Rg3-induced ROS accumulation but failed to
block mTORC1 activation. These observations indicate that Rg3
activates mTORC1 through a novel mechanism. The immediate
effect of Rg3 on mTORC1 activation also indicates that Rg3 may
act on mTORC1 through a direct mechanism.

At the concentrations lower than 50 µM, Rg3 also drastically
increases the number of mitochondria (Figure 5B), which is
accompanied by an enhancement in oxygen consumption and
the intracellular ATP level (Figure 6B). The increase in the
number of mitochondria is likely to be a consequence of the
Rg3-stimulated mTORC1 activation, which has been previously
shown to promote mitochondrial biogenesis (Larsson et al.,
1985). The high level of mitochondria is expected to lead to an
elevated oxygen consumption and ATP production.

The elevated activity of mTORC1 in Rg3 treated cells
is consistent with the higher rate of cell proliferation. To
bolster cellular proliferation and growth, mTORC1 stimulates
biosynthetic processes including protein synthesis, and acts as
a primary regulator of energy production in mitochondria.
The synthesis of proteins is positively correlated with the cell
proliferative rate (Larsson et al., 1985). In turn, mitochondrial

ATP production is required to fuel protein synthesis and
proliferation (Buttgereit and Brand, 1995; Rolfe and Brown,
1997). The correlation between the elevated mTORC1 activity
and increased cell proliferation in Rg3 treated cells indicates that
Rg3 may act through enhancing mTORC1 signaling activities to
promote cell growth and survival.

CONCLUSION

In conclusion, our data suggest that Rg3 at low concentrations
is able to promote cell growth through activation of mTORC1.
This effect is in contrast with that of high concentrations of Rg3,
which causes cell death. Given the low bioavailability of Rg3,
it is expected to be difficult to achieve high concentrations of
Rg3 in vivo that could exhibit the same cytotoxic effects in vitro.
In this regard, the benefit effects of Rg3 in cancer treatment
may lie on its activity in promoting the recovery of normal
cells, such as gastric stem cells and hematopoietic precursor cells
after chemotherapies. Therefore, the use of Rg3 compound as an
anticancer agent should be evaluated with caution.
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